Tag Archives: europa

[February 16, 1969] Triumph, Tough Luck and Turmoil (European Space Update)



by Kaye Dee

The accelerating pace of the US and Soviet space programmes over the past few months has drawn our attention away from space developments in other parts of the world, especially with the excitement of the historic Apollo 8 lunar mission so recently behind us and Apollo 9’s in-orbit test flight (finally!) of the Lunar Module next month. But there have been many developments on the European space scene since I wrote about it in May last year, so I think it’s time for an update!

Triumph: ESRO 1A Finally in Orbit
My previous European space report noted that the European Space Research Organisation’s (ESRO) first satellite, ESRO 2B, reached orbit ahead of ESRO 1A, the latter satellite delayed due to difficulties in the development of its instrumentation payload. But ESRO 1A was finally launched on 3 October 1968 from Vandenberg Air Force Base in California, using a Scout launch vehicle.

ESRO 1A mounted on its Scout vehicle ahead of its launch at Vandenberg AFB

Fired into a 90° polar orbit, with an initial apogee of 930 miles and a perigee of 171 miles, ESRO 1A is designed for a nominal lifetime of six months. However, it is already looking likely that the satellite will survive much longer and possibly still be in orbit when its follow-up twin ESRO 1B is launched later this year (presently planned for some time in October).

The ESRO1 missions were first outlined in 1963 at scientific meetings of COPERS (Commission Préparatoire Européenne de Recherche Spatiale, which is the French name for the European Preparatory Commission for Space Research, a predecessor of ESRO), but the programme has been developed as a joint venture between NASA and ESRO. NASA provided the Scout vehicle for ESRO 1A, although ESRO will purchase the Scout launcher for the ESRO 1B flight.

Designed by ESRO, the construction of both ESRO 1 satellites is all-European: Laboratoire Central de Telecommunications (Paris) is the prime contractor, with assistance from Contraves AG (Zurich), and Antwerp-based Bell Telephone Manufacturing Company, with final testing taking place at ESRO’s ESTEC facility. Weighing about 187 pounds, the cylindrical, non-stabilised ESRO 1 satellites are 30 inches in diameter and 36.6 inches tall (specifically designed to fit within the Scout vehicle fairing) and powered by solar-cells.

ESRO 1A (‘Aurora’) and ESRO 1B (‘Boreas’) have been designed to study how the auroral zones respond to geomagnetic and solar activity. Their payloads are directly derived from earlier sounding rocket experiments measuring the radiation characteristics of the upper atmosphere. In orbit, the satellites’ axis of symmetry is magnetically aligned along the Earth's magnetic field. They can make direct measurements as high-energy charged particles from the Sun and deep space plunge from the outer magnetosphere into the atmosphere (ESRO 1B will be placed in a lower orbit that 1A to provide comparative data at different altitudes). The satellites can also investigate the fine structure of the aurora borealis and correlate studies on auroral particles, auroral luminosity, ionospheric composition, and heating effects.

ESRO 1A carries seven scientific experiments chosen to measure a comprehensive range of auroral effects. Identical or similar experiments will be carried on ESRO 1B.

Tough Luck: Another ELDO Launch Failure…
Unfortunately, the European Launcher Development Organisation (ELDO) has yet to taste the same success as ESRO, with repeated failures in its Europa satellite launcher test flights, which I've covered in detail in previous articles.

Despite the loss of both Europa F6/1 and F6/2 due to failures of the French ‘Coralie’ second stage, the Europa F7 flight was scheduled for a November launch last year, as the first vehicle to fly with all three of the rocket’s stages active. This eighth firing in the ELDO test programme marked the beginning of Phase 3 of the Europa test flights. It would be the first attempt to launch ELDO’s Italian-built STV (Satellite Test Vehicle) satellite into orbit, as well as the first time that the ELDO down-range guidance and tracking station at Gove in the remote Arnhem Land region of the Northern Territory (primarily developed by Belgium) would actively participate in a Europa launch.

View of the ELDO downrange tracking station, near Gove in the Northern Territory. The area is also known by its Aboriginal name of Nhulunbuy

The failure of the Coralie stage to separate during the F6/2 launch, due to an electrical fault, meant that modifications had to be made to prevent a recurrence of the issue. So there was plenty of tension (and frustration) in the air when last-second delays halted two attempts to launch F7 on 25 November. Both aborts occurred just 35 seconds before the rocket was due to lift off, and were caused by the discovery of a fault in the Coralie staging system between the first and second stages – nobody wanted a repeat of F6/2!

A Coralie second stage engine being checked out at Woomera prior to stacking the Europa vehicle for launch

A launch attempt on 27 November was cancelled due to another fault, as was a fourth attempt on the 28th, which was caused by a faulty indication in a pressure switch system in the engines of the British Blue Streak first stage.

