Tag Archives: science fact

[March 16, 1969] Flight of the Space Spider (Apollo 9)



by Kaye Dee

Riding on Apollo's Coat-tails
The Traveller recently referred to President Nixon’s 8-day European tour, but it would seem Mr. Nixon deliberately decided to pave the way by riding on the coat-tails of the general international applause accorded to the historic Apollo-8 mission. Shortly before he announced his own trip to Europe, the President personally dispatched Apollo-8 commander Colonel Frank Borman and his family on an eight-nation European goodwill tour. (The other Apollo-8 crewmembers, already in training as part of the Apollo-11 backup crew, were not available to participate in the tour.)


Departing on 2 February, Col. Borman, his wife Susan, and two sons undertook a 19-day tour, visiting the UK, France, Belgium, the Netherlands, West Germany (including West Berlin), Italy (including Vatican City), and Spain (like Australia, home to an Apollo Manned Space Flight Network station and a Deep Space Network facility): an itinerary very closely paralleling that later followed by President Nixon!

The Borman family meets the Royal Family and Col. Borman presents a picture of the Moon to the Pope during his goodwill tour of Europe

Col. Borman said that he was particularly gratified to make the journey because of a conviction that space efforts “can be a very positive force for creating better relations among the people of the world”.

A Long-Delayed Mission
But while Colonel Borman was embarking on his diplomatic mission, the crew of the long-delayed first test flight of the Lunar Module (LM) in Earth orbit were in the final stages of preparations for the Apollo-9 mission, which splashed down just a few days ago with all its objectives successfully completed. Intended to be Apollo-8, the mission was bumped later in the sequence due to a succession of technical delays in the development of the LM, the first manned spacecraft designed solely for operations in space.


Apollo-9’s main task was to qualify the LM for manned lunar flight, demonstrating that the craft could perform all the necessary manoeuvres required for a landing on the Moon. The flight was therefore intended to be very much a mission of “firsts” that would finally fully test-out the entire suite of hardware needed to accomplish a Moon landing mission. It would see the first flight of the complete Apollo Saturn vehicle – Saturn V launcher (AS-504 for this mission), Command Service Module (CSM-104) and Lunar Module (LM-3) – as well as the first docking and extraction of a LM from the Saturn S-IVB stage.


 
Putting the LM through its paces would involve the first flight tests of its upper and lower stages, with the first firings of their engines in space, and include the first rendezvous and docking between with the CSM and LM. The mission would also undertake the first spacewalk of the Apollo programme, to test the reliability of the Apollo A-7L space suit and the Portable Life Support System (PLSS) backpack, essential for lunar surface operations.

The Crew Who Waited
Original 1966 crew photo of Astronauts Scott, McDivitt and Schweickart. Their training for the flight that eventually became Apollo-9 commenced in January 1967, even before the Apollo-1 fire

Probably the best prepared mission crew to date, the Apollo-9 crew originally came together in January 1966, as the back-ups for Apollo-1, before being assigned as the first crew to fly the LM. Their 1,800 hours of mission-specific training was equivalent to about seven hours for every hour of their eventual flight!

With so much riding on a successful LM test flight, Apollo-9’s crew comprised two veteran Gemini astronauts and one rookie. Mission Commander Air Force Col. James McDivitt previously commanded the Gemini-IV mission, during which the first US EVA was conducted. Command Module Pilot Lt.-Col. David Scott, also with the US Air Force, was Pilot of Gemini-VIII, its flight cut short by the first US in-flight space emergency, but for which he undertook considerable EVA training.

Finally Go for launch! Astronauts McDivitt, Scott and Schweickart in their official Apollo-9 pre-flight crew portrait

The new kid on the block for Apollo-9 was LM Pilot Mr. Russell Schweickart, originally selected in the third group of astronauts in 1963. An experienced fighter pilot, serving with the U.S. Air Force and the Massachusetts Air National Guard between 1956 and 1963, Mr. Schweickart joined NASA as a civilian, from a position as a research scientist at the Experimental Astronomy Laboratory of the Massachusetts Institute of Technology (MIT). Mr. Schweickart is nicknamed “Rusty” for his red hair (but in Australia, with our sense of humour, we’d have called him “Bluey”!).

Introducing Gumdrop and Spider
Because Apollo-9 would have two spacecraft from the same mission operating independently for the first time (unlike the Gemini VI-VII rendezvous, in which the two spacecraft were separate missions with their own callsigns), they each required separate callsigns for easy communications identification. NASA Administrators therefore finally lifted the ban on spacecraft names, which has been in operation since the beginning of the Gemini programme, permitting the crew to select their own names for the CM and LM.

The Apollo-9 CSM and LM being prepared for launch at Kennedy Space Centre

The astronauts chose “Gumdrop” for the CM, based on the shape of the capsule, which resembles the popular sweet, and “Spider” for the LM, given the spider-like appearance of the lander, with its four spindly legs. Unfortunately, it seems that certain NASA officials were not happy with these choices, feeling they were not dignified enough, so I hope they will not place restrictions on the names that can be selected for future missions, or force the crews to revert to dull numerical callsigns.

Patching Up
North American Rockwell artist Allen Stevens seems to be quite a favourite with the Apollo astronauts as a mission patch designer. He has designed the patches for Apollo-1, 7 and Apollo-9, and seems to have had a strong influence on the design of the Apollo-8 patch.

Stevens’ Apollo-9 patch evolved from a design he originally developed when Apollo-9 was still anticipated to be Apollo-8. The relatively simple concept depicts all the vehicle elements of the Apollo mission – the Saturn V in launch configuration, with the CSM and the LM flying separately as they would do during orbital test manoeuvres. In the final version of the design they appear against a mottled blue background that could represent either the Earth’s oceans or orbital space. Rather than show the CSM and LM docked together in orbit, as we often see them in NASA illustrations, Stevens chose to depict them in their on orbit ‘station-keeping’ positions, with the CSAM and LM facing each other, although this does give the impression that the CM is attempting to dock with the front of the LM!

Completing the design, the names of the crew and mission circle just inside the red-bordered edge of the patch, with the “D” in McDivitt’s name also filled in red. This is a nod to Apollo-9 being originally designated as the “D” mission in the sequence of Apollo flights prior to the Moon landing.

A Busy Moonport
Due to the long delay with the LM, preparations for Apollo-9 initially overlapped those of Apollo-7 and 8. By February, while the astronauts were spending long hours in mission simulators preparing for their flight, Kennedy Space Centre (KSC) was a hive of activity with Apollo-9 in the final stages of pre-launch testing, and advance preparations for Apollo 10 and Apollo 11 also underway (Apollo 10 is currently due for launch in May and Apollo 11 in July).  

In addition to Apollo-9’s launch preparations, the Apollo 10 spacecraft was moved from the Manned Spacecraft Operations Building (MSOB) to the Vehicle Assembly Building (VAB) for mating with its Saturn V launcher (above left); the first and second stages for the Apollo 11 Saturn V arrived, with the stacking of that launcher commencing in the VAB (above right); and the upper and lower stages of the Apollo 11 LM were also mated in the MSOB, in preparation for testing in the altitude chamber. NASA is really moving at a cracking pace to achieve a manned lunar landing this year!

An Unexpected Delay
The countdown for Apollo-9 commenced on 26 February, for a planned launch on the 28th. But fate stepped in to delay the crew’s trip to space just a bit longer! Ironically, despite their years of training for this mission, the astronauts pushed themselves so hard in their final weeks that, as launch day approached, they developed cold-like symptoms such as sore throats and nasal congestion.

Apollo-9's LM crew, McDivitt and Schweickart, training in the Lunar Module simualator

For NASA’s most complex manned mission to date, senior managers and flight surgeons wanted the crew to be in the best possible health for the 10-day flight. (They were probably also mindful of preventing a recurrence of the issues with the Apollo-7 crew, due to in-flight health problems). Consequently, the launch was rescheduled to 3 March to give the astronauts time to recover.

Finally on their Way!

 

 

 

 

 

 

 

 

 

 

 

 

 

Once KSC medical director Dr Charles Berry finally cleared the crew for launch, Apollo-9 left the pad exactly on time at 16:00GMT on 3 March. Hopefully the smooth launch impressed Vice President Spiro Agnew (on right in the picture below), who was present in the Launch Control Centre in his new role as Head of the National Space Council, especially as President Nixon has asked his science adviser, Dr Lee Dubridge, to report on possible cost reductions within the US space programme.

To maximize the chances of accomplishing them, in case any problems forced an early return to Earth, the most critical mission tasks were scheduled for the first five days of the flight. So once the Saturn rocket’s S-IVB third stage and the CSM were safely in orbit, things moved quickly. During the second orbit, CM Pilot Scott turned the CSM and successfully docked with the Lunar Module, nestled in the Spacecraft-Lunar Module Adapter of the S-IVB stage. The linked spacecraft were ejected from the S-IVB, which was then remotely controlled to simulate Trans-Lunar Injection and eventually be sent into a solar orbit.

Demonstrating that the “probe and drogue” CM-LM docking assembly worked properly is another crucial step towards enabling the future Moon landing. If this system didn’t work, a lunar landing would not be possible.

Once the probe is inserted in the drogue it retracts and pulls the two spacecraft together so that a series of twelve latches locks them tight.

Burning Along
Six hours into the mission, the next task was to establish that the docked CSM-LM could be manoeuvred using the Service Module’s Service Propulsion System (SPS) engine. A five-second burn placed the CSM in an orbit of 125 by 145 miles, to improve its orbital lifetime. This short firing demonstrated the CSM guidance and navigation system’s ability to control the burn and showed that the LM’s relatively light structure could withstand thrust, acceleration and vibration.

Following the first sleep period on an Apollo mission during which all three astronauts slept at the same time, Apollo-9’s second day focussed on putting the SPS engine, and the CSM, to the test, through a series of three burns. The first burn, lasting 110 seconds, raised Apollo 9’s orbit to 213 miles and tested the structural dynamics of the docked spacecraft under conditions simulating a lunar mission. This involved gimballing (swivelling) the SPS engine to determine whether the spacecraft’s guidance and navigation autopilot could dampen the induced oscillations. The CSM remained very stable, with the oscillations damped within just five seconds.

Apollo spacecraft diagram key. CSM (right) and LM (launch configuration) docked. I – Lunar module descent stage; II – Lunar module ascent stage; III – Command module; IV – Service module. 1 LM descent engine skirt; 2 LM landing gear; 3 LM ladder; 4 Egress platform ("porch"); 5 Forward hatch; 6 LM reaction control system quad; 7 S-band inflight antenna (2); 8 Rendezvous radar antenna; 9 S-band steerable antenna; 10 Command Module crew compartment; 11 Electrical power system radiators; 12 SM reaction control system quad; 13 Environmental control system radiator; 14 S-band steerable antenna

The second SPS burn lasted 280 seconds, changing the orbit to 126 by 313 miles, while the short third burn, just 28.2 seconds, changed the plane of the spacecraft’s orbit. These orbital changes were designed to position Apollo-9 for better ground tracking and lighting conditions during upcoming mission activities.

Space Sickness Strikes
Entering the LM and checking out its systems was scheduled for flight day three, but planned operations were initially disrupted when space sickness reared its head. Flight surgeons still know little about this condition, which seems to affect some astronauts but not others, and some more than others.

A view inside Command Module Gumdrop

Both Col. McDivitt and Mr. Schweickart were affected, with McDivitt apparently experiencing some mild nausea. Mr. Schweickart, however, vomited in the CM and again later in the LM. When Col. McDivitt contacted the flight surgeons from the LM to report the medical situation, they were less than happy that the earlier incident had not been initially reported, as they could have treated Schweickart’s symptoms sooner.

Opening Up the LM
Although the initial bout of space sickness delayed the start of operations to clear the docking tunnel and access the LM, the astronauts were able to continue with the day’s activities, and both Commander and LM Pilot used the docking tunnel to make the first ever transfer between manned spacecraft without needing to spacewalk. With Lt.-Col. Scott remaining in the CM, and hatches between the Gumdrop and Spider closed, the LM’s communications and life support systems demonstrated that they were operating independently from the CM. Schweickart also deployed Spider’s landing legs (which had been folded for launch) into the position they would assume for landing on the Moon, giving the LM the appearance of its namesake!


A Jumping Spider!
During the nine hours they inhabited Spider, still docked to the CSM, Col. McDivitt and Mr. Schweickart conducted a major test of the Lunar Module’s descent engine, firing it for 367 seconds to simulate the pattern of throttling planned for a descent to the lunar surface. For the final 59 seconds of the burn McDivitt controlled the throttling, varying the thrust from 10 to 40 percent and shutting it off manually, marking the first manual throttling of an engine in space.

This burn, which demonstrated that the LM descent engine could manoeuvre the combined LM-CSM stack, was followed by an additional SPS firing after the LM crew returned to the CM. Together, these burns placed Apollo 9 into an orbit of 142 by 149 miles, ahead of the rendezvous exercises to be performed on day five.

Red Rover (Doesn’t Quite) Cross Over
The step-by-step testing program for Apollo-9 earmarked the fourth day of the mission for a spacewalk to test the reliability of the Apollo EVA suit and the PLSS backpack, necessary because it would be impractical and dangerous for astronauts to move across the Moon’s surface trailing umbilical lines connected to the LM. As the only EVA scheduled before the Moon landing, it was the single opportunity to test the PLSS operationally in space.

Astronaut Schweickart training for his planned EVA

Using the call sign “Red Rover”, “Rusty” Schweickart was originally scheduled to perform a two-hour EVA to simulate a space rescue technique in the event that a CM-LM docking could not be made, crossing from Spider to Gumdrop. This would have involved him exiting the hatch on the LM and making his way along the outside of the spacecraft to the CM hatch, where Lt.-Col. Scott would be standing by to assist access to the CM. However, the LM Pilot’s bout of space sickness led Col. McDivitt to initially cancel the EVA, due to the flight surgeons’ concerns about the dangers of vomiting in a spacesuit. This also meant the cancellation of a planned TV broadcast of the spacewalk itself, which would have been another first.

