Tag Archives: ESRO

[December 6, 1969] Here comes the Sun (and Moon) — Orbiting Solar Observatory, Apollo, ESRO, and Explorer 41!

[New to the Journey?  Read this for a brief introduction!]

photo of a man with glasses and curly, long, brown hair, and a beard and mustache
by Gideon Marcus

With the Apollo missions taking so much of our attention (there were four flights this year), it is understandable that unmanned missions and science have gotten short shrift.  I'm going to try to address this oversight now.

Far out!

Do you remember Pioneer 6 (launched Dec. 16, 1965) and Pioneer 7 (launched Aug. 17, 1966)?  They are deep space probes designed to observe the Sun from widely different vantage points.  In fact, we've been a bit remiss: since '66, two more identical Pioneers have gone up: Pioneer 8 (December 13, 1967) and Pioneer 9 (November 8, 1968).  A fifth and final Pioneer was launched August 27, 1969, but its carrier rocket exploded.  The loss of that one is pretty bad; whereas the others are all spread out fairly equidistantly around the Sun, more or less as far away from it as the Earth, Pioneer "E" was going to be put in an orbit that kept it close to Earth, where it would be used to give as much as a two-week warning of dangerous flare activity.

Nevertheless, NASA is blazing along with four satellites.  Indeed, thanks to the longevity and spread-out positions of Pioneers 6 and 7, they were able to perform an unique experiment.  On Nov. 6, the two satellites were 175 million miles apart on a common line with the Sun, and scientists observed the difference in behavior of solar wind particles due to their passage through space in opposite directions.  In a similar vein, on Dec. 2, when the spacecraft reached points on a common spiral line leading out from the Sun (the star rotates, so it flings out particles in a spiral rather than linear fashion), scientists measured different kinds of solar particles coming from the same events on the Sun.

We'll have to wait for the journals to publish any papers, but this is the kind of large-scale, long-term science made possible by the Pioneer probes!


Another cool example of Pioneer science

Far in!

While the Pioneers study the Sun far from Earth, there are a host of spacecraft monitoring our home star from Earth orbit.  For instance, we haven't talked about the Orbiting Solar Observatories (OSOs) for a while, but there have been six so far.  They were the first heavy satellite series to be launched by NASA, providing nearly continuous coverage of the Sun since 1962, in wavelengths we can't observe from Earth because they are blocked by the Earth's atmosphere: ultraviolet, X-Ray, and gamma ray.

Why was the Sun such an early focus?  Three major reasons: 1) understanding the dangers posed by flares and their relation to the high energy particles trapped by Earth's magnetic field is critical to ensuring astronaut safety, 2) surveying the Sun and comparing changes on the solar surface with fluctuations of space weather near Earth tell us both about the interactions of the two as well as the nature of both, and 3) the Sun is the closest star at hand, and what we learn about the Sun as a star can be applied to the millions of other stars we can observe.

The revelations OSO have given us are not easily conveyed.  It's not like Explorer 1, which discovered the Van Allen Belts—a hitherto unexpected phenomenon—or the TIROS weather satellite, which discovered storms we hadn't even known about.  Rather, they give us a huge body of data with which we can refine our understanding of how the Sun works, and also so that we can better predict space weather.  What's called "basic research."

OSO 1 operated continuously from March-May 1962, and intermittently on to August 1963, returning data on 75 solar flares—most importantly, what events preceded, succeeded, and coincided with them in many different wavelengths, a fingerprint of an eruption, so to speak.


(ground-taken picture of the Sun flaring)

OSO 2 expanded its coverage to the corona, that bright bit of the Sun you can only see during a lunar eclipse.  Its launch was delayed until February 3, 1965 because the original OSO B was damaged in a launch explosion, April 14, 1964, that killed three technicians!  Though OSO 2 returned data for nine months, I can't find a single article on the Sun that stemmed from it.  There's one on about 20 other stars observed by the satellite, though, and the difficulties of seeing through the Sun's glare to them.

OSO 3, the one that launched March 8, 1967, and not the one that failed to orbit in August 1965, was more successful.  It returned interesting solar data, for instance finding solar X-ray sources that weren't flares, determining that the chromosophere (visible surface) didn't necessarily heat up before a flare, and monitoring the change in the solar spectrum over the course of its 28-day rotation.

And the onboard gamma ray experiments told us a lot about the universe.  For instance, the torrent of gamma rays streaming in from the universe is highly confined to the galactic plane, and particularly toward the Milky Way's core, which means it must be galactic in origin.  OSO 3 also observed X-ray bursts from a star (maybe stars) that isn't the Sun: Scorpius X-1, later determined to be a neutron star, and Lupus XR-1 (which may or may not be the same source—the literature is unclear).  The satellite stopped working just last month.