Finally, on the fifth attempt, Europa F7 lifted off on 30 November (Australian time; still 29 November in Europe), but this flight, too, was doomed to be short-lived. The second stage separated and functioned perfectly: this time it was the West German ‘Astris’ third stage that caused the failure.

The Astris stage separated and ignited as expected but burned for just seven seconds (instead of the planned 300 seconds) before it exploded. Investigations as to the cause of the failure are ongoing, but at present there are three possible causes under consideration: rigid pressurisation pipes that may have fractured; an explosive bolt, part of the WREBUS flight safety destruct system, that may have been inadvertently been triggered by a stray electrical current; or a rupture of the tank diaphragm in the third stage, which separates the fuel and oxidiser. The diaphragm may have been weakened during pre-flight preparations. At present we can only await the outcome of the investigations and hope that they do not delay the launch of Europa F8, currently scheduled for June or July this year.

…And a Satellite Lost
While it was not the main objective of the F7 flight, it is particularly disappointing that the Italian test satellite did not reach orbit, as it would have become the second satellite launched from Woomera, exactly one year after Australia’s own WRESAT.

The first flight-ready STV satellite being checked out following its arrival at Woomera

The octagonal prism-shaped STV satellites (successors will be flown on Europa F8 and F9) have been built for ELDO by Fiat Aviazione. The 472 pound satellite carries instruments to characterise the launch environment of the Europa vehicle, providing information on the conditions and stresses that future satellites launched on Europa vehicles will need to be capable of surviving.

Despite the loss of both the rocket and the satellite, ELDO has been referring to Europa F7 as a “successful trial”, as it has enabled its engineers to acquire data about the performance of the Coralie second stage in flight and came close to placing a satellite into orbit. ELDO representatives are saying that, the Europa vehicle has “emerged for the first time as a practical proposition.”

Turmoil: the State of European Space Policy
Last May, I asked whether Britain had lost its way in space, and whether European space plans would flourish or wither, due to changing views on the future direction of Europe’s space activities and reductions in funding. Since then, the outlook has become even more uncertain, with disagreements over juste retour project work allocations and the ELDO budget creating turmoil.

In November last year, Ministers, space organisation representatives and space experts from 16 European countries, as well as Australia and Canada, met for the third European Space Conference, held in Bonn, West Germany. At this meeting, a proposal was put forward to merge ELDO and ESRO to form a pan-European space authority by early 1970, which would be known as the European Space Agency.

This idea proved popular with many of the attending nations, but less so with Britain, which expressed the view that it was unlikely that Europe could launch satellites economically. As noted last year, Britain has already announced its intention to withdraw from ELDO, although it has committed to continue supplying Blue Streak first stages for the Europa II vehicle.

However, the British Government has offered to back a revised European space programme designed to yield “practical results”. Britain wants Europe to concentrate on developing applications satellites for weather forecasting, telecommunications, and scientific research, giving up the development of independent European launchers in favour of using American vehicles.

The British proposal includes an offer to contribute to a project for an “information transfer satellite” to be completed by 1975, providing a point-to-point television relay service between London and Paris for the European Broadcasting Union. In addition, Britain would participate in a long-term applied research programme to improve European industrial space capability, in conjunction with funding an immediate economic study of the market for applications satellites. The quid-pro-quo for British support for this ambitious “practical space programme” is that the UK must be released from its present financial commitment to ELDO. This is certainly ironic, given that Britain was the driving force behind the original creation of ELDO!

ELDO's Budget Crisis
After the failure of Europa F7, the ELDO Council met on 19-20 December to vote on the organisation’s 1969 budget, with Britain again the fly in the ointment, declaring that it would not support the new “austerity plan” compromise budget proposed by West Germany to cover the final two years of the Europa-1 development programme.

Using a loophole in the ELDO Convention to characterise the German proposal as a “further programme” (ie: it was not part of the original ELDO programme that it had signed up to), Britain declared that it had “no interest” in the plan and so was not obliged to contribute to it financially. It would only support the 1969 budget if its outstanding contribution to ELDO was reduced to £10 million for the years 1969, 1970 and 1971.

Italy took a similar line, supporting the British view and declaring itself “not interested”, and would not vote for the 1969 budget. In addition, Italy formally rejected as inadequate an offer to become the prime contractor of the apogee motor in the Symphonie communications satellite programme.

This recalcitrance on the part of Britain and Italy has plunged ELDO into a budget crisis, and the organisation has been operating on a contingency funding basis since 31 December. Practical considerations, and the terms of the ELDO Convention, indicate that the impasse needs to be resolved within three months, at which point a budget must be approved or the original treaty becomes invalid.