Wearing Golden Slippers
But with Mr. Schweickart feeling somewhat better by day four, a modified short EVA was substituted to enable the EVA equipment test to be carried out. After McDivitt and Schweickart again transferred to Spider, Mr. Schweickert climbed out onto the LM porch for a 37.5-minute EVA, exclaiming “Hey, this is like spectacular” as he stood in the void. For much of this time, the astronaut’s feet were held in gold-coloured restraints, nicknamed the “Golden Slippers”, but he was also able to move around the LM’s exterior using handholds to retrieve some experiments.

At the same time, David Scott, wearing a bright red helmet, made a stand-up EVA in Gumdrop’s hatch and both astronauts photographed each. Scott, too, retrieved experiments from outside the CM. Mr. Schweickart has said that he found moving around easier than it had been in simulations and was confident that he could have completed the spacewalk to the CM had it gone ahead.

The Spider Takes Flight

The key event in Apollo -9’s programme was the undocking and rendezvous tests scheduled for the fifth day of the mission. These manoeuvres would simulate all the activities required for a successful lunar landing and return to lunar orbit. With McDivitt and Schweickart in Spider, and Scott remaining in Gumdrop, the two craft undocked to commence a complex set of manoeuvres and burns of both the LM descent and ascent engines. These tests also carried a new element of danger. The Lunar Module has no ability to return to Earth on its own, since it lacks a heatshield: if something went seriously wrong its crew could end up stranded in space with no way home.

After 45 minutes separated but station keeping, an initial 24.9-second LM descent engine burn placed Spider into a 137 by 167 mile orbit; a second 24.4-second firing circularized the orbit around 154 by 160 miles, approximately 12 miles higher than Gumdrop. Over the next four hours, McDivitt fired the LM’s descent engine at several throttle settings, before lowering Spider’s orbit to begin a two-hour ‘chase’ to catch-up with Gumdrop. The LM descent stage was then jettisoned, and the ascent stage engine fired for the first time, lowering the LM’s orbit still further and placing Spider 75 miles behind and 10 miles below Gumdrop for the rendezvous manoeuvre.

Although it is planned that in future Moon missions, the Command Module pilot will conduct the rendezvous with a returning LM, for Apollo-9 Spider carried out the rendezvous, to demonstrate that the manoeuvre could be performed by either craft. Apart from this difference, the approach and rendezvous hewed as closely as possible to the current plans for lunar missions. Mission Commander McDivitt flew the LM close to Gumdrop, manoeuvring Spider so that CM Pilot Scott could see each side of the vehicle and inspect it for any damage. As he photographed the ascent stage, Scott joked “You’re the biggest, friendliest, funniest looking Spider I’ve ever seen.”

McDivitt then docked to the CM, guided by Scott, as Sun glare was interfering with his vision. Once Spider’s crew returned to Gumdrop, the ascent stage was jettisoned and remotely commanded to fire its engine to fuel depletion, simulating an ascent stage’s climb from the lunar surface. With the approach and rendezvous operation complete, the only major LM system that had not been fully tested during Apollo-9 was the lunar landing radar.

A Bit Camera Shy
Unlike the previous two missions, Apollo 9’s packed programme restricted the television broadcasts made by the astronauts. Spider was equipped with a Westinghouse b/w Lunar Surface Lunar TV Camera, identical to the one taken to be carried to the Moon’s surface on the first landing, as another equipment trial. This low-light “slow scan” camera produced a 320 line, 10 frames per second non-interlaced picture.

Only two broadcasts were from Spider. The first, seven minutes’ long, occurred on day three and showed Mr. Schweickart and Col. McDivitt working in the confined space of the LM. The second broadcast occurred shortly after the end of the EVA on the fourth day, with Spider’s crew still wearing their spacesuits.

The quality of this 15-minute transmission was much better than the previous day, and the crew treated viewers to a scene of Col. McDivitt eating. The camera was then pointed out the LM’s top window to show Gumdrop, then through one of the forward windows to glimpse one of Spider’s attitude control thruster quads and a landing leg. Finally, the view switched back into the cabin to show the LM’s instrument panel and a radiation detector. Once the LM ascent stage was jettisoned, on day five, there were no further broadcasts as the CM did not carry a television camera.

Cruisin' in Orbit
Once the crowded test schedule of the first five days was complete, the second five days of Apollo-9’s flight, intended to test the endurance of the CSM for the total length of a Moon landing mission, were quiet and relaxed by comparison.

Col. McDivitt thanked the Mission Control team for their work during the hectic first half of the mission and jokingly mused: “Might give you the impression that it might work, huh?” The crew sang a belated “Happy Birthdays” to Christopher C. Kraft, Jr., Director of Flight Operations at the Manned Spacecraft Centre, and Apollo 9 crew secretary Charlotte Maltese.

There were additional SPS burns on days six and eight to change the spacecraft’s orbit, with no major activities scheduled for the ninth day, although the astronauts made observations of the Pegasus 3 satellite, passing within 1,000 miles and 700 miles of Apollo 9 during two successive orbits. They also observed the LM ascent stage from about 700 miles away.

Observing the Earth
The main activity of the second half of the Apollo-9’s flight was the mission’s only formal scientific investigation, a programme of multi-spectral terrain photography, using four Hasselblad 70 mm cameras pointed out the CM’s round hatch window. This allowed photographs to be taken in four specific wavelengths of the visible and near infrared spectrum simultaneously.

Multi-spectral images. The same view of San Diego and parts of California in four different wavelengths

This experiment was designed to determine whether multi-spectral photography can be effectively utilised for earth resources programmes such as agriculture, forestry, geology, oceanography, hydrology, and geography. The results will help to refine the instruments for the Earth Resources Technology Satellite (ERTS), due for launch in 1972, Landsat, and techniques for multi-spectral photography to be conducted aboard the Skylab space station in the early 1970s.

Altogether 127 complete four-frame sets of photographs were taken over California, Texas, other areas of the southern United States, Mexico, the Caribbean and the Cape Verde Islands. Astronauts also took more than 1,100 standard Earth observation photographs of targets around the world, using colour and colour infrared film and a handheld Hasselblad camera.

Apollo-9 astronauts' colour photograph of the North Carolina coast and a colour infra-red view of California's Salton Sea

Coming Home
Apollo -9 returned to Earth on 13 March (the 14th for us here in Australia), the tenth day of the mission. Re-entry was delayed by one revolution due to heavy seas in the primary recovery area, but Gumdrop splashed down safely in the Atlantic, within three miles of the recovery ship, the USS Guadalcanal, after a mission totalling 241 hours, 53 seconds – just 10 seconds longer than planned!

On board the recovery ship, the crew were treated to a share of a 350-pound cake baked in their honour. Now safely back in Houston for their flight debriefings, NASA’s attention – and the world’s – is already turning to Apollo-10, due to fly in May to test the LM around the Moon!

Ready for the Next Steps
While Apollo-9 might not have seemed as exciting a mission as Apollo-8’s epic lunar voyage, it was critical because it has simulated in Earth orbit, as far as possible, many of the conditions that the astronauts and their equipment will face when the lunar landing attempt is made. Beyond that first landing and its successors, there is the Apollo Applications Programme, and other developments such as the Skylab manned earth orbiting workshop. Everything that has been learned in space with Apollo-9 will be useful sooner or later in future space activities!

And you can bet we'll be covering each and every one of them here on the Journey…

Apollo-9 view of the Moon


[February 16, 1969] Triumph, Tough Luck and Turmoil (European Space Update)



by Kaye Dee

The accelerating pace of the US and Soviet space programmes over the past few months has drawn our attention away from space developments in other parts of the world, especially with the excitement of the historic Apollo 8 lunar mission so recently behind us and Apollo 9’s in-orbit test flight (finally!) of the Lunar Module next month. But there have been many developments on the European space scene since I wrote about it in May last year, so I think it’s time for an update!

Triumph: ESRO 1A Finally in Orbit
My previous European space report noted that the European Space Research Organisation’s (ESRO) first satellite, ESRO 2B, reached orbit ahead of ESRO 1A, the latter satellite delayed due to difficulties in the development of its instrumentation payload. But ESRO 1A was finally launched on 3 October 1968 from Vandenberg Air Force Base in California, using a Scout launch vehicle.

ESRO 1A mounted on its Scout vehicle ahead of its launch at Vandenberg AFB

Fired into a 90° polar orbit, with an initial apogee of 930 miles and a perigee of 171 miles, ESRO 1A is designed for a nominal lifetime of six months. However, it is already looking likely that the satellite will survive much longer and possibly still be in orbit when its follow-up twin ESRO 1B is launched later this year (presently planned for some time in October).

The ESRO1 missions were first outlined in 1963 at scientific meetings of COPERS (Commission Préparatoire Européenne de Recherche Spatiale, which is the French name for the European Preparatory Commission for Space Research, a predecessor of ESRO), but the programme has been developed as a joint venture between NASA and ESRO. NASA provided the Scout vehicle for ESRO 1A, although ESRO will purchase the Scout launcher for the ESRO 1B flight.

Designed by ESRO, the construction of both ESRO 1 satellites is all-European: Laboratoire Central de Telecommunications (Paris) is the prime contractor, with assistance from Contraves AG (Zurich), and Antwerp-based Bell Telephone Manufacturing Company, with final testing taking place at ESRO’s ESTEC facility. Weighing about 187 pounds, the cylindrical, non-stabilised ESRO 1 satellites are 30 inches in diameter and 36.6 inches tall (specifically designed to fit within the Scout vehicle fairing) and powered by solar-cells.

ESRO 1A (‘Aurora’) and ESRO 1B (‘Boreas’) have been designed to study how the auroral zones respond to geomagnetic and solar activity. Their payloads are directly derived from earlier sounding rocket experiments measuring the radiation characteristics of the upper atmosphere. In orbit, the satellites’ axis of symmetry is magnetically aligned along the Earth's magnetic field. They can make direct measurements as high-energy charged particles from the Sun and deep space plunge from the outer magnetosphere into the atmosphere (ESRO 1B will be placed in a lower orbit that 1A to provide comparative data at different altitudes). The satellites can also investigate the fine structure of the aurora borealis and correlate studies on auroral particles, auroral luminosity, ionospheric composition, and heating effects.

ESRO 1A carries seven scientific experiments chosen to measure a comprehensive range of auroral effects. Identical or similar experiments will be carried on ESRO 1B.

Tough Luck: Another ELDO Launch Failure…
Unfortunately, the European Launcher Development Organisation (ELDO) has yet to taste the same success as ESRO, with repeated failures in its Europa satellite launcher test flights, which I've covered in detail in previous articles.

Despite the loss of both Europa F6/1 and F6/2 due to failures of the French ‘Coralie’ second stage, the Europa F7 flight was scheduled for a November launch last year, as the first vehicle to fly with all three of the rocket’s stages active. This eighth firing in the ELDO test programme marked the beginning of Phase 3 of the Europa test flights. It would be the first attempt to launch ELDO’s Italian-built STV (Satellite Test Vehicle) satellite into orbit, as well as the first time that the ELDO down-range guidance and tracking station at Gove in the remote Arnhem Land region of the Northern Territory (primarily developed by Belgium) would actively participate in a Europa launch.

View of the ELDO downrange tracking station, near Gove in the Northern Territory. The area is also known by its Aboriginal name of Nhulunbuy

The failure of the Coralie stage to separate during the F6/2 launch, due to an electrical fault, meant that modifications had to be made to prevent a recurrence of the issue. So there was plenty of tension (and frustration) in the air when last-second delays halted two attempts to launch F7 on 25 November. Both aborts occurred just 35 seconds before the rocket was due to lift off, and were caused by the discovery of a fault in the Coralie staging system between the first and second stages – nobody wanted a repeat of F6/2!

A Coralie second stage engine being checked out at Woomera prior to stacking the Europa vehicle for launch

A launch attempt on 27 November was cancelled due to another fault, as was a fourth attempt on the 28th, which was caused by a faulty indication in a pressure switch system in the engines of the British Blue Streak first stage.

Finally, on the fifth attempt, Europa F7 lifted off on 30 November (Australian time; still 29 November in Europe), but this flight, too, was doomed to be short-lived. The second stage separated and functioned perfectly: this time it was the West German ‘Astris’ third stage that caused the failure.

The Astris stage separated and ignited as expected but burned for just seven seconds (instead of the planned 300 seconds) before it exploded. Investigations as to the cause of the failure are ongoing, but at present there are three possible causes under consideration: rigid pressurisation pipes that may have fractured; an explosive bolt, part of the WREBUS flight safety destruct system, that may have been inadvertently been triggered by a stray electrical current; or a rupture of the tank diaphragm in the third stage, which separates the fuel and oxidiser. The diaphragm may have been weakened during pre-flight preparations. At present we can only await the outcome of the investigations and hope that they do not delay the launch of Europa F8, currently scheduled for June or July this year.

…And a Satellite Lost
While it was not the main objective of the F7 flight, it is particularly disappointing that the Italian test satellite did not reach orbit, as it would have become the second satellite launched from Woomera, exactly one year after Australia’s own WRESAT.

The first flight-ready STV satellite being checked out following its arrival at Woomera

The octagonal prism-shaped STV satellites (successors will be flown on Europa F8 and F9) have been built for ELDO by Fiat Aviazione. The 472 pound satellite carries instruments to characterise the launch environment of the Europa vehicle, providing information on the conditions and stresses that future satellites launched on Europa vehicles will need to be capable of surviving.

Despite the loss of both the rocket and the satellite, ELDO has been referring to Europa F7 as a “successful trial”, as it has enabled its engineers to acquire data about the performance of the Coralie second stage in flight and came close to placing a satellite into orbit. ELDO representatives are saying that, the Europa vehicle has “emerged for the first time as a practical proposition.”

Turmoil: the State of European Space Policy
Last May, I asked whether Britain had lost its way in space, and whether European space plans would flourish or wither, due to changing views on the future direction of Europe’s space activities and reductions in funding. Since then, the outlook has become even more uncertain, with disagreements over juste retour project work allocations and the ELDO budget creating turmoil.

In November last year, Ministers, space organisation representatives and space experts from 16 European countries, as well as Australia and Canada, met for the third European Space Conference, held in Bonn, West Germany. At this meeting, a proposal was put forward to merge ELDO and ESRO to form a pan-European space authority by early 1970, which would be known as the European Space Agency.

This idea proved popular with many of the attending nations, but less so with Britain, which expressed the view that it was unlikely that Europe could launch satellites economically. As noted last year, Britain has already announced its intention to withdraw from ELDO, although it has committed to continue supplying Blue Streak first stages for the Europa II vehicle.

However, the British Government has offered to back a revised European space programme designed to yield “practical results”. Britain wants Europe to concentrate on developing applications satellites for weather forecasting, telecommunications, and scientific research, giving up the development of independent European launchers in favour of using American vehicles.

The British proposal includes an offer to contribute to a project for an “information transfer satellite” to be completed by 1975, providing a point-to-point television relay service between London and Paris for the European Broadcasting Union. In addition, Britain would participate in a long-term applied research programme to improve European industrial space capability, in conjunction with funding an immediate economic study of the market for applications satellites. The quid-pro-quo for British support for this ambitious “practical space programme” is that the UK must be released from its present financial commitment to ELDO. This is certainly ironic, given that Britain was the driving force behind the original creation of ELDO!

ELDO's Budget Crisis
After the failure of Europa F7, the ELDO Council met on 19-20 December to vote on the organisation’s 1969 budget, with Britain again the fly in the ointment, declaring that it would not support the new “austerity plan” compromise budget proposed by West Germany to cover the final two years of the Europa-1 development programme.

Using a loophole in the ELDO Convention to characterise the German proposal as a “further programme” (ie: it was not part of the original ELDO programme that it had signed up to), Britain declared that it had “no interest” in the plan and so was not obliged to contribute to it financially. It would only support the 1969 budget if its outstanding contribution to ELDO was reduced to £10 million for the years 1969, 1970 and 1971.

Italy took a similar line, supporting the British view and declaring itself “not interested”, and would not vote for the 1969 budget. In addition, Italy formally rejected as inadequate an offer to become the prime contractor of the apogee motor in the Symphonie communications satellite programme.

This recalcitrance on the part of Britain and Italy has plunged ELDO into a budget crisis, and the organisation has been operating on a contingency funding basis since 31 December. Practical considerations, and the terms of the ELDO Convention, indicate that the impasse needs to be resolved within three months, at which point a budget must be approved or the original treaty becomes invalid.

An excerpt from the journal Nature, reporting on ELDO's budget crisis

A meeting of the relevant Ministers from all seven ELDO member states is currently scheduled for 26 February to seek a political solution to the problem and find a way forward for Europe’s space ambitions before they fragment. What’s that Chinese proverb? “May you live in interesting times”!

An Australian Postscript: No WRESAT-2
In my article on the launch of Australia’s first satellite at the end of November 1967, I mentioned that the Weapons Research Establishment was planning to put a proposal to the Australian Government for the establishment of an Australian space programme, managed by the WRE. This proposal went to the Cabinet for consideration last year, but was rejected by the Government on the basis of cost, despite the modest budget it was proposing. This is not the first proposal for an Australian space programme that has been rejected by Cabinet, which seems to have little appetite for funding Australian civil space projects. To the frustration of all those involved, it looks like WRESAT-1 will not, after all, be followed by WRESAT-2.

Signing off
Well, in the vernacular of your beloved Walter Cronkite, "That's the way it is." I'm sorry I haven't happier news to report just yet, but you'll hear it here first when I have it!

(And my thanks to my Uncle Ernie, the philatelic collector, for providing the selection of space covers (envelopes) that I have used to illustrate this article.)


[December 22, 1968] What wonders await? (January 1969 Fantasy and Science Fiction)


by Gideon Marcus

Where'd you get those peepers?

Few things excite the imagination more than adventures in space.  In particular, we love to hear about doings in the cosmos that can't be done on Earth.  And one of the main things we can't do on Earth is see the sky.

Oh sure, when you look out at the starry night, you think you're witnessing infinity.  In fact, your eyes barely apprehend a tiny fraction of the electro-magnetic spectrum.  We are blind to radio waves, to ultra violet, to X-rays, to infrared.  Our sophisticated telescopes are similarly handicapped.  Even the mighty 200 inch telescope on Mount Palomar can't see in most of light's wavelengths, for they are blocked by the Earth's atmosphere.  In the X-ray, ultraviolet, infrared, and cosmic ray bands, the glass seeing-eye tubes are as sightless as we are.

Which is why the launch of the Orbiting Astronomy Observatory (OAO) on December 7, 1968, was such an exciting event.  Dubbed "Stargazer", it is the very first space telescope.

Well, technically, it's the second.  The first one went up on April 8, 1966, but its power supply short circuited shortly after launch, and it never returned any data.  This is a shame, as there were some nifty experiments on board, including a gamma ray experiment similar to the one carried on Explorer 11, another gamma ray counter supplied by NASA's Goddard center, and a Lockheed-made X-ray counter.  But, the main experiment, a set of seven telescopes designed to look in the ultraviolet spectrum, provided by the University of Wisconsin, was duplicated for OAO-2.

This telescope cluster will be used for long-term observation of individual stars, something that only recently became possible with the perfection of star tracking technology.  In addition, the Smithsonian has provided an additional package of four telescopes for the investigation of large masses of stars, up to 700 per day, to get an overall UV map of the sky.

Think of how revolutionary it was when the first radio observatories began mapping the heavens.  We learned about the existence of quasars and weird storms on Jupiter and also a lot more about the stars we had been observing visually for centuries.  Stargazer is about to give us a whole new view of the universe.

That's exciting—truly science fiction made fact!

Jeepers Creepers

While we wait to see what excitement OAO 2 returns from the heavens, let's turn to the latest F&SF to see what terrestrial treasures await us this month.


by Gahan Wilson

A Meeting of Minds, by Anne McCaffrey

We return to the world of "The Lady in the Tower", one of my favorite McCaffrey stories, for the lead story this issue.

Damia, the daughter of that first story's protagonist, is 20 and humanity's strongest telepath.  As tempestuous as she is beautiful and brilliant, she has refused the attentions of men, holding out for something…better.

That's when she meets Sodan, an alien inexorably approaching the Terran sphere from far, intragalactic space. Thus ensues a completely mental courtship, and Damia becomes infatuated with the foreign entity.  But Afra, an experienced mentalist, who has been secretly in love with Damia for ages, is suspicious.  What if the being is simply manipulating Damia so that Earth's greatest defense will be neutralized?

The stage is set for a cosmic battle, and a realignment of Damia's priorities.

I really wanted to like this story.  I was anticipating an "Is There in Truth no Beauty?" romance where two beings find love despite fundamental physical differences.  Instead, the viewpoint shifts from Damia's to Afra's early on, and all we get is his certainty that Sodan is up to no good, which is vindicated.  Then, after the battle, Damia realizes the worthy that's been under her nose this entire time and, of course, gives him her love.

Of late, there has been a shallowness to the emotion displayed in McCaffrey's writing that just puts me off.  Also, a sort of petty volatility.  All of her characters snipe at each other constantly.  But the real nadir of the story comes at the end:

Shyly, her fingers plucking nervously at her blanket, Damia was unable to look away from an Afra who had altered disturbingly. Damia tried to contemplate the startling change. Unable to resort to a mental touch, she saw Afra for the first time with only physical sight. And he was suddenly a very different man. A man! That was it. He was so excessively masculine.

How could she have blundered around so, looking for a mind that was superior to hers, completely overlooking the fact that a woman's primary function in life begins with physical submission?

I feel like if Piers Anthony had written that, we'd have given him the Queen Bee.  Two stars.

A Brook in Vermont, by L. Sprague de Camp

De Camp muses poetically on the Carboniferous, and what future beings, millions of years hence, will burn the coal being formed today.

I think the author missed a real opportunity to imply that we would be the anthracite mined in the far future, suggesting that we run the very real risk of leaving nothing to the ages but our combustibility.

Three stars as is.


by Gahan Wilson

Black Snowstorm, by D. F. Jones

This is nothing more, nothing less, than an extremely well-told story of a plague of locusts. There's no satire, no metaphor, no literary experiments. Both shoes drop simultaneously, though slowly, gradually, rivetingly.

Five stars.

Unidentified Fallen Object, by Sydney Van Scyoc

One day, a small UFO falls with the snow, and a precocious teen boy picks it up to examine.  As he handles the small craft, flakes of it come off, perhaps sliding into his very pores.  Soon, he begins to radiate a frightful miasma, inciting hatred in all approach him.

Including his teacher, who has also touched the fell ship…

"Object" is a chilling, effectively written little horror.  It's not particularly to my taste, and it's a bit one-note, so it's just a three-star story for me.  Others may find more to like (for those who enjoy a sense of dread).

How I Take Their Measure , by K. M. O'Donnell

In the future, everybody's on relief…or administering it.  This is a little slice-of-life story about a sadistic relief worker, who gets off on the tenterhooks he hangs his relief applicants on.  No Brock, George C. Scott's kindhearted social worker from East-Side, West-Side; this guy is a real bastard.

This is my favorite story about terminal unemployment that I've read since one in IF a decade ago (the one about the guy who gets a job tightening all the screws on the buildings in the cities—which have been systematically unscrewed by some other schnook the night before…).

Four stars.

Santa Claus vs. S. P. I. D. E. R., by Harlan Ellison

Here's St. Nick like you've never seen him before.  In the style of Ian Fleming's James Bond series (though not Edward S. Aaron's Sam Durrell, Harlan offers up Agent Kris Kringle, a hard-stomached, oversexed, lean killer whose red suit is filled with every lethal device known to Elfkind.  His nemesis is S.P.I.D.E.R., an international organization devoted to evil.  This time, their nefarious scheme involves mind control: they have brainwashed LBJ, HHH, Nixon, Daley, Reagan, and Wallace into doing the most horrid deeds, and only the jolly agent from the North Pole can defeat them.

Okay, it's a bunch of silly fluff, probably written between bonafide adventure yarns Ellison probably writes under another name like "Rod Richards" or "Length Peters".  I did appreciate how every cruddy thing in the world is ultimately attributable to S.P.I.D.E.R.—humanity is basically good and cuddly.  Only the nefarious "them" subvert our goodness.

I've often noted that comic books and spy novels offer an easy way out for readers.  It's tough to deal with everyday problems, with economic malaise, with systemic issues that cause crime and misery.  How much easier to topple the goon of the week to get our cathartic kicks.  Ellison lets us know he understands the flavor of his own cheek with the subtlety within the broadness.

That said, it's a one-note joke, and once you've gotten the punchline, I don't think the story bears much rereading, especially since it is so very much of a very specific moment in our history (as Judith Merril notes in her book column, August 1968 already feels like an age ago).

Three stars.

The Dance of the Satellites, by Isaac Asimov

The Good Doctor continues his examination (see last month's piece) of what the Galilean moons of Jupiter might look like from the innermost moon, Amalthea.  This time, he focuses on eclipses, the appearance of the moons in Jupiter-shine, and more.

Interesting cosmic data, of use to writers and laymen alike.  Four stars.

The Legend and the Chemistry, by Arthur Sellings

The 3607th (or was it 3608th) interstellar exploration mission from Earth seems like it will be yet another humdrum operation.  In all the expeditions, though many aliens have been found (most humanoid), all have been planetbound, none of them having reached our space traveling level of technology.

This latest planet is no exception, its humaniform denizens possessing a primitive tribal culture.  But they have no less pride than any other race.  What happens when the very existence of far superior beings constitutes an unpardonable affront?  And who is responsible for the catastrophe that ensues?

A decent, moralistic yarn from the late, great Arthur Sellers.  This may well be his last work published (unless he has a posthumous career like Richard McKenna) as he died recently.  While Legend is not the best thing he's ever written, it has its own kind of power.

Three stars.

Wild ride

There are a lot of vicissitudes in this first F&SF of the year.  The strong points cancel the weak points, and the magazine ends in positive territory, but because the lack of consistency makes things a bit sloggish.

Well, that's why I do this, right?  To be your guide to ensure you only get the highlights!






[November 18, 1968] Pioneers and Protons (a space round-up)


by Gideon Marcus

The Interplanetary Pioneers

When you think "outer space", you don't usually think of weather.  In fact, weather in space is a bit like weather on Earth: there's wind, turbulence, a steady rain, and occasional storms.  Except that the wind and rain are the sun's ceaseless spray of charged particles along with their attendant magnetic fields.  The storms are the result of solar flares, those sudden unsettled periods when fiery prominences reach out from the sun's surface.

These phenomena can even be sensed by humans—as aurorae where the solar wind interacts with the Earth's magnetic field, and as the crackle of static on a shortwave radio.  For satellites and space travelers, the solar radiation, particularly during flares, can damage electronics and internal organs.  There are thus a lot of reasons it would be practical to have a space weather report, just as we have a daily weather report down here on Earth.


Northern Lights, 1921, by Sydney Laurence

This is why the Pioneer series of solar weather satellites, the first launched December 16, 1965 and the latest launched on November 8th of this year, was created: to serve as long-term weather sentinels in space, the interplanetary equivalent of our TIROS weather satellites.

Prior to the launch of Pioneer 6 (no relation to Pioneer 5 or its predecessors save for the name), the mapping of the solar wind had been a strictly local affair.  The Interplanetary Monitoring Platform satellites, Explorers 18, 21, 28, 33, 34, and 35, have all been launched in high Earth orbits to survey the solar wind between the Earth and the moon.  This is in service of the Apollo program.

The aforementioned Pioneer 5 and interplanetary probes like Mariner 2 have made preliminary forays into true interplanetary space beyond the Earth/moon region, but those missions only lasted a few months.  The interplanetary Pioneers will be on station for years.

Launched on Delta rockets (the direct descendants of the Thor-Able rockets that launched the first Pioneers toward the moon), Pioneers 6-9 (and eventually #10, next year), were hurled into orbits that parallel our own, but further out in the case of Pioneers 7, 8, and 9; a little closer to the sun in the case of Pioneer 6.  The outer ones orbit a little more slowly while P6 zooms a little faster.  As a result, they all spread out, making a necklace of stations around the sun.