An excerpt from the journal Nature, reporting on ELDO's budget crisis

A meeting of the relevant Ministers from all seven ELDO member states is currently scheduled for 26 February to seek a political solution to the problem and find a way forward for Europe’s space ambitions before they fragment. What’s that Chinese proverb? “May you live in interesting times”!

An Australian Postscript: No WRESAT-2
In my article on the launch of Australia’s first satellite at the end of November 1967, I mentioned that the Weapons Research Establishment was planning to put a proposal to the Australian Government for the establishment of an Australian space programme, managed by the WRE. This proposal went to the Cabinet for consideration last year, but was rejected by the Government on the basis of cost, despite the modest budget it was proposing. This is not the first proposal for an Australian space programme that has been rejected by Cabinet, which seems to have little appetite for funding Australian civil space projects. To the frustration of all those involved, it looks like WRESAT-1 will not, after all, be followed by WRESAT-2.

Signing off
Well, in the vernacular of your beloved Walter Cronkite, "That's the way it is." I'm sorry I haven't happier news to report just yet, but you'll hear it here first when I have it!

(And my thanks to my Uncle Ernie, the philatelic collector, for providing the selection of space covers (envelopes) that I have used to illustrate this article.)


[MAY 26, 1968] EUROPA AD ASTRA (EUROPEAN SPACE UPDATE)



by Kaye Dee

The recent launch of the ESRO 2B scientific satellite on 17 May (more on that below) reminds me that it has been a while since I wrote anything about the European launcher development programme being carried out in Australia. There have also been major developments in Europe’s space plans over the past few months, which look like they will significantly change the future of the European space programme.

For readers in the United States and other parts of the world, who may not be familiar with the European space programme, let me take a few moments to introduce the major players and provide a bit of background before talking about recent developments.

Cousins Rather Than Siblings: ELDO, ESRO and CETS
The two most important space bodies in Europe are the European Space Research Organisation (ESRO) and the European Launcher Development Organisation (ELDO). ESRO’s focus is on developing scientific satellites for space research. ELDO looks to develop an independent satellite launch capability for Europe through the Europa rocket, conducting its test flights from the Woomera Rocket Range in Australia.

The French acronym CERS stands for Conseil Européen de Recherche Spatiale

These roles would appear to be complementary, and I have occasionally referred to ELDO and ESRO as “sister” institutions in previous articles, since they have grown up in parallel and have several member states in common. However, I’ve come to think that they are perhaps best considered as “cousins”, as they operate and forward plan quite separately from each other, resulting in a lack of co-ordination across Europe's space activities. While ELDO was established with an assumption that ESRO would be one of the customers for its launch services, ESRO has not waited for a European launcher to become available from ELDO: ESRO 2B has been launched under NASA’s auspices on a Scout vehicle from Vandenberg Air Force Base and for the foreseeable future all planned ESRO satellite launches will be on US rockets.

The French acronym CECLES stands for Conseil européen pour la construction de lanceurs d'engins spatiaux

Mention also needs to be made of the European Conference on Telecommunications by Satellites (CETS), the third space organisation in Europe, which is playing a role in pushing for some of the proposed changes in Europe’s space plans. Unlike ESRO and ELDO, CETS is not active in developing space technologies and vehicles, but provides a forum for European Post, Telegraph and Telecommunications agencies (PTTs) to consider the role of communication satellites and discuss the European role in the INTELSAT global telecommunications satellite system.

ESRO and ELDO: Parallel Lives
Stemming from initiatives taken in 1959 and 1960 by a small group of scientists, led by Italian Prof. Edoardo Amaldi and French physicist Prof. Pierre Victor Auger, ESRO was set up in the early 1960s. Like ELDO, it formally came into existence in 1964. ESRO’s member countries are Belgium, Denmark, West Germany, France, Italy, the Netherlands, Sweden, Spain, Switzerland, and Britain, and the organisation’s focus has been on strictly civil scientific research. Four ESRO members (Britain, France, Italy and West Germany) also have their own national space programmes.

ESRO has already developed a number of technical facilities: the European Space Research and Technology Centre (ESTEC) in the Netherlands, is the newest, opened on 3 April. ESRO has also begun to establish its own space tracking network, ESTRACK, and has its own sounding rocket launch facility, ESRANGE (established in 1964), near Kiruna, Sweden.

The opening of ESTEC on 3 April by HRH Princess Beatrix and her husband Prince Claus included the royal couple being presented with a model of the ESRO 2B satellite

ELDO, on the other hand, was very much a British initiative in 1960-61, seeking partners in Europe for the development of an independent satellite launcher that would use as its first stage the UK’s then-recently cancelled Blue Streak missile. ELDO’s member states are Britain, France, West Germany, Italy, Belgium and the Netherlands. Australia, despite being a non-European country, is also an ELDO member because of its role providing the test launch facilities at Woomera.