Pioneer 6 was launched in 1965 during the lull in the sun's 11 year cycle called "the solar minimum".  The hope was that we would get continuous data as the sun increased in activity, flaring more and more often.  We have not been disappointed.  On July 7, 1966, a big shock front from a solar flare enveloped Explorer 33.  45 hours later, Pioneer 6 was hit.  Interestingly, because of the time delay, even though both probes were similar distances from the sun (but far apart in orbit, of course), it is believed those might have been the result of two different flares, or perhaps two disturbances from the same one.

When the Pioneers were launched, scientists had a basic idea of that the solar wind looked like the spiral spray of a sprinkler head, this caused by the 28-day rotation of the sun.  But the instruments onboard the sophisticated Pioneers afforded much more detailed analysis of these streams and fields.  The Pioneers have found that the local magnetic fields will suddenly flip every so often.  Their microstructure is like woven filaments, far more complicated than we had previously conceived.


High-level view of the "sprinkler" spray of the solar wind

Pioneers 7 and 8 sailed through the Earth's magnetosheath, that magnetic shadow formed as the sun's wind interacts and deflects around the Earth.  Comparing their results to the closer-in Explorer 33, they found that this shadow tail gets more diffuse, more like the background interplanetary wind at greater distances, which is what one would expect.


The Earth's magnetic field (you can see the figure 8 Van Allen Belts) and the long, trailing, magnetosheath.

The Pioneer satellites are well-placed for more than just solar science.  Pioneers 8 and 9 are equipped with cosmic-ray telescopes designed to measure the chemical composition and sprectra of the galactic wind—the higher-energy rain of particles from beyond our solar system.  But the coolest use of the Pioneers so far (to me) is when Pioneer 7 was used to measure the lunar ionosphere.  On January 20, 1967, the moon "occulted" (blocked) the space probe, as seen from Earth.  Radio waves were beamed from a 150-foot dish run by Stanford past the edge of the moon.  They found that the scattering that resulted can't be explained just by the physical rocks of the lunar surface.  There must be a tenuous "atmosphere" above the moon, at least on the sunlit side, created at high altitudes by interactions between the solar wind and the surface of the moon.

There's actually a lot more, esoteric stuff that's way above my head.  And there will be plenty more as the Pioneers will probably keep going for many more years.  Though they haven't gotten much press, I think these are some of the most exciting missions to date.  Stay tuned!

My, what big…rockets you have!

Three years ago, I made a brief announcement about the launch of a new Soviet probe, one so enormous that its size alone had ramifications for the future of the Communist space program.  Proton, launched July 16, 1965, massed a whopping twelve tons, making it the biggest single object put in orbit until the November 1967 launch of Apollo 4.  That means that the USSR has a Saturn-class rocket in its stable, which is why the concerns about an imminent moon mission have grounding.

Since Proton 1, three more Protons have been sent into orbit, the latest just two days ago on November 16th.  Proton 4 weighs seventeen tons, which will beat all records—at least until Apollo 8 goes up in December. 

Why are they so heavy?  Because they carry heavy instruments.  Protons 1 and 2 included a gamma-ray telescope, a scintillator telescope, and proportional counters.  These counters were able to determine the total energy of each super-high energy cosmic particle individually, a capability no prior satellite had possessed, measuring cosmic rays with energy levels up to 100 million electron volts.

In addition to the above equipment, the fourteen ton Proton 3 was also equipped with a two-ton gas-Cerenkov-scintillator telescope.  Its goal was to attempt to detect the "quark", a brand new theoretical sub-particle that, according to theory, makes up all atomic particles.  Presumably, Proton 4 mounts a similar device with refinements.

Unlike most Soviet satellites, whose missions are shrouded in secrecy, data from the experiements onboard the first two Protons have produced at least five scientific papers on cosmic rays.  I haven't seen anything on Proton 3, but astronauts on Gemini 11 managed to snap a picture of it in September 1966!

Will the advanced experiments on Proton 4 produce a scientific bonanza to rival that of the Pioneers?  Only time will tell.  For now, the papers are more obsessed with the rocket than the satellite.

Apparently, it's all about size.  Who knew?






[November 4, 1968] A Mysterious Mission (Soyuz-2 and 3)



by Kaye Dee

Just over a week ago I wrote about the Apollo-7 test flight – America’s successful return to space after the tragedy of the Apollo-1 fire. Just days after Apollo-7’s safe splashdown the Soviet Union also launched its own return-to-flight mission, Soyuz-3. As the Traveller noted in his recent commentary, like Apollo-7, Soyuz-3 represents the recommencement of the Russian manned spaceflight programme following its equally tragic loss of Soyuz-1 last year.

This is reported to be the official Soyuz-3 mission patch. It was apparently intended to be worn by Cosmonaut Beregovoi or at least flown during the mission, however it ia not clear if it was actually used

As readers know, the Soviet space programme is secretive about its activities. Soyuz-3, which was launched on 26 October, has been particularly mysterious for a crewed spaceflight. The mission was preceded by the launch of the un-manned Soyuz-2, although that launch was not announced until after Soyuz-3 was in orbit. What can we make of the little we know so far about this flight, which had a duration of just a little under four days?

New Cosmonaut, New Spacecraft
We know from information released or gleaned at the time of Soyuz-1 that this new Soviet spacecraft is large, capable of carrying at least three cosmonauts – although on this mission, just as with Soyuz-1, there appears to have been only one man aboard, Colonel Georgi Beregovoi.

Although not previously known to be a member of the Soviet cosmonaut team, Col. Beregovoi is a distinguished World War Two veteran, who was awarded the decoration of Hero of the Soviet Union in 1944. After the war he became a test pilot and is said to have joined the cosmonaut team in 1964. At 47, Beregovoi now becomes the oldest person to make a spaceflight, taking the record away from 45-year-old Apollo-7 commander Capt. Wally Schirra only weeks after he achieved it.

The few images of the Soyuz spacecraft available indicate that, unlike the Apollo Command Service Module, it has three sections: a ‘service module’ containing life-support and propulsion systems; and two other modules – one roughly bell-shaped and the other, attached to it, spherical – which both seem to be crew accommodation, given that press releases from the TASS newsagency have described the spacecraft as “two-roomed”.

The bell-shaped section seems to be the part of the spacecraft in which the crew return to Earth, protected by a heatshield. Interestingly, the service module supports a solar panel on either side, which must be folded within the launch shroud and extended once in orbit. The use of solar panels suggests that the USSR does not have the same fuel cell technology as NASA. However, it is also possible that the Soyuz is intended for missions in Earth orbit with an appreciably longer duration than a short trip to the Moon and back, as solar panels would be more efficient than fuel cells for that purpose.

NASA experts assume that, like Apollo-7, Soyuz-3 has been modified and/or re-designed over the past 18 months to address whatever issues have been identified as the cause of the loss of Soyuz-1. It is generally believed that Kosmos-238, which made a four-day flight in August, was an uncrewed Soyuz test flight in advance of the first mission with a crew on board.

How Many on Board?
Speculation and rumours abound as to how many cosmonauts were actually on board Soyuz-3. Official Soviet sources give the name of only one cosmonaut, the aforementioned Col. Beregovoi. However, a report in the armed forces newspaper, Red Star, has caused speculation that more than one cosmonaut may have been intended to be involved in the mission. In referring to the “crew” of Soyuz-3 the article used the plural when it spoke of cosmonauts who were planning to fly with Beregovoi.

Colonel Beregovoi during his training at Star City

Reporting about a meeting at the cosmonaut training centre “Star City” near Moscow, to mark the end of Soyuz-3’s training period, the Red Star article described a speech to the meeting by Colonel Beregovoi then said, “Others followed him. They spoke about the great work they had done and thanked their comrades. These in their turn wished them a happy flight, a good launching and a soft landing”. While this report could be taken to imply that more than one other person was expected to accompany Beregovoi on his flight, it may be that the “others” referred to were the mission’s back-up cosmonauts, since Soviet spaceflights apparently have two back-up crews.

Cosmonaut Beregovoi on the launchpad, apparently alone

An additional vague hint that there might be more than one cosmonaut aboard came Soyuz-3 came from a TASS news agency release referring to Beregovoi as the “commander” of the ship, a term that would seem unnecessary if he was the sole occupant of the spacecraft. Rumours with a more conspiracy-minded flavour have also suggested that one of Col. Beregovoi’s live broadcasts from space was filmed in such a manner that, while an empty seat could be seen on the cosmonaut’s left side, whatever was to his right was not visible, potentially concealing the presence of another crewmember. However, the angle may simply have been the result of a fixed camera, located to give whatever the Soviet mission controllers considered to be the best view of the spacecraft interior.

More than a Rendezvous?
The pre-occupation of Western observers with the possibility that there were other, unidentified cosmonauts on board Soyuz-3 stems from the comparatively basic activities reported as being carried out during the mission. True, the flight is assumed to have been a shakedown test along the same lines as Apollo-7, but the American craft nevertheless flew with a complete crew of three, including a designated Lunar Module pilot, even though a LM was not available for the mission. Yet the large Soyuz has officially flown with only a single crewmember. Does this mean that the Russians were still uncertain about the flightworthiness of the spacecraft and did not want to risk more than one life on the test flight? Or was a more ambitious mission planned that did not eventuate?

Apollo-7 carried out a range of complex manoeuvres and experiments during its test flight, while the only significant activities reported about Soyuz-3 were that it made two rendezvous with the automated Soyuz-2. Yet, an ambitious programme of spacecraft dockings and crew transfers had supposedly been planned for Soyuz-1 had that mission not struck trouble, and since October last year the USSR has apparently perfected the techniques of automated rendezvous and docking through the flights of Kosmos-186-188 and Kosmos-212-213.

Was an actual docking between Soyuz-2 and 3 planned, in addition to the rendezvous manoeuvres, with one or two additional crew members from Soyuz-3 transferring to the automated craft to return from orbit? Did the Soviets keep the presence of additional cosmonauts on Soyuz-3 secret to save face in the event that such a docking and crew transfer failed? Even if Beregovoi was alone in Soyuz-3, was it planned for him to dock with Soyuz-2 to demonstrate that a pilot could accomplish a manual docking, similar to the capabilities demonstrated by the crew of Apollo-7? TASS press releases about the mission were ambiguously worded and extremely light on detail, so – as usual with the Soviet space programme – it may be a very long time before we have answers to these questions.

The Mission as Reported
Although not announced until after the launch of Soyuz-3 (though my friends at the WRE report that it was detected by Western space tracking networks), the automated rendezvous target Soyuz-2 was launched on Friday 25 October, the day before the manned mission. Precision launch timing then placed Soyuz-3 into an orbit within seven and a half miles of its rendezvous target.

According to TASS, during its first orbit, Soyuz-3 “approached’’ to within 656 ft of Soyuz-2 using “an automatic system”, following which Cosmonaut Beregovoi manually effected a closer rendezvous. A second rendezvous was carried out on 27 October. This has puzzled Western space experts, who have said that they could see no immediate reason for such comparatively simple manoeuvres, which do not appear to represent any appreciable advance in Soviet space capabilities.

Soyuz-2 was remotely commanded to return to Earth after just three days. In what was presumably another demonstration of the Soyuz spacecraft’s redesigned landing system, TASS reported that the spacecraft’s re-entry was slowed by parachutes and cushioned “with the use of a soft-landing system at the last stage”.

It is unclear what activities Col. Beregovoi undertook during his final two days in orbit. Official TASS bulletins said only that the cosmonaut was “going ahead with his flight programme”, which apparently included conducting “scientific, technical, medical, and biological experiments and research”. The “research” may possibly have included observations of the Earth for meteorological and intelligence gathering purposes. The cosmonaut also made live television broadcasts from Soyuz-3, during one of which he provided a brief “tour” of the spacecraft interior. In a short, three-minute broadcast, Beregovoi was also shown thumbing through his log-book and adjusting his radio communications cap.

A still from the three-minute brodcast from Soyuz-3 showing Colonel Beregovoi

The flight was repeatedly said to be “proceeding normally”, with the Colonel “feeling fine” and the spaceship “functioning normally”. We did learn that Soyuz-3 moved to a new orbit after Soyuz-2’s de-orbit, and that the cosmonaut’s daily routine included 25 minutes of morning exercise before breakfast, but whatever else the mission may have actually accomplished remains a mystery.

Back to Earth
After almost exactly four days in space, Soyuz-3 returned to Earth, landing safely on the snowy steppes of Kazakhstan near the city of Karaganda. TASS reported that “After his landing, Georgi Beregovoi feels well. Friends and correspondents met him in the area of the landing”. The cosmonaut has since been reported as saying that his landing was so easy he hardly felt the impact at all.

Following his safe return, Col. Beregovoi was flown to Moscow, where he received a red-carpet welcome, an instant promotion to Major-General and the award of the Order of Lenin. At the ceremony, the Soviet party leader, Mr Brezhnev, devoted most of his 15-minute speech to praise of the Soviet manned space programme, describing Soyuz-3 as a “complete success”. He said that the mission had brought nearer the day when “Man will not be the guest but the host of space”. He also offered a word of praise to the Apollo-7 astronauts, referring to them as “courageous”. 

A Step on the Way to the Moon?
So, what was the purpose of the Soyuz-3 mission? Dr. Welsh’s recently-mentioned comment that Soyuz and Zond spacecraft are different vehicles and that the Russians are not yet ready to attempt a lunar mission, seems to be borne out by statements from Soviet academician and aerospace scientist, Prof. Leonid Sedov, during a visit to the University of Tennessee Space Institute on 31 October-1 November. Prof. Sedov has said that the USSR would reach Moon from a space station in Earth orbit but would not conduct manned lunar space operations within the next six months. He indicated that Zond-type satellites would circumnavigate other planets and return and told the university audience that Soyuz-3 was part of a “programme to develop operations around the Earth”.

Prof. Sedov on an earlier visit to the United States in 1961 at the time of the USSR's first manned spaceflight

Mastering the techniques of rendezvous and docking would certainly be necessary to establish the orbiting space station from which a Soviet Moon mission would be launched, but Sedov’s comments leave unanswered the question of why a docking between Soyuz-2 and 3 was not attempted during the mission – unless an attempted docking did fail.

Awards All Round
Despite their testiness during the flight, the overall success of the Apollo-7 mission has been recognised by the presentation of NASA’s second highest award, the Exceptional Service Medal, to the crew at a ceremony in Texas on 2 November, presided over by President Johnson. During the ceremony, the President said the United States was “ready to take that first great step out into the Solar System and on to the surface of the nearest of the many mysterious worlds that surround us in space.” He noted that Apollo-7 had logged more than 780 man-hours in space, which is more than has been logged “in all Soviet manned flights to date”.

Left: Former NASA Administrator James Webb speaking at the Apollo-7 awards event, at which he also received NASA's highest award. Right: After the formal ceremony, President Johnson (second from left) chats with Apollo 7 astronauts Schirra, Eisele and Cunningham.

At the same ceremony, President Johnson presented the NASA Distinguished Service Medal, the space agency’s highest award, to recently-retired NASA Administrator James E. Webb, for his outstanding leadership of NASA from 1961-1968. 

NASA has also recently indicated that it will make a decision on the plans for the Apollo-8 mission on 11 November. The space agency has listed the alternatives for the December mission as: an Earth orbital mission deeper into space; a circumlunar fly-by; or a lunar orbit mission. These are all exciting prospects, but I'm hoping that NASA will choose the boldest option and go for a lunar orbit mission. To have human eyes see the Earth from the Moon for the very first time would be a Christmas present indeed!


[September 30, 1968] A spoonful of sugar… (October 1968 Analog)


by Gideon Marcus

Sputnik all over again?

Last week, the Soviets produced their latest space spectacular, potentially leaving America in the dust again.  Zond 5, launched September 14, was sent around the moon, returning safely to Earth on the 22nd.

It's tempting to say, "What's the big deal," right?  We've sent probes to the moon, too, and the Russkies have orbited lunar satellites and soft-landed spacecraft.  What's special about Zond?  Well, it's suspected that "Zond", a monicker usually reserved for interplanetary spacecraft, is really a lunar-adapted Soyuz.  That means the Communists have completed a successful, robotic dry run for a human mission to the moon.  We haven't even launched our first manned Apollo yet!

So we're in something of a race.  Apollo 7 will go up in a couple of weeks, testing the spacecraft for an endurance run in Earth orbit.  Apollo 8 is due to be a circumlunar shot, to be launched near the end of the year.  That's the one to beat: if the Soviets make that journey before us, that'll be a feather in their cap.

That said, while our program was delayed 20 months due to the tragedy of Apollo 1 last year, the Soviet lunar program has undergone some setbacks, too.  Most notably, their Saturn equivalent appears to be having teething troubles.  While they might be able to send a Soyuz around the moon with their current rockets, landing cosmonauts will require a beefier launch system.  Our Saturn is already man-rated.

If I were a betting man, I'd give the odds of the Soviets beating us around the moon at around 50/50.  But as for landing on the moon, which is still planned for some time next year, I think we're still favored to win that one.

The medicine

This month's issue of Analog starts off extremely well.  Savor the taste of the opening piece, as it's what will sustain you through the rest…


by Kelly Freas

The Pirate, by Poul Anderson

Trevelyan is the agent of an arcane, galaxy-wide service.  Most of the such agents are employed for scouting, search and rescue, and mediation services.  This time, Trevelyan is on a mission of crime prevention.  His suspect: Murdoch Juan and his partner, Faustina.  Ostensibly, they aim to set up pre-made colonies on the marginal world of Good Luck, offering transport and homes to settlers at a bargain.  Trevelyan knows such endeavors are never profitable, and he suspects a shady angle.


by Kelly Freas

Such concerns are confirmed when he and his alien shipmate, Smokesmith, discover Murdoch's true target: a once-inhabited world, seared with abated radiation, abounding in empty cities ripe for occupation.  But is that what the dead race would have wanted?

Poul Anderson's writing ranges from turgid to sublime.  This piece is much closer to the latter end of the scale, and it benefits from lacking the author's typical linguistic tics.  In addition to being a good read and an excellent depiction of a true alien race, I appreciate the moral questions raised and the conservationist attitude expressed.  This would be good required reading for any apprentice building contractor or would-be Schliemann.

Five stars.

Mission of Ignorance, by Christopher Anvil


by Leo Summers

The galactic aliens have returned.  Last time, they brought three gifts to revolutionize our food production, our computers, and our birth control—and leave us completely at their mercy.  This time, Earth is being a bit more circumspect.  Rather than accepting the ambassadors with open arms, a buck 2nd Lieutenant is dispatched to treat with them—with absolutely no briefing at all, but with a set of instructions designed to terrify and befuddle the extraterrestrials.

I often joke that every Chris Anvil story begins with [Military rank] [Name] [present participle verb], and this is no exception.  I also, less jokingly, note that Chris Anvil's stories for Analog tend to be smug, stupid affairs.  Thus, I was surprised to find I didn't hate this piece.  It is somewhat smug, and the latter half is all explanation, but the premise is kind of interesting.

Right on the 2/3 border.  I'll be generous and say three stars.

Taking the Lid Off, by William T. Powers

The "lid" in this science article refers to Earth's atmosphere, which prevents us from seeing the universe in most of the interesting wavelengths like X-ray and infrared.  Powers, who wrote a terrific article on measuring charged particles last year, offers up a less impressive, but serviceable piece on lunar and orbital telescopes.  It's just a bit less coherent than his last article, and with fewer revelations, although I did appreciate his explanation of using gravity gradients to stabilize satellites.

Three stars.

The Steiger Effect, by Betsy Curtis


by Leo Summers

Human merchants arrive at a planet that views internal combustion as a kind of witchcraft.  Nevertheless, they buy our engines when they are demonstrated to work.  But the engines all mysteriously conk out when humans reach a certain distance away.  Turns out they—and all internal combustion engines, everywhere—run on psi energy, and always have. 'Humans secretly have psi powers and don't know it' certainly sounds like a plot tailor-made for Campbell, doesn't it?

Never mind that the premise makes no sense; the division of the (otherwise completely humanoid) alien society into "Men" (those who do with their minds) and "Boys" (those who do with their brawn) hews too close to a metaphor of antebellum days in the American South for comfort.

One star.

Underground, by Lawrence A. Perkins


by Kelly Freas

A senator is kidnapped by a Latin American insurgency that plans to harness earthquakes to topple their oppressive dictator [a plot reminiscent of the Doctor Who episode "Enemy of the World" -Ed].

This piece reads like one of those Ted Thomas mini science articles from F&SF turned into a story, except there's no real story—just a lot of show and tell.

Two stars.

The Tuvela (Part 2 of 2), by James H. Schmitz


by John Schoenherr

Last installment, we learned that the colony of Nandy-Cline was about to be invaded by the rapacious Parahuans.  The only thing holding them back was the concern that humanity was led by a shadow cabal of "Tuvela", a subrace of genetic supermen.  Now, the security of the world lies in the hands of the youthful Dr. Nile Etland, who must convince the Parahuan that she is one of the mythical Tuvela.  Luckily, she has a quartet of sapient otters as wingmen…

This is a frustrating novel.  The premise is excellent, and Schmitz is one of SF's few authors who lets women be heroes.  What keeps this book at the three-star level for me is the lack of characterization.  I have a vague idea of who Ticos Cay is, the two-hundred year old man who we meet as a prisoner of the Parahuan.  I even kind of know the various Parahuan.  But Etland is a cipher, utterly uninteresting as a person.  She goes through her James Bond maneuvers with competence and a few jitters, but with precious little demonstration of a soul.

My nephew enjoyed this serial a lot.  It is creative, and the biology of the world well realized.  If only I could say the same for Nile Etland.

Three stars.

Doing the math

Thus ends the month with Analog clocking in at 2.9, just under the 3-star line.  Ahead of it are The Farthest Reaches (3.4), Fantasy and Science Fiction (3.1) and IF (3.1).  The pack below it is far below—Galaxy (2.4), Worlds of Fantasy (2.3), and Fantastic (2).

The worthy stuff would fill two magazines, which would be an impressive amount if it hadn't taken seven publications to produce it.  Women penetrated the magazines pretty well this month, but their lack of pieces in Worlds of Fantasy and The Farthest Reaches brought the aggregate percentage down to 11%.

And so, with science fiction as with science fact, we find ourselves in a bit of a holding pattern, awaiting what's to come next month.  But whether it's the Soviets or the Americans, Campbell or Ferman, someone will entertain us.

And that's worth being ready for!

[Stop Press: Mark just got his reviews of this month's New Worlds to me.  It's too late to run an article, so we'll be doubling up next month.  For the sake of statistics, however, the magazine raises the amount of worthy material slightly, and it reduces feminine participation in SF magazine prose for October 1968 to 10%.  Stay tuned…]






</small

[August 26, 1968] No time for a breath (Summer space round-up)


by Gideon Marcus

There are some months where the space shots come so quickly that there's scarcely time to apprehend them all, much less report on them!  Every other day, it seems, the newspaper has got a headling about this launch or that discovery, and that's before you get to the announcements about the impending moon missions.

So, in rapid-fire style, let's see how many exciting new missions I can tell you about on a single exhale (while you stand on one leg, no less…that's a Jewish joke).

A Pair of Yankee Explorers

On August 8th, a Scout rocket took off from Vandenberg Air Force Base (the Western Test Range) in Southern California carrying the two latest NASA science satellites.  It was a virtual duplicate of the launch nearly four years ago of Explorers 24 and 25: a balloon for measuring air density in the upper atmosphere, and a more conventional satellite with an array of instruments for surveying the Earth's ionosphere.  Affectionately dubbed "Mutt and Jeff", these two craft were sent into polar orbit (hence the Pacific launch site).  If you're wondering why NASA is repeating itself, that's because the sun has a profound effect on the Earth's atmosphere.  It is important to measure its impact throughout the 11 year solar cycle, from minimum to maximum output, to better understand the relationship between the solar wind and the air's upper layers.

Not much can go wrong with a balloon, but Explorer 40, after deploying its spindly experiment arms, suffered a malfunction.  Its solar panels are not delivering as much power as they should.  NASA is confident, however, that this will not compromise the mission, which is planned to last more than a year.

Alphabet Soup

Time was, we gave proper names to our satellites.  Now it's all acronyms and arcane jumbles of letters and numbers.  That's all right.  I can decipher them for you!

Advanced Technology Satellite (ATS) 4

August 10 marked the launch of "Daddy Longlegs" ATS 4, the fourth of seven satellites in this series.

Some of you may remember ATS-1–you may recall that ATS-1 helped relay the first worldwide "Our World" broadcast last year. 

ATS-1 is actually still working, just like its two siblings.  ATS-2, launched April 5, 1967 was judged a failure since the second stage of its carrier rocket malfunctioned, stranding it in an eccentric orbit.  Still, the several science experiments onboard have returned information on cosmic rays and such in space.  ATS-3, which went up November 5, 1967, was the last to ride an Atlas Agena D rocket.  Armed with a panoply of experiments, including two transceivers, two cameras, and a host of radiation detectors, that satellite worked perfectly, returning the first color picture of the entire Earth!

ATS-4, unlike its predecessors, is a strictly practical spacecraft, carrying no science experiments, but makes up for it in engineering marvels.  One is a a day-night Image Orthicon Camera, a teevee transmitter that would provide continuous color coverage of the world from high up in geosynchronous orbit (i.e. orbiting at the same rate as the Earth turns, keeping it more or less stationary with respect to the ground).  Another is a microwave transmitter, turning ATS into a powerful communications satellite like its progenitor

ATS-4 also was to test out a gravity gradient stabilization system, basically using the subtle gradations of the Earth's pull on the satellite's arms to keep it oriented in orbit.  Finally, ATS-4 has an ion engine aboard.  These drives, perfect for space, work by shooting out Cesium electrons.  They are incredibly economical compared to conventional rockets, but their thrust is quite low, meaning they must be fired continuously to have an appreciable effect on velocity.

Sadly, as with ATS-2, ATS-4's Atlas Centaur failed on the second stage, stranding the satellite in a low, largely useless orbit.  Well, I guess that's why you launch lots of them!

ESSA 7

We haven't given the ESSA series of satellites much love, which I suppose is what happens when a technology stops being novel and instead becomes routine, even essential.  After all, who reports on every airplane that takes off anymore?

But it's worth talking about the latest satellite, ESSA 7, launched August 16, to summarize what the system has done for us over the last several years.

There were eleven satellites in the TIROS series of weather craft, the first launched in 1960.  In February 1966, with the launch of ESSA 1, the Environmental Science Services Administration (ESSA) took over the cartwheel satellites, making the series officially operational.

All of them have worked perfectly, launched into sun-synchronous polar orbits about 900 miles up that circle the Earth from north to south as the planet rotates eastward beneath.  So perfect is ESSA 7's orbit that it will cross the equator at virtually the same time every day, drifting from that time table by only four minutes every year.

ESSA satellites have returned 3000 warnings of hurricanes, typhoons, and cyclones, reporting not just on the existence but the intensity of these dangerous storms.  As of May 27 of this year, ESSA satellites had taken a million photos of the Earth's weather–that's $42 per picture, since the total launch cost of an ESSA is $6 million.


An image of Tropical Storm Shirley taken August 19, 1968

Up in the Kosmos

If we had to cover the launch of every Kosmos (Cosmos) satellite out of the Soviet Union, we'd have to go to a daily schedule.  There's such a thing as too much of a good thing, right?

But the Russkies are putting them up on the average of one a week, so it's worth sampling them occasionally to keep tabs on all the stuff they're putting in orbit.  Especially since the Kosmos is a catch-all designator, even more broad than our Explorer series.  It includes military satellites, science satellites, weather satellites, even automatic tests of the Soyuz spacecraft.