The first Blue Streak launch from Woomera in 1964, designated as ELDO F-1, the inaugural test flight of the Europa rocket's first stage

Both organisations operate with a policy of “juste retour” – allocating work to industry in member countries in proportion to their share of financial contribution to the organisation.

So you can see that, unlike the US civilian space programme, under the control of NASA, and the Soviet programme, under central control from the Politburo, there are many fingers in the European space pie, with many complementary and yet competing interests and national agendas.

Not Going Up from Down Under
When I last reported on the ELDO programme, it was to cover the loss of the ELDO F-6 launch in August last year. At the time, I mentioned that a reflight – designated as F-6/2 – was already in planning. Scheduled for December 5, 1967, the first attempt to launch F-6/2 was aborted just 12 seconds before lift-off due to a power failure.



Although successfully launched at 6 a.m. the following morning, the second stage failed to ignite after separation from the first stage. The vehicle then crashed down into the upper reaches of the Simpson Desert, repeating the failure of Europa F-6/1. This was the second failure of an active French Coralie second stage, and an investigation is still underway to determine the cause.

Despite this failure, the next Europa launch – designated F-7 – is still planned for October or November this year as the first test flight with three active stages. Let’s hope that the issues with the second stage have been resolved by then!

Has Britain Lost Its Way in Space?
Since coming to power in the October 1964, the Wilson Labour Government has shown itself to be considerably less enthusiastic about European space activities than its Conservative predecessor. This would appear to be in large part due to the struggling UK economy, but also a response to the lack of success of Britain’s attempts to join the European Economic Community in 1963 and 67, for which UK participation in European space was supposed to be a sweetener.

In 1965, when the cost of completing the original ELDO programme had already climbed to twice the early estimates, France began to call for a revised – and more expensive – programme to develop the Europa vehicle into a launcher capable of placing satellites into geostationary orbit. Calling the Europa I launcher “obsolete”, as it can only place satellites into polar orbit, France has proposed a more sophisticated and powerful Europa II vehicle that would enable Europe to launch communications and other applications satellites without reliance on the United States (which has already given indications that it will take measures to protect its monopoly on the use of geostationary satellites).

Applications satellites, especially for international communications (as demonstrated by INTELSAT), are almost certainly the way of the future in space developments outside human spaceflight, and West Germany, Belgium and the Netherlands have agreed with the French view. This resulted in a July 1966 proposal to complete ELDO’s Europa I programme and add a Europa II development programme.

The British Government, however, began to express severe doubts about the “technological use and the economic viability” of the ELDO programme and opposed the French-led changes. In 1966, it signalled that Britain would not participate in any further financing of ELDO programmes after present projects were completed. Britain also reduced its financial contributions to ELDO from 38.79% (the largest contribution to ELDO’s budget) to 27%, with the difference being made up by the other four paying members (Australia being a non-paying member, on the basis of providing the Woomera facilities).

The reduction in the British financial clout within ELDO, and the desire for an equatorial launch facility, has been a factor in ELDO planning to move away from Woomera to France’s national launch facility in Kourou, French Guiana, at the completion of the ELDO I programme, anticipated in 1970. This has greatly disappointed my friends at the WRE, who spent considerable effort in preparing plans for a launch facility near Darwin, in the Northern Territory, to support an equatorial launch capability in Australia for the Europa II programme.

The first launch from France's Kourou facility, the future home of the ELDO programme, took place on 9 April this year, with the firing of a Veronique sounding rocket

British Space Industry Weighs In!
In November last year, a report from the National Industrial Space Committee, which represents the space interests of British industry, recommended that the British Government should not reduce, but expand its spending on space research and development, in order to stop the brain drain from the UK and obtain a share in what is already being seen as the lucrative space technology business. It recommended that spending on space-related R&D should be increased by around a 25% increase from the present $A60 million to between $A75 million and $A87.5 million said the committee. Comments at the time from Mr Kenneth Gatland, vice president of the British Interplanetary Society, indicated that a major row was looming between industry and Government over Britain's failure to lead Europe into the commercial field of communication satellites. Although the Post Office, which controls British telecommunications, has expressed “severe doubts” about the commercial benefits of space-communication, this seems a bit strange when the Post Office is also the British signatory to INTELSAT, and the UK is the consortium’s second largest shareholder. “Government advisers”, Mr. Gatland said, “were being accused of leaving Britain high and dry through inept policies, allowing France and West Germany to benefit at Britain's expense.” Instead of the “national scandal” of Britain having spent an estimated $A124,707,500 on ELDO without any tangible end project in view, Mr. Gatland has suggested that Britain should give ELDO a target which would bring a return for the large capital investment.