Here's a brief outline of the launches this last month:

Kosmos 230

This is a typical Soviet launch press release:

The Soviet Union launched another Cosmos satellite today and the Sputnik was reported functioning normally, Tass, the official Soviet news agency, said.  The device, Cosmos 230, is sending information to a Soviet research center for evaluation.

We know it was launched July 5 into a 48.5 degree inclined orbit, that it soars between 181 and 362 miles above the Earth, and that it's still in orbit as we speak, circling the Earth every 92.8 minutes.

As for what it's for… well, your guess is as good as mine.  That said, it's probably not a spy satellite.  How do I know?  Read on, and I'll show you what a spy sat looks like so you can spot them yourself!

Kosmos 231

The Soviet Union has launched another satellite in its program of exploring outer space, the official Tass news agency said Thursday.  It said Cosmos 231 was launched Wednesday [July 10] and is functioning normally.  The latest Cosmos is orbiting the earth once every 89.7 minutes in a low orbit from 130 miles to 205 miles.  Its angle to the earth was 65 degrees.

Seems innocuous enough, right?  Doesn't tell you anything more than the other one.  Except…

First tip-off: the angle.  A zero degree angle would be along the equator, never leaving 0 degrees latitude.  A 90 degree angle is polar, heading due north and south.  The lower the angle, the narrower a band of the Earth a satellite covers.

A 65 degree angle is sufficient to cover a wide swathe…including all of the continental United States.

The altitude is quite low, too.  The closer, the better–if you want to look at something from orbit.

But the real kicker is this: the spacecraft reentered on July 18, just eight days after launch.  Normally, when you send a science satellite up, you want it to stay in orbit as long as possible to get more back for your buck…er…ruble.  You only deorbit a spacecraft (and make no mistake–Kosmos 231 had to have been deorbited; its orbit wasn't that low) when there's something onboard you want to get back.  Like a person…or film.

We know there wasn't anyone onboard Kosmos 231.  The Soviets would have told us.  By the way, I'm not the only one who thinks the Kosmos was a spy satellite, taking pictures in orbit and then landing the film for processing.  There's a blurb in the July 15th issue of Aviation Weekly and Space Report which says the same thing.  And they reached that conclusion before the craft even landed, just based on the orbit!

By the way, if you're wondering what the Soviet spy satellites look like, we actually have a better idea of theirs than ours!  We're pretty sure they're based on the Vostok space capsules used to carry cosmonauts.  In fact, it's an open question whether or not the spy sat was evolved from the Vostok or the other way around!

Kosmos 232

Launched July 16, its orbital parameters were as follows: 125 to 220 miles in altitude, 89.8 minute orbit, 65 degree inclination.  The newspaper article I read noted that the satellite's path was a common one, and predicted the satellite would be recovered in eight days.

Sure enough, it was on the ground again on July 24.

Sound familiar?

Kosmos 233

Here's another oddball: launched on the 18th, the Soviets didn't release news of its orbiting until at least the 20th.  It's in a near polar orbit, soaring up to 935 miles, grazing the Earth with a perigee of 124 miles.

That's no spy sat.  In fact, I'd guess this one might be a bonafide science satellite, exploring the Earth's Van Allen Belts.  But it could just as easily be the equivalent of our Transit navigational satellites or something.  We won't know until and unless the Communists publish scientific results.

Kosmos 234

Launched July 30, it soared from 130 to 183 miles up with a period of 89.5 minutes and an inclination of 51.8 degrees.  Low orbit?  Check.  Cryptic announcement describing its purpose as "the continued exploration of outer space"?  Check.  But the inclination's a bit low.  Better wait for more information.

Oh wait.  It landed August 5.  Pretty sure we know what this one was!

Kosmos 235

Up August 9, down August 17.  Orbit went from 126 to 176 miles, period was 89.3 minutes, and the inclination was exactly the same as before–51.8 degrees.

I'm not sure the significance of the different inclinations.  Maybe it's a matter of the rocket or the launch location.  Generally, the higher the inclination, the more expensive the shot in terms of fuel since the rocket doesn't get the extra boost of the Earth's rotation.

Operator?

It's been a while since we covered the Molniya communications satellites, one of the few Soviet series we do know something about.  July 5 marked the launch of the ninth comsat in the series, zooming up to a high, not quite geosynchronous, orbit, where it has a nice vantage of the whole of Asia.

This launch comes less than three months after the orbiting of Molniya H, the eighth in the series.  Whether Molniya I is replacing its predecessor, which may have been faulty, or whether the ninth Molniya is simply acting as a backup, is not certain.  The latter seems unlikely, though.  When Molniya G went up just three weeks after Molniya F, it was widely believed that the Russians had sent up two to make sure they could televise their annual November Moscow parade to the other Communist countries.

That's all folks!

That's the big news for this month.  The rest of the year is going to be really exciting, what with the upcoming launch of Apollo 7 and Zond 5.  We're about to enter a new phase of manned lunar exploration.  That said, we promise to keep covering the significant shots closer to home, too.  For us, all space missions are out of this world!


The prime crew for Apollo 7 (l-r) Astronauts Donn F. Eisele, Command Module Pilot; Walter Cunningham, Lunar Module Pilot; and Walter M. Schirra, Jr., Commander






</small

[July 16, 1968] Hitching a Ride to Orbit (Orbiting Vehicle Satellite Series)



by Kaye Dee

The continuing hiatus in American and Soviet manned spaceflight and the present lack of unmanned lunar and interplanetary missions, has been a blessing as well as a disappointment. It's given us an opportunity to focus on some lesser-known US and USSR space programmes that are quietly going about their business largely unreported. One such is the US Air Force’s Orbiting Vehicle programme, which saw its most recent launch just a few days ago. While the Traveller has previously taken a look at some early OV1 series missions, the whole thing is worth looking at–it's really quite exciting!

Hitching a Ride on an ICBM
When the Air Force Office of Aerospace Research (OAR) was looking for a means to conduct space experiments at the lowest possible cost, it conceived the idea of using small satellites of a standardised design, launched as secondary payloads piggybacking on Atlas ICBMs being flown for missile technology development. After all, Atlas vehicles have been used to launch satellites as far back as 1958 (Project SCORE), as well as launching all the orbital missions of NASA’s Mercury programme.

This concept led to the development of Orbiting Vehicle (OV) programme, initially created in the early 1960s under the name SATAR (SATellite for Atmospheric Research). SATAR was an extension of the "Scientific Passenger Pods" (SPP) flown as external payloads on suborbital Atlas missile tests to conduct scientific experiments during their brief time in space. In its original form, SATAR was to use a larger version of the SPP, called the Atlas Retained Structure (ARS), that would carry a small satellite with its own propulsion system. When the Atlas missile reached its apogee, the satellite would be deployed from the ARS, using its propulsion system for orbital insertion.

Renamed the Orbiting Vehicle programme around 1963, this project now includes five separate series of standardised satellites, designated OV1 through OV5, each designed for a specific research goal.

OV1-3 launches in a side pod on an Atlas missile ABRES test flight

Launching OV1
The first series of OV satellites – which has seen the greatest number of launches to date – is OV1, developed by the Convair Division of General Dynamics, which also produces the Atlas vehicle. Initially, OV1 satellites were going to be launched on Atlas missiles testing nosecones for the Advanced Ballistic Re-Entry System (ABRES). However, only OV1-1 and OV1-3 ever flew piggyback on an ABRES mission, mounted in pods on the side of the missile. Both satellites were, unfortunately, unsuccessful.

View of the OV1-2 launch showing the twin top-mounted pods. Although there were two pods, only a single satellite was launched on this flight

The other OV1 missions so far have been launched on dedicated Atlas D and F boosters (retired from the ICBM programme) purchased by the OAR for the OV1 series. These flights use two modified SPP pods mounted side-by-side on top of the Atlas, enabling two satellites to be launched on each OV1 flight. The only exceptions to date have been OV1-6, which flew on the Manned Orbiting Laboratory test flight on 2 November 1966, and OV1-86, carried in a side-mounted pod on the same launch that lofted OV1-11 and OV1-12.

Small but Versatile
Using a standardised satellite design has enabled experiments to move rapidly from proposal to launch, the process taking just fifteen months on average. The operational design of the multi-purpose OV1 spacecraft is a cylinder 4 ft 6.6 in long and 2 ft 3 in in diameter, with a cap on both ends covered with 5000 solar cells producing 22 Watts of power. The satellite is attached to a discardable propulsion module using an Altair 2 solid-fuelled motor for orbital insertion. It has two 1 ft 6 in antennae for command and telemetry, with attitude control provided by hydrogen peroxide thrusters. The use of a Sun sensor to determine the spacecraft's orientation to the Sun commenced with OV1-7, while OV1-13 and OV1-14 introduced advanced digital telemetry, which has improved the data return from the satellites. OV1-1 undergoing a balance test prior to launch

Since the launch of OV1-1, on 21 January(GMT) 1965, 17 OV1 series satellites have so far been launched, with more apparently on the way. Only five have failed in some way. The basic purpose of this series is research into fundamental properties of the upper atmosphere and the space environment. This has meant that, unlike the experiments and results from most USAF satellites (and other OV series), which remain classified, the details of OV1 experiments have been published. But will we ever find out how closely the OV1 missions are related to the classified programs?

OV1 Highlights
Notable missions of the OV1 series so far have included OV1-4, launched 30 March (GMT) 1966, which carried three Tissue Equivalent Ionization Chambers, similar to one flown on Gemini 4, NASA’s first spacewalk mission. This data has helped to quantify the radiation hazard that astronauts face on long-duration missions in orbit.

OV1-6, launched on a Titan IIIC with the Manned Orbiting Laboratory test flight in November 1966, uniquely carried several inflatable balloons. Once ejected into orbit, they served as optical targets for ground-based observations, apparently to determine the value of inflatable decoys in confusing anti-missile systems.

PasComSat , or OV1-8, was launched on 14 July (GMT) 1966 and used for passive communications tests, designed to compare the advantages of a grid-sphere satellite against a balloon similar to the Echo series. Its non-standard design comprised a 30ft diameter open spherical grid of soft aluminium wires embedded in an inflatable plastic balloon. The entire satellite, with its unique propulsion module, weighed just 23lb. The satellite’s structure was also intended to demonstrate the feasibility of erecting an open grid structure in space, as the polybutyl methacrylate plastic of the balloon was designed to break down after a few days under the sun's strong ultraviolet rays, leaving the open aluminium structure in orbit. Tests indicate that the grid-satellite will remain in orbit for at least 11 years and have measured its reflective power as five times greater than that of a solid sphere.

OV1-9, launched in December 1966, carried a number of radiation experiments and was still aloft in late May 1967, during an intense period of solar and magnetic activity. Its data proved the existence of the Earth's electric field, which had long been theorised. OV1-10, OV1-9’s launch twin, returned the most comprehensive set of solar X-ray observations to date and also carried a cosmic ray telescope.

A unique “triple launch” took place on 27 July (GMT) 1967, with OV1-86 flying in a side-mounted pod and OV1-11 and OV1-12 positioned on top of the Atlas D launch vehicle. OV1-86 was an opportunistic mission composed of the unused satellite body originally intended as OV1-8, coupled with the unused OV1-6 propulsion module, which was not required for its Titan IIIC launch. The satellite carried a cosmic ray telescope, as well as equipment measuring the temperature radiation properties of different types of Earth terrain, mapping the Earth in the near-infrared spectrum. Although OV1-11 failed to orbit, OV1-12 carried the Flare Activated Radio-biological Observatory, equipped with a suite of eleven experiments to study the radiation hazard from solar flares.

The first Atlas F launch of the OV1 series placed OV1-13 and OV1-14 in orbit on 6 April (GMT) 1968. Both satellites were designed to focus on measuring radiation in space, although OV-14 ceased operating after one week in service. OV1-13 recently measured increases in the energy and intensity of electrons during a geomagnetic storm that took place 10 June 1968, and it is hoped that its data will shed light on how the particle flow caused by solar storms creates these high altitude increases. OV1-14


Spades and Cannonballs
The most recent OV1 launch took place on 11 July, carrying both a standard satellite and the second non-standard spacecraft in this series. OV1-15 has a suite of experiments developed by The Aerospace Corporation designed to study the response of the upper atmosphere to solar and magnetospheric disturbances. It is hoped that the Solar Perturbation of Atmospheric Density Experiments Satellite (SPADES) group of complementary experiments will help to identify the cause of large and sudden fluctuations encountered in satellite trajectories, he ultimate goal being an ability to predict these fluctuations and their magnitude. OV1-16 is another non-standard satellite, also known as LOADS (LOw Altitude Density Satellite) and Cannon Ball. This unique satellite is designed to have a large a mass/area ratio, so that they can remain in orbit at lower altitudes than conventional satellite, enabling measurements of the atmospheric properties at around 65-90miles altitude. This lower thermosphere region is a largely unknown part of the atmosphere. Cannon Ball lives up to its nickname, as a sphere with a diameter of only 24 inches, although its total weight is 600 lb, largely due to a 1.5 inch thick shell of brass! Concerns about heating by sunlight and atmospheric heating caused by orbiting at low altitude meant that the satellite body has been painted black (to increase radiation) with some gold-plated circular areas. If this experiment goes well, there may be further OV satellites of this type.

Unlucky So Far!
The OV2 series could be considered the “unluckiest” of the Orbiting Vehicle projects to date. Out of four flights, two have failed and two were canceled! The series was originally devised within the ARENTS (Advanced Research Environmental Test Satellite) programme, with the satellites intended to complement the Vela programme, monitoring for violations of the 1963 Partial Test Ban Treaty. However, with the cancellation of ARENTS, OV2 became something of an “orphan” series, its initial three satellites each tasked with quite different research.

OV2-1 shortly before launch, with its experiment package labelled

OV2-1, launched 15 October (GMT) 1965, was intended to monitor the biological hazards of near Earth charged particles, but failed to separate from its launcher. OV2-2, planned to conduct optical measurements from orbit, was cancelled, as was the OV2-4 satellite, added to the programme and designed to observe radiation from trans-lunar orbit. OV2-3, intended to undertake radiation studies, failed when contact was lost after launch on 21 December (GMT) 1965. A fifth OV2 satellite has been authorised and is due for launch later this year to conduct astronomical research and radiation studies. Produced by Northrop and launched on Titan III test flights, the spin-stabilised OV2 satellites had cubic bodies made of aluminium honeycomb, approximately 2ft on a side. Attached to each of the four upper corners of the satellite are 7ft 6in paddle-like solar panels each carrying 20,160 solar cells, although the satellites also have Nickel-Cadmium to operate while in the Earth’s shadow.

Taking a Scout
In a departure from the earlier series, OV3 satellites have all been launched on Scout boosters, used with many civilian satellite programmes, such as the Explorer series. OV3-1 to OV3-4 were built by the Space General Corporation (part of Aerojet), while OV3-5 and 6 were constructed by the Air Force Cambridge Research Laboratory (AFCRL), which also managed the entire series.

Octagonal prisms in shape, the first four OV3 satellites were 2ft 5in in length and the same dimensions wide, with their experiments carried on long booms. With a design life-span of one year, the satellites were covered with 2560 solar cells. OV3-5 and OV3-6 were a little smaller than their predecessors, being only 1ft 9in in length.

The initial group of OV3-1 to 4 were devoted to radiation studies and launched across 1966. OV3-2 made important charged particle observations in conjunction with the 12 November 1966 South American solar eclipse that was also observed by Gemini 12. Other observations and auroral research were also co-ordinated with airborne observations by AFCRL KC-135 aircraft and sounding rocket flights by the National Research Council of Canada.

VLF receiver data from OV3-3 determined the location of the plasmapause (the outer boundary of the Earth's inner magnetosphere), while the satellite also carried out radiation studies using the same suite of instruments as the failed OV2-1. OV3-4 data contributed to the refinement of theoretical models of astronaut radiation dosage.

The final two OV3 missions, in 1967, were focussed on ionospheric research. While OV3-5 failed to achieve orbit, OV3-6, launched 5 December (GMT) 1967 was quite successful. Also known as Atmospheric Composition Satellite (ATCOS)-2, its data is being used to create more accurate atmospheric models.

Despite keeping costs low by using off-the-shelf components, the OV3 programme was phased out after OV3-6, in favour of the cheaper OV1 programme.

Whispering Galleries
Just as particular physical conditions create the “whispering gallery” phenomenon under the dome of a building, the OV4 series satellites was initially created to investigate long range radio propagation in the charged atmosphere of the ionosphere. Each OV4 launch was intended to consist of a pair of satellites, one being the transmitting spacecraft, the other a receiver. However, only the OV4-1 mission was flown in this way with the OV4-2 pair cancelled. OV4-1R and OV4-1T shortly before launch

The OV4-1 satellite pair were both cylindrical, 1ft 5in in diameter, with domed upper ends. 2ft 11in long, they were powered by silver oxide/zinc batteries which gave them a 50-day lifespan.

Launched on a Manned Orbiting Laboratory (MOL) test flight on 3 November (GMT) 1966, OV4-1T carried a transmitter broadcasting on three frequencies in the 20-50 MHz range. To maximise its orbital separation from the OV4-1R receiver satellite, OV4-1T incorporated a small rocket motor. The two satellites were launched into slightly different 190-mile orbits, allowing them to test “whispering gallery” communications over a range of distances. This enabled the OV4-1 satellites to evaluate using the ionosphere's F layer as way to facilitate HF and VHF transmissions between satellites not in line of sight of each other.

Apart from being designated as part of the OV4 series, OV4-3 launched on the same Titan III flight as the OV4-1 pair, was a quite different spacecraft, being the boiler plate model of the Manned Orbiting Laboratory. The reconditioned Gemini 2 (originally flown on a sub-orbital flight on 19 January 1965), was attached to the MOL model. Little Stars
The most recent of the Orbiting Vehicle programme to date, with the smallest satellites, the OV5 series is a continuation of the Air Force's earlier Environmental Research Satellite (ERS) series. OV5 satellites are upgraded versions of the original ERS satellites developed by Space Technology Laboratories (part of TRW Inc), modified with a command receiver, allowing instructions to be sent from the ground, and advanced digital telemetry.
Spin-stabilized, for improved communications and solar power reliability, OV5 series satellites are tetrahedral in shape and made of aluminium struts. Just under 1ft in width, each satellite carries 816 solar cells distributed over its eight triangular faces. Power is stored in a nickel–cadmium battery and experiments are mounted on the vertices of the tetrahedron.

Passive thermal control keeps the inside of the spacecraft at around 59 °F, and an on-board timer is designed to shut off each satellite after 18 months of operation. Telemetry is broadcast on frequencies compatible with NASA Spacecraft Tracking and Data Acquisition Network (STADAN) stations, enabling the satellite data to be received at multiple locations.

The first two OV5 satellites, OV5-1 and OV5-3 were launched on 28 April (GMT) 1967 on a Titan IIIC vehicle. OV5-1, also known as ERS 27 is an X-ray measuring microsatellite associated with the US Air Force's “space weather” prediction programme. OV5-3, also known as ERS 28, is a materials science research project, carrying a variety of metal samples and Teflon, to investigate how they are affected by long-term exposure to the space environment. OV5-2, another materials science research experiment, is due to be launched later this year.

While the Orbiting Vehicle programme has developed somewhat differently from the original concept, insofar as it has largely transitioned away from hitchhiking on various test launches, the OV1, 3 and 5 series satellites have demonstrated the value of using standardised designs as a means for cheap and relatively rapid development and launch of space research instruments. The OV1 and OV5 programmes look set to continue for some years to come and will hopefully contribute further significant data towards our understanding of the space environment. 

So, here's to "micro" satellites–perhaps they presage the future of cheap space development!



[June 28, 1968] Classified Communications (IDCSP Satellite Constellation)



by Kaye Dee

An advantage of previously working for the Weapons Research Establishment in South Australia is that I am still able to get information (of the unclassified variety, of course) about defence space programmes from my former colleagues. This is particularly helpful when I’m writing about space projects that are not getting a large amount of press coverage here in Australia.


One such project is the Initial Defence Communication Satellite Programme (IDCSP), the United States’ first global military communications network. The most recent IDCSP launch took place on 13 June with the launch of eight satellites on a Titan IIIC rocket, bringing the total number of satellites in the constellation to 27.

The Advent of Defence Satellite Communications
The very first experimental communications satellites were created by the U.S. armed forces. Project SCORE was jointly developed by the U.S. Air Force and communications company RCA, while the first active repeater comsat, Courier 1-B, was developed by the U.S. Army Signal Corps. I think we can be sure that these early satellites satisfactorily carried out classified experiments in secure defence communications, as the first planned military satellite communications network, Project ADVENT, commenced development in February 1960.

Diagram of the proposed ADVENT satellite in orbit

ADVENT intended to place several large, three-axis stabilised, heavy satellites in geosynchronous orbit (with one of its ground stations planned to be located in the Australian Trust Territory of Papua New Guinea). However, this extremely ambitious programme soon fell behind schedule and saw costs balloon out to twice the original estimates, leading to its cancellation in 1962. It’s perhaps not surprising that the ADVENT programme faced difficulties in developing its satellites – even six years later, an operational three-axis stabilised satellite has yet to become reality.

The engineering test vehicle for the ADVENT satellites under construction

Enter IDCSP
Following ADVENT’s cancellation, the U.S. Air Force embarked on a new satellite communications system as a replacement. Originally called the Interim Defence Communications Satellite Programme, it has since been renamed as the Initial Defence Communications Satellite Programme. IDCSP is intended to be the first stage in the longer-term Defence Communications Satellite Program (DCSP), which is being managed by the Defence Communications Agency.

Commenced in 1962, the IDCSP is designed to be significantly cheaper than ADVENT by using a constellation of small, much simpler satellites. The original plan was for a constellation of 24-30 satellites, placed into Medium Earth Orbit using ten Atlas Agena rockets. In October 1963, the programme was placed on hold while the Pentagon investigated renting satellite communications capability through the INTELSAT system, but this idea was abandoned in mid-1964 and Air Force resumed work on the IDCSP.

Doing the Heavy Lifting
As it happened, the delay worked to the IDCSP’s advantage. By 1964, the development of the U.S.A.F.’s heavy-lift Titan IIIC offered the possibility of lofting up to eight satellites per launch. This has meant that the total number of launches required to establish the constellation, and thus the overall cost of the programme, has been greatly reduced. It seems that the Pentagon decided to negotiate “free rides” on early Titan IIIC development launches, although this earned some censure from Congress for risking the success of the programme with launches on an unproven vehicle just to keep costs down! Fortunately, it has been a risk that has largely paid off.

The Air Force decided to develop the Titan III family so that it would have a heavy launch capability independent of NASA’s Saturn rockets. The Titan III vehicles are derived from the Titan II I.C.B.M., that was also the basis of the Titan launch vehicle used for NASA’s Gemini programme. The core of the Titan IIIC is a modified two-stage Titan II, structurally strengthened to accommodate heavier payloads and additional stages. The launcher has two strap-on solid rocket boosters and an additional upper stage with engines that can be restarted, known as the Transtage.

The 25 ft long Transtage uses a pair of Aerojet AJ10-138 engines that are similar in design to the larger engine that Aerojet is developing for the Apollo Service Module. These engines enable the Transtage to put heavier payloads into much higher orbits than the Atlas Agena rocket originally selected for IDCSP. This means that it can place as many as eight IDCSP satellites at a time into sub-synchronous orbits (more on that below) of around 21,000 miles.

The complex requirements for the preparation and launch of a Titan III and its payloads has necessitated the construction of a totally new facility at Cape Kennedy, with three pads, designated Launch Complexes 40, 41 and 42 (this last not yet built). There is also a new Vertical Integration Building (VIB), which can support the simultaneous assembly of up to four Titan III core vehicles. It also contains the Titan III launch control centre.

Keep it Simple
The IDCSP satellites have been designed to avoid the development delays that come from being too technologically ambitious – the kind that sealed the fate of ADVENT. Every satellite in the constellation is an identical spin-stabilized, 26-sided polygon, 34in in diameter. The 100lb satellites are covered with solar cells and have been deliberately kept technologically very simple: they have no back-up batteries or on-orbit command systems. Without command systems, they are virtually “jam-proof” and cannot be moved off orbit by false commands sent by an enemy.

Each satellite has a single 3.5W X-band transponder with a 26 MHz bandwidth. It can handle 600 voice channels or 6000 teletype signals. While the designers have planned for these initial satellites to be operational for three years, they are equipped with an automatic “kill switch”, which is intended to deactivate them after six years in orbit, so that they will not produce any signals that would interfere with more advanced future replacement satellites.

As the small satellite’s transponders are low powered and use a low-gain antenna, the present ground stations are comparatively large, but there are plans for future, smaller mobile ground stations.

“Sprinkled Across the Sky”
One of the few local newspaper articles that I saw about the launch of the first batch of IDCSP satellites described them rather poetically as being “sprinkled across the sky” when they were first released into orbit from the Titan IIIC Transtage. Six hours after launch, the deployment truss on which the IDCSP satellites are mounted enables the satellites to be dispersed one-by-one into orbit, over about 3 minutes. As they are released, the satellites drift apart as they move into orbit.

Because they are not quite in geosynchronous orbit (orbiting at the same speed the Earth rotates, which would "fix" them in the sky), the satellites drift randomly at approximately 28° per day, over time forming a ring of satellites approximately evenly spaced above the Earth's equator. This sub-synchronous orbit has the advantage that the failure of one satellite would not leave a major gap in coverage; at least one other satellite of the constellation would always be visible to an Earth station if one failed. 12 satellites were considered the minimum necessary to provide full coverage, so the current constellation has plenty of redundancy even if several satellites fail. The daily movement of the satellites makes them difficult to track, which also helps to make them more secure against enemy interference.


What are they for? Ssshhh, it’s Secret!
The IDCSP constellation is designed to provide the U.S. military with swift, jam-resistant radio links to its forces in South Vietnam and elsewhere around the world in times of crisis. The satellites enable 24 hour-a-day contact between the Defence Department in Washington and forces in the field. While the IDCSP programme is publicly acknowledged, the satellites are reserved for secret and sensitive command-and-control communications. Routine administrative and logistical messages are relayed by INTELSAT satellites.

IDCSP ground terminals have been installed at American bases at Saigon and Nha Trang, and rumour has it that there have already been experiments with sending high-resolution photographs from Saigon to the Pentagon via satellite, enabling rapid battlefield analysis. In addition to the two ground stations in South Vietnam, there are six other IDCSP ground stations, including in the U.S. and Britain.

Building the IDCSP Satellite Network
The first batch of seven IDCSP satellites was launched from Florida on 16 June 1966, as the payload of the fourth Titan IIIC. In addition to the communication satellites, an eighth satellite, structurally based on the IDCSP satellites and designed to test an experimental gravity gradient stabilisation technique, was also flown. Communications tests were carried out between ground stations in New Jersey, California, England and Germany.

Unfortunately, the second set of eight IDCSP satellites was lost on 26 August 1966 due to the failure of the fifth Titan IIIC’s payload fairing. A replacement set of eight satellites was sent into orbit on the seventh Titan IIIC, on 18 January 1967, followed on 1 July by a further four IDCSP satellites. IDCSP 19 was another experimental satellite, also known as DATS (Despun Antenna Test Satellite), designed to test a more efficient electronically despun antenna platform.

The most recent launch, on 13 June, has come almost exactly two years after the first satellites in the network were put into orbit. Its eight satellites are the final ones to be added to the system, which is now considered to be “operational”, rather than “experimental”.

Britain Follows Suit
Britain has taken an interest in the operation and performance of the IDCSP satellites, as it intends to launch its own military communications satellite soon, to provide military communications across the British Commonwealth. Skynet has been in planning since 1962, with the U.K. deciding on an initial satellite in geostationary orbit over the Indian Ocean, to support force deployments east of Suez. Skynet is considered to be more advanced than IDCSP, as it will have a transponder with two channels, allowing communications between two types of ground station.