A European Symphonie?
Whatever Britain’s misgivings regarding satellite communications, France and Germany are eager to move into the field of communications satellites to break INTELSAT’s monopoly on international satellite telecommunications. They have embarked on their own joint communications satellite project, known as Symphonie. As this project has taken options on two Europa II launches for its two satellites, it is, at present, ELDO's only customers! Mr Gatland has urged Britain to join France and Germany in the Symphonie project, which will promise a satellite in three to five years.

An early design for the Symphonie communications satellite, which is intended to be three-axis stabilised

Italy has decided to go it alone on the development of a telecommunications satellite known as Project Sirio. The design will apparently be based on the experimental telecommunications satellite that Italy was originally going to develop for ELDO, before that aspect of the programme was cut to reduce overall costs.

ESRO is also reported to be interested in moving beyond scientific satellites into the applications satellite area, in conjunction with CETS, which has expressed interest in the development of a satellite for television distribution.

Whither or Wither, Europe?
With all this history in mind, Europe’s space plans for the future have undergone considerable change in the past few months. According to a report released in March, Europe's space club has mapped out an ambitious programme for the next 10 years that would include telecommunications satellites for television, broadcasting and telephone calls, meteorological, air traffic control and Earth resources satellites, and large numbers of astronomical and other scientific satellites. This programme, which involves a 10 per cent annual increase of expenditure on European space projects, is intended to be discussed when Science Ministers from the 17 member states of ELDO, ESRO and CETS, meet in Bonn, West Germany, in June.

However, the ambitious proposals released in March evolving as originally anticipated is now unlikely, given the most recent events. On 18 April, Britain's Labour Government announced cuts in spending on space research and cast further doubts on the future of ELDO. Although the Government indicated that it would maintain its contribution to the current ELDO programme at the existing level, it could “see no economic justification for undertaking further financial commitments to ELDO after the present programme,” which is due to conclude in 1970.

This (not totally unexpected news) was followed by an announcement from ESRO on 26 April that it was cancelling its plans for its two largest satellites scientific satellites – a major blow for European space co-operation. The two massive TD 1 and TD 2 satellites (the TD stands for Thor Delta, the intended launch vehicle), each weighing 990 lbs, were to have been built under a 100 million franc (about Aus$17,800,000) contract by an international consortium including Hawker Siddeley Dynamics of Britain, the French firm Matra, the West German group ERNO, and Saab of Sweden.

TD1, scheduled for launch in 1970, was designed to study the relationship between earth and sun. TD2, planned for launch the following year, was focused on research into solar ultra-violet radiation and electromagnetic phenomena in the upper atmosphere. The reason for the satellites’ cancellation seems to be connected with disagreements within ESRO in regard to the juste retour allocation of work for the project.

ESRO’s First satellite in Orbit!
Despite the uncertainties about its future space plans, Europe is currently celebrating the launch of the first ESRO satellite to make it to orbit! ESRO-2B was launched 17 May from Vandenberg Air Force Base in California on a Scout B rocket.

This flight occurred almost exactly one year after the loss of its predecessor ESRO 2A on 29 May, 1967. Also launched from Vandenberg on a Scout B, ESRO 2A was lost due to a malfunction of the rocket’s fourth stage, which prevented the satellite from reaching orbit. These first European satellites were launched on Scout vehicles due to an offer from NASA to launch the ESRO's first two satellites free of charge as a ‘christening gift’ for the organisation (and no doubt to woo ESRO towards continuing with US launchers even when ELDO's Europa rockets become operational!)

ESRO 2B, also known as Iris (International Radiation Investigation Satellite), Iris 2 and ESRO 2, is an astrophysical research satellite developed to study solar and cosmic radiation and their interaction with the Earth and its magnetosphere. This will provide continuity to the solar radiation observations of earlier satellites and continue similar particle measurements carried out by the UK’s Ariel 1 satellite. It is the first mission controlled by teams at the European Space Operations Centre (ESOC) in Darmstadt, Germany.

ESRO 2B being prepared for launch

Placed into a highly elliptical near-polar orbit, with an orbital period of 98.9 minutes, ESRO-2B is about 33.5 inches in length, with a diameter just on 30 inches. It weighs 196 lb and is spin-stabilised, with a spin rate of approximately 40 rpm. The satellite is powered by 3456 solar cells on the outer body panels, supplemented by a nickel/cadmium battery. The satellite carries the same seven instruments as its lost predecessor: to detect high-energy cosmic rays, determine the total flux of solar X-rays, measure trapped radiation, investigate Van Allen belt protons and cosmic ray protons. And if you’re wondering why ESRO 2B is the first European satellite and what happened to ESRO 1, the simple answer is that ESRO 1 has yet to be launched! Difficulties in the development of the payload for the polar ionospheric satellite ESRO 1, designed to study how the auroral zones responded to geomagnetic and solar activity, meant that it was eventually agreed to launch ESRO-2 ahead of it. ESRO 1 is due for launch around October this year, so we here at Galactic Journey will cover its story soon. ESRO 2B being tracked at the ESOC mission control centre












[March 24, 1965] New Leaps Forward in Space (Voskhod 2, Europa F-3, Ranger 9, and Gemini 3)


by Kaye Dee

Returning to university kept me pretty busy in February, so I knew I wouldn’t have time to write, but this past month has seen yet more leaps forward in space exploration with the world’s first spacewalk and the launch of NASA’s first manned Gemini mission.

Soviet Space Achievements

It’s hard to believe that it’s just under four years since Yuri Gagarin rocketed into orbit as the first man in space. In that short time we’ve seen six flights in the Soviet Union’s Vostok program, including the first dual missions with two space capsules in orbit at the same time, and the first woman in space (how I’d love to meet Valentina Tereshkova!)


The first man and the first woman in space, Soviet cosmonauts Yuri Gagarin and Valentina Tereshkova

Just last year, the USSR gave us the first flight of its new Voskhod spacecraft, carrying a crew of three. At that time, my fellow writer, Gideon Marcus asked, what would the Soviets follow it up with? (see October 1964 entry)

Now we know. On March 18, the USSR launched a new Voskhod mission that has once again denied the United States a significant space first. This time, the Voskhod 2 mission included the world’s first spacewalk – about a year ahead of when NASA has anticipated accomplishing the same feat.

A Mystery Spacecraft


One of the few Voskhod images released so far, showing the inside of Voskhod 1. The orange cladding may be covering up many of the spacecraft's instruments

We don’t know a lot about the Voskhod spacecraft as the Soviet Union has released few pictures of it or statistics about it. It clearly must be substantially larger than the Vostok, since it has proved capable of carrying three people on its first flight, and two cosmonauts plus an airlock device on the recent spacewalking mission. We do know that, according to official figures, Voskhod 1 weighed 11,728lb, while Voskhod 2 weighed in at 12, 527lb – presumably because of the extra weight of the airlock it carried.

Newly Revealed Cosmonauts

The crew for this historic space flight were two cosmonauts whose names were previously unknown to us in the West: Colonel Pavel Belyayev, the mission Commander, and Lt. Colonel Alexei Leonov, who performed the actual spacewalk, or Extravehicular Activity (EVA) as NASA terms it. Leonov’s name will now go down in the history books as the first person ever to step outside a spacecraft into open space. Soviet cosmonaut biographies don’t really tell us very much, but both men are apparently Air Force fighter pilots, and are married with children. At 39, Col. Belyayev is the oldest person so far to make a space flight; he is also the oldest and highest ranking of the cosmonauts we know about.


Official TASS photo of Belyayev (left) and Leonov (right) with Yuri Gagarin at a radio interview after their historic flight

Onboard Airlock

Voskhod 2 was launched at 07.00GMT (5pm Australian Eastern Standard Time) and it was just 90 minutes later, on the second orbit, that the spacewalk took place. At the time, Voskhod 2 was about 300 miles above the earth – the highest orbit by a manned spaceflight to date. Soviet sources describe the airlock that Leonov used to exit the ship as being mounted on the outside of the spacecraft and entered from the Voskhod cabin via a hatch. After the completion of the spacewalk, the airlock was jettisoned before the ship returned to Earth. Because the spacewalk would expose the crew to the vacuum of space if the airlock malfunctioned, both cosmonauts wore spacesuits for the duration of the mission, unlike the Voskhod 1 crew, who made their space flight in lightweight suits, which would seem to be an indication of Soviet confidence in the performance of the spacecraft.


Belyayev (left) and Leonov (right) in their spacesuits on the way to the launch site. Voskhod 1 cosmonaut Vladimir Komarov is between them

Stepping into the Void

According to the TASS news agency, Lt. Col. Leonov spent 20 minutes “in conditions of outer space”. Since his actual spacewalk lasted about 10 minutes, the rest of the time must have been spent in the airlock. I’ve heard a rumour from my friends at the WRE that the spacewalk did not go as smoothly as the Soviets would like us to believe, and that Leonov actually had some difficulty re-entering the airlock, which might explain the times reported by TASS. But stories of Soviet coverups of problems with their cosmonaut program occur after every mission, so it’s hard to know quite where the truth lies in this instance.