Model of a Skynet 1 satellite

Britain was invited to participate in IDCSP in 1965, and the Marconi company built a ground station at its facility in Christchurch, Hampshire, to conduct experiments with the first batch of IDCSP satellites when the U.S. was not using them. Nine ground stations have been planned for Skynet, which are also able to communicate with the IDCSP satellites. These stations will be able to send secret military communications to a large number of locations within the British Commonwealth.

The U.S. Philco Ford company, which developed the original IDCSP design, was contracted to build the first-generation Skynet 1 satellites (of which there will be two). The Marconi company is assisting with this work so that the U.K. will develop the expertise needed to build the Skynet 2 series satellites. Unlike the IDCSP constellation, Skynet satellites will have an on-board manoeuvring system so that they can be kept on station, or moved from one location or another.

With the United States and Britain developing defence communications satellite systems, it's virtually certain the USSR will be doing the same – if it does not have an operational network already (perhaps some of those mysterious Kosmos satellites whose purpose in orbit is unknown?) Since reliable communications are vital to any military operation, it's not hard to imagine that defence comsats like IDCSP and Skynet could become the first casualties in any future superpower conflict…










[MAY 26, 1968] EUROPA AD ASTRA (EUROPEAN SPACE UPDATE)



by Kaye Dee

The recent launch of the ESRO 2B scientific satellite on 17 May (more on that below) reminds me that it has been a while since I wrote anything about the European launcher development programme being carried out in Australia. There have also been major developments in Europe’s space plans over the past few months, which look like they will significantly change the future of the European space programme.

For readers in the United States and other parts of the world, who may not be familiar with the European space programme, let me take a few moments to introduce the major players and provide a bit of background before talking about recent developments.

Cousins Rather Than Siblings: ELDO, ESRO and CETS
The two most important space bodies in Europe are the European Space Research Organisation (ESRO) and the European Launcher Development Organisation (ELDO). ESRO’s focus is on developing scientific satellites for space research. ELDO looks to develop an independent satellite launch capability for Europe through the Europa rocket, conducting its test flights from the Woomera Rocket Range in Australia.

The French acronym CERS stands for Conseil Européen de Recherche Spatiale

These roles would appear to be complementary, and I have occasionally referred to ELDO and ESRO as “sister” institutions in previous articles, since they have grown up in parallel and have several member states in common. However, I’ve come to think that they are perhaps best considered as “cousins”, as they operate and forward plan quite separately from each other, resulting in a lack of co-ordination across Europe's space activities. While ELDO was established with an assumption that ESRO would be one of the customers for its launch services, ESRO has not waited for a European launcher to become available from ELDO: ESRO 2B has been launched under NASA’s auspices on a Scout vehicle from Vandenberg Air Force Base and for the foreseeable future all planned ESRO satellite launches will be on US rockets.

The French acronym CECLES stands for Conseil européen pour la construction de lanceurs d'engins spatiaux

Mention also needs to be made of the European Conference on Telecommunications by Satellites (CETS), the third space organisation in Europe, which is playing a role in pushing for some of the proposed changes in Europe’s space plans. Unlike ESRO and ELDO, CETS is not active in developing space technologies and vehicles, but provides a forum for European Post, Telegraph and Telecommunications agencies (PTTs) to consider the role of communication satellites and discuss the European role in the INTELSAT global telecommunications satellite system.

ESRO and ELDO: Parallel Lives
Stemming from initiatives taken in 1959 and 1960 by a small group of scientists, led by Italian Prof. Edoardo Amaldi and French physicist Prof. Pierre Victor Auger, ESRO was set up in the early 1960s. Like ELDO, it formally came into existence in 1964. ESRO’s member countries are Belgium, Denmark, West Germany, France, Italy, the Netherlands, Sweden, Spain, Switzerland, and Britain, and the organisation’s focus has been on strictly civil scientific research. Four ESRO members (Britain, France, Italy and West Germany) also have their own national space programmes.

ESRO has already developed a number of technical facilities: the European Space Research and Technology Centre (ESTEC) in the Netherlands, is the newest, opened on 3 April. ESRO has also begun to establish its own space tracking network, ESTRACK, and has its own sounding rocket launch facility, ESRANGE (established in 1964), near Kiruna, Sweden.

The opening of ESTEC on 3 April by HRH Princess Beatrix and her husband Prince Claus included the royal couple being presented with a model of the ESRO 2B satellite

ELDO, on the other hand, was very much a British initiative in 1960-61, seeking partners in Europe for the development of an independent satellite launcher that would use as its first stage the UK’s then-recently cancelled Blue Streak missile. ELDO’s member states are Britain, France, West Germany, Italy, Belgium and the Netherlands. Australia, despite being a non-European country, is also an ELDO member because of its role providing the test launch facilities at Woomera.

The first Blue Streak launch from Woomera in 1964, designated as ELDO F-1, the inaugural test flight of the Europa rocket's first stage

Both organisations operate with a policy of “juste retour” – allocating work to industry in member countries in proportion to their share of financial contribution to the organisation.

So you can see that, unlike the US civilian space programme, under the control of NASA, and the Soviet programme, under central control from the Politburo, there are many fingers in the European space pie, with many complementary and yet competing interests and national agendas.

Not Going Up from Down Under
When I last reported on the ELDO programme, it was to cover the loss of the ELDO F-6 launch in August last year. At the time, I mentioned that a reflight – designated as F-6/2 – was already in planning. Scheduled for December 5, 1967, the first attempt to launch F-6/2 was aborted just 12 seconds before lift-off due to a power failure.



Although successfully launched at 6 a.m. the following morning, the second stage failed to ignite after separation from the first stage. The vehicle then crashed down into the upper reaches of the Simpson Desert, repeating the failure of Europa F-6/1. This was the second failure of an active French Coralie second stage, and an investigation is still underway to determine the cause.

Despite this failure, the next Europa launch – designated F-7 – is still planned for October or November this year as the first test flight with three active stages. Let’s hope that the issues with the second stage have been resolved by then!

Has Britain Lost Its Way in Space?
Since coming to power in the October 1964, the Wilson Labour Government has shown itself to be considerably less enthusiastic about European space activities than its Conservative predecessor. This would appear to be in large part due to the struggling UK economy, but also a response to the lack of success of Britain’s attempts to join the European Economic Community in 1963 and 67, for which UK participation in European space was supposed to be a sweetener.

In 1965, when the cost of completing the original ELDO programme had already climbed to twice the early estimates, France began to call for a revised – and more expensive – programme to develop the Europa vehicle into a launcher capable of placing satellites into geostationary orbit. Calling the Europa I launcher “obsolete”, as it can only place satellites into polar orbit, France has proposed a more sophisticated and powerful Europa II vehicle that would enable Europe to launch communications and other applications satellites without reliance on the United States (which has already given indications that it will take measures to protect its monopoly on the use of geostationary satellites).

Applications satellites, especially for international communications (as demonstrated by INTELSAT), are almost certainly the way of the future in space developments outside human spaceflight, and West Germany, Belgium and the Netherlands have agreed with the French view. This resulted in a July 1966 proposal to complete ELDO’s Europa I programme and add a Europa II development programme.

The British Government, however, began to express severe doubts about the “technological use and the economic viability” of the ELDO programme and opposed the French-led changes. In 1966, it signalled that Britain would not participate in any further financing of ELDO programmes after present projects were completed. Britain also reduced its financial contributions to ELDO from 38.79% (the largest contribution to ELDO’s budget) to 27%, with the difference being made up by the other four paying members (Australia being a non-paying member, on the basis of providing the Woomera facilities).

The reduction in the British financial clout within ELDO, and the desire for an equatorial launch facility, has been a factor in ELDO planning to move away from Woomera to France’s national launch facility in Kourou, French Guiana, at the completion of the ELDO I programme, anticipated in 1970. This has greatly disappointed my friends at the WRE, who spent considerable effort in preparing plans for a launch facility near Darwin, in the Northern Territory, to support an equatorial launch capability in Australia for the Europa II programme.

The first launch from France's Kourou facility, the future home of the ELDO programme, took place on 9 April this year, with the firing of a Veronique sounding rocket

British Space Industry Weighs In!
In November last year, a report from the National Industrial Space Committee, which represents the space interests of British industry, recommended that the British Government should not reduce, but expand its spending on space research and development, in order to stop the brain drain from the UK and obtain a share in what is already being seen as the lucrative space technology business. It recommended that spending on space-related R&D should be increased by around a 25% increase from the present $A60 million to between $A75 million and $A87.5 million said the committee. Comments at the time from Mr Kenneth Gatland, vice president of the British Interplanetary Society, indicated that a major row was looming between industry and Government over Britain's failure to lead Europe into the commercial field of communication satellites. Although the Post Office, which controls British telecommunications, has expressed “severe doubts” about the commercial benefits of space-communication, this seems a bit strange when the Post Office is also the British signatory to INTELSAT, and the UK is the consortium’s second largest shareholder. “Government advisers”, Mr. Gatland said, “were being accused of leaving Britain high and dry through inept policies, allowing France and West Germany to benefit at Britain's expense.” Instead of the “national scandal” of Britain having spent an estimated $A124,707,500 on ELDO without any tangible end project in view, Mr. Gatland has suggested that Britain should give ELDO a target which would bring a return for the large capital investment.

A European Symphonie?
Whatever Britain’s misgivings regarding satellite communications, France and Germany are eager to move into the field of communications satellites to break INTELSAT’s monopoly on international satellite telecommunications. They have embarked on their own joint communications satellite project, known as Symphonie. As this project has taken options on two Europa II launches for its two satellites, it is, at present, ELDO's only customers! Mr Gatland has urged Britain to join France and Germany in the Symphonie project, which will promise a satellite in three to five years.

An early design for the Symphonie communications satellite, which is intended to be three-axis stabilised

Italy has decided to go it alone on the development of a telecommunications satellite known as Project Sirio. The design will apparently be based on the experimental telecommunications satellite that Italy was originally going to develop for ELDO, before that aspect of the programme was cut to reduce overall costs.

ESRO is also reported to be interested in moving beyond scientific satellites into the applications satellite area, in conjunction with CETS, which has expressed interest in the development of a satellite for television distribution.

Whither or Wither, Europe?
With all this history in mind, Europe’s space plans for the future have undergone considerable change in the past few months. According to a report released in March, Europe's space club has mapped out an ambitious programme for the next 10 years that would include telecommunications satellites for television, broadcasting and telephone calls, meteorological, air traffic control and Earth resources satellites, and large numbers of astronomical and other scientific satellites. This programme, which involves a 10 per cent annual increase of expenditure on European space projects, is intended to be discussed when Science Ministers from the 17 member states of ELDO, ESRO and CETS, meet in Bonn, West Germany, in June.

However, the ambitious proposals released in March evolving as originally anticipated is now unlikely, given the most recent events. On 18 April, Britain's Labour Government announced cuts in spending on space research and cast further doubts on the future of ELDO. Although the Government indicated that it would maintain its contribution to the current ELDO programme at the existing level, it could “see no economic justification for undertaking further financial commitments to ELDO after the present programme,” which is due to conclude in 1970.

This (not totally unexpected news) was followed by an announcement from ESRO on 26 April that it was cancelling its plans for its two largest satellites scientific satellites – a major blow for European space co-operation. The two massive TD 1 and TD 2 satellites (the TD stands for Thor Delta, the intended launch vehicle), each weighing 990 lbs, were to have been built under a 100 million franc (about Aus$17,800,000) contract by an international consortium including Hawker Siddeley Dynamics of Britain, the French firm Matra, the West German group ERNO, and Saab of Sweden.

TD1, scheduled for launch in 1970, was designed to study the relationship between earth and sun. TD2, planned for launch the following year, was focused on research into solar ultra-violet radiation and electromagnetic phenomena in the upper atmosphere. The reason for the satellites’ cancellation seems to be connected with disagreements within ESRO in regard to the juste retour allocation of work for the project.

ESRO’s First satellite in Orbit!
Despite the uncertainties about its future space plans, Europe is currently celebrating the launch of the first ESRO satellite to make it to orbit! ESRO-2B was launched 17 May from Vandenberg Air Force Base in California on a Scout B rocket.

This flight occurred almost exactly one year after the loss of its predecessor ESRO 2A on 29 May, 1967. Also launched from Vandenberg on a Scout B, ESRO 2A was lost due to a malfunction of the rocket’s fourth stage, which prevented the satellite from reaching orbit. These first European satellites were launched on Scout vehicles due to an offer from NASA to launch the ESRO's first two satellites free of charge as a ‘christening gift’ for the organisation (and no doubt to woo ESRO towards continuing with US launchers even when ELDO's Europa rockets become operational!)

ESRO 2B, also known as Iris (International Radiation Investigation Satellite), Iris 2 and ESRO 2, is an astrophysical research satellite developed to study solar and cosmic radiation and their interaction with the Earth and its magnetosphere. This will provide continuity to the solar radiation observations of earlier satellites and continue similar particle measurements carried out by the UK’s Ariel 1 satellite. It is the first mission controlled by teams at the European Space Operations Centre (ESOC) in Darmstadt, Germany.

ESRO 2B being prepared for launch

Placed into a highly elliptical near-polar orbit, with an orbital period of 98.9 minutes, ESRO-2B is about 33.5 inches in length, with a diameter just on 30 inches. It weighs 196 lb and is spin-stabilised, with a spin rate of approximately 40 rpm. The satellite is powered by 3456 solar cells on the outer body panels, supplemented by a nickel/cadmium battery. The satellite carries the same seven instruments as its lost predecessor: to detect high-energy cosmic rays, determine the total flux of solar X-rays, measure trapped radiation, investigate Van Allen belt protons and cosmic ray protons. And if you’re wondering why ESRO 2B is the first European satellite and what happened to ESRO 1, the simple answer is that ESRO 1 has yet to be launched! Difficulties in the development of the payload for the polar ionospheric satellite ESRO 1, designed to study how the auroral zones responded to geomagnetic and solar activity, meant that it was eventually agreed to launch ESRO-2 ahead of it. ESRO 1 is due for launch around October this year, so we here at Galactic Journey will cover its story soon. ESRO 2B being tracked at the ESOC mission control centre