Lt Colonel Alexei Leonov floating in the void of space during the historic first spacewalk, seen in frames from the film taken by a camera mounted on Voskhod 2

Whether he had a problem or not, Leonov spent about 10 minutes floating in the void, attached to Voskhod 2 by a long umbilicus, to prevent him drifting away. His breathing oxygen was supplied from a tank on his back. Leonov said that he could look down and see from the Straits of Gibraltar to the Caspian Sea. The spacewalk was filmed and photographed from the Voskhod and I imagine that very few of the readers of this article will not have seen the breathtaking footage of Leonov somersaulting and making swimming movements as he floats in space with the Earth behind him (actually below, of course).

Problems in Orbit?

Voskhod 2 completed 17 orbits before returning to the Earth on 19 March, but there was a mysterious silence from Moscow about the mission after the 13th orbit, which has led to some speculation that there was a problem with the spacecraft, especially as it was not until about five hours after the crew had landed in the vicinity of Perm, west of the Ural Mountains, that their safe return was reported. Belyayev is reported to have brought the Voskhod back to Earth using manual controls. Although official statements said that this was part of the planned research programme, it might also be a hint that the mission experienced problems.


Official TASS photo of Leonov (right) and Belyayev (left) after their return from the Voskhod 2 mission. Leonov is holding folders containing congratulatory messages

But whatever problems the mission may have encountered cannot detract from Lt. Col. Leonov’s historic achievement in making the first spacewalk, a technique that will be needed to advance future space activities. I wonder what new surprises Voskhod 3 will bring….

The Latest ELDO Test Flight

On 22 March, the ELDO program at Woomera also took another step forward with the third successful flight of the Blue Streak first stage of the Europa launcher. Launched at 8.30am local time, the rocket flew 985 miles, reaching a maximum altitude of 150 miles. This flight completes the first phase of the launcher development program: the next phase will begin with an all-up test of a live first stage with dummy upper stages.


The Blue Streak first stage for the ELDO Europa vehicle on the pad awaiting launch


America hits a Double


by Gideon Marcus

Three for Three

Despite the clear success represented by Voskhod 2, it would be folly to overlook the fact that it has been a tremendous week for NASA.  The Ranger program, once the most ill-starred of NASA endeavors, has just completed its third successful mission in a row.  Less than six hours ago, at 3:08 AM PDT, Ranger 9 crashed into the crater Alphonsus in the lunar highlands.

The prior two successful Rangers, 7 and 8, were largely handmaidens to the Project Apollo.  They returned thousands of photographs of potential landing sites for the crewed lunar program.  Ranger 9, on the other hand, was the first mission with a primarily scientific aim.  In order for us to understand the Moon, its construction, and its history, we need close-up information on as many different types of terrain as possible — and no two regions of the Moon are more distinct from each other than the mountains of the lunar highlands and the relatively flat Maria or "seas".  Alphonsus is particularly interesting as it has a large central peak that may be evidence of lunar vulcanism from an ancient period.

Launched at 1:37 PM PDT on March 21, the Atlas Agena carrying Ranger 9 quickly disappeared into the cloudy sky.  The reliable booster's aim was true, propelling the spacecraft first into Earth orbit, and then off toward its final destination.  The next day, Ranger fired its own engines, correcting its course to mathematical perfection. 

Today, at Impact -20 Minutes, Ranger 9 warmed up its television cameras.  Images began appearing at the JPL auditorium…and around the nation, broadcast to anyone who was up to see it (and who had an online TV station to tune into!) This was the first time a robotic mission had been simulcast, and it was very exciting.  Now if only they could time their missions to be more accommodating to the aged thirty-nine year old science writers who cover them…

There were originally supposed to be 12, or even 15 Rangers, but because it took so long for them to work properly, there are now more advanced missions that are superseding them, namely Lunar Orbiter and Surveyor.  This is just as well.  While Ranger has been a triumph of engineering and science, bearing unexpected dividends in the successful spinoff spacecraft, Mariner 2, there is only so much one can learn from TV pictures.  Indeed, initial reports suggest that while Ranger 9's photos discovered new craters within Alphonsus that might be evidence for vulcanism, as Dr. Harold Urey quipped, it won't be until we have chemists on the Moon that we can draw solid conclusions.

In any event, bravo NASA, and bravo Ranger. 

Two in Three

After the spectacular mission of Comrades Tereshkova and Bykovsky in June 1963, there was a long pause in crewed spaceflight.  The Mercury program had ended in May '63 with the day-long mission of Gordo Cooper in Faith 7.  Talk of extending Mercury was poopooed (though you can get an idea of what might have happened if you read the excellent novel, Marooned).  For more than a year, as Mercury's 2-seat successor, Gemini, suffered delay after delay, we waited for Khruschev's shoe to drop.

And the Soviets did beat us back to space with their three-man flight last October, though the success of that mission was somewhat eclipsed by the Soviet coup that took place just a couple hundred miles beneath the orbiting space capsule.  Voskhod 2, with its remarkable space walk, only seems to further the Soviet lead.

Yet the American turtle still has ambitions to beat the Red Hare.  The third Gemini mission (the first and second were uncrewed test flights) had been planned for this month for some time, and yesterday morning, Gemini 3 took off from Cape Canaveral carrying astronauts Gus Grissom and John Young for a three-orbit test flight. 

A lot has changed since John Glenn's pioneering three-orbit flight in Friendship 7, just three years ago.  Both Grissom and Young were kept busy with a slew of biological experiments to conduct in orbit.  Grissom got to conduct the very first spacecraft maneuver, firing the ship's engines once per orbit to change its altitude and velocity.  Neither Mercury nor Vostok had this capability, and I haven't read anything that suggests Voskhod has it, either.  Score one for the home team!

In addition to the ordinary drama that attaches to every space mission, the astronauts created some of their own.  A couple of hours into the flight, as Gemini drifted along its second orbit, it was time for the astronauts to sample their carefully prepared space food.  This meal was lavishly prepared by NASA scientists to be nutritious, compact, and resistant to creating crumbs that could drift into and short vital ship components. 

Whereupon astronaut John Young pulled out a corned beef sandwich from his pocket, ate a bite, and offered it to his commander.  Grissom took a polite nibble, commenting on the sandwich's inability to stay together, and quickly put the thing in his pocket.  Apparently, this was all the brainchild of Schirra, the most renowned prankster of the Mercury 7. 

Beyond this incident, the very name Grissom chose for the first crewed Gemini was something of a scandal.  Christening a spacecraft has always been the privilege of its commander, and Grissom, sensitive to the fate of his last ship, chose an appropriate name: "Molly Brown."  This, of course, was the name of the eponymous character from The Unsinkable Molly Brown, a popular broadway musical about a survivor of the Titanic disaster.

NASA felt that the name lacked dignity and insisted on a change.  Grissom dug in his heels, insisting that if he had to change the name, it would be to Titanic.  NASA gave in.

Gemini 3 completed its three orbits without incident and reentered the atmosphere four and a half hours after leaving it.  Unfortunately, Molly Brown plunged back into the atmosphere somewhat off course.  Grissom tried to steer the capsule (such as it is possible to maneuver a shuttle-cock shaped craft) closer to the Atlantic recovery fleet, but the craft ultimately splashed down some 84 kilometers short.  It took a good half hour for the carrier, U.S.S. Intrepid, to arrive.  In the interim, Grissom and Young sweltered, the commander unwilling to open the capsule and risk another swamped spacecraft.  It is my understanding that Molly Brown is still decorated with Schirra's sandwich…

Minor issues aside, Gemini 3 was a fully successful flight, officially man-rating the Gemini spacecraft.  The next mission, currently scheduled for late spring, will feature the American version of the vacuum shuffle.  The first American spacewalk was originally planned for next year, but Leonov's jaunt changed all that.  Sometimes the rabbit gives the turtle a little goose…

(If you're wondering why the second Mercury astronaut got the honor of commanding the mission, it's because Alan Shepard, the first Mercury astronaut, has been taken off flight status due to an inner ear disease, and astronaut Slayton, the only Mercury astronaut who hasn't flown a mission, was grounded earlier for a heart condition.  I'd assumed that Wally Schirra would command Gemini 4 (Glenn retired to go into politics; Carpenter retired to become an aquanaut), and that Cooper would take Gemini 5.  Apparently, however, Ed White of the second group of astronauts so impressed his peers that he will command the next Gemini mission.  Because of the shifting Gemini schedules, Cooper is still taking Gemini 5, but Schirra is going after him, commanding Gemini 6.)

The Score

So there you have it.  In the last six months, the Soviets have orbited five men, one of whom stepped into Outer Space.  The Americans orbited just two, but they autonomously drove their own spacecraft.  Meanwhile, Ranger 9 raised the total of close-up pictures of the Moon to nearly 20,000 whereas the Russians still haven't added to the handful provided by Luna 3 more than five years ago!

I guess we'll see what happens.  Will the next flight be Gemini 4 or Voskhod 3?



We'll be talking about these space flights and more at a special presentation of our "Come Time Travel with Me" panel, the one we normally do at conventions, on March 27 at 6PM PDT.  Come register to join us!  It's free and fun…and you might win a prize!