OSO 4 went up October 18, 1967, and was the first OSO to carry an international experiment—a University of Paris device that measures the Sun in the ultraviolet frequency that best shows solar activity ("Lyman-alpha").  Indeed, it was the first OSO to scan the Sun in ultraviolet at all.  Also really cool is that its X-ray resolution is such that it could watch flares in X-ray wavelengths as sharply as we could see it on the ground in the visual spectrum, so scientists could make one to one comparisons.

You'll note the use of past tense—the satellite is still in orbit, but its tape storage failed in May 1968, and last month, OSO 4 was ordered into standby mode.

That brings us to the OSOs we haven't covered yet.  OSO 5 went up on January 22, 1969, and has the ability to scan the Sun in the X-ray range more quickly and thoroughly.  OSO 6 went up August 9.  I don't have too much to say about them because it's too early for papers.  NASA reports both did their jobs fine, and they're still operating.  Like OSO 3 did, they not only study the Sun but also galactic X-ray sources…so stay tuned.

Small satellites are doing their part, too.  For instance, Explorer 41, the latest in the Interplanetary Monitoring Platform series, launched June 21 into a high orbit that goes almost halfway to the Moon.  The Sun this satellite examined has been unusually quiet, an expected trait of the "solar maximum"—the time in the Sun's 11-year cycle of highest output.  On the other hand, low-energy galactic cosmic rays rates fluctuated more than usual, and interplanetary conditions appeared to be more disturbed.  The satellite is still operating.

Finally, and only tangentially related to the Sun, there are the missions of Aurorae and Boreas, launched October 3, 1968 and October 10, 1969, respectively under the auspices of the European Space Research Organization (ESRO).  They report on the brightness of Earth's aurorae, the composition and temperature of the ionosphere, and the charged particle environment in orbit.  The first satellite is still working just fine, but Boreas went into a lower than expected orbit, and it reentered on November 23rd.  Still, the mission was deemed successful.

Rocks to dig

Veering back into the manned space program, there was some exciting coverage during the Apollo 12 flight that I didn't have a chance to relate.  As Conrad, Bean, and Gordon finish their three weeks in quarantine (joined on Dec. 2 by 11 scientists and technicians who had accidentally been exposed to lunar samples), this is a good time to talk about what we've learned from Moon rocks brought back by the Apollo 11 astronauts.

Walter Cronkite had, as a guest on his programming, Dr. John O' Keefe—a geologist at NASA's Goddard Space Center.  The visibly excited O'Keefe stated that the most extraordinary aspect of the Moon rocks is that they are deficient in nickel and cobalt as compared to the Sun, that latter body presumably being representative of the nebula that originally coalesced and formed our solar system.

Why is that significant?  Well, the Earth's crust is similarly lacking in nickel and cobalt (and other "precious metals" that dissolve easily in iron, collectively called "siderophiles").  We know Earth has a dense iron core because nothing else would account for the planet's mass with respect to its volume, and also, it explains why the planet has a magnetic field.  While our planet was first cooling, it makes sense that the siderophiles melted and mostly sank to the center of the planet.

The Moon has no core—we know this because its density (volume divided by mass) is too low, and it has no appreciable magnetic field.  That the Moon's surface rocks correlate to Earth's surface rocks, and because its density appears to be constant from crust to center, that suggests that the Moon was somehow formed from Earth's crust.  It is, in fact, a piece of our planet's outer surface that somehow spun off into orbit and formed its own little, low-density world.

What causes this is still unknown.  Perhaps the Earth was spinning so fast when it was formed that its middle flew off.  Or maybe a rogue planet smashed into the Earth.  What we do know is that the composition of the Moon rocks puts paid the hypothesis that the Moon formed separately from and at the same time as Earth, since we'd then expect its crust's composition to either be more like that of the Sun, or for our moon to have a dense core.

We also know that whatever created the Moon happened quite early in Earth's history.  The lunar rocks have been dated as 4.6 billion years old.  That's very close to the estimated age of the Earth.  What I found particularly exciting is that the Moon rocks must be the very oldest rocks we've ever encountered, except maybe for meteorites.  That's because erosion and vulcanism are constantly erasing the Earth's surface, and the oldest rocks I know of down here are somewhere around 3 billion years old.

As we continue to explore the cosmos, we shall find more data points with which to create an holistic view of the universe, something that would be impossible were we to stay Earthbound.  I am happy that I live in the Space Age, when our scientific knowledge is expanding exponentially.  Who knows what new discoveries 1970 will bring!



[New to the Journey?  Read this for a brief introduction!]


Follow on BlueSky

[February 16, 1969] Triumph, Tough Luck and Turmoil (European Space Update)



by Kaye Dee

The accelerating pace of the US and Soviet space programmes over the past few months has drawn our attention away from space developments in other parts of the world, especially with the excitement of the historic Apollo 8 lunar mission so recently behind us and Apollo 9’s in-orbit test flight (finally!) of the Lunar Module next month. But there have been many developments on the European space scene since I wrote about it in May last year, so I think it’s time for an update!

Triumph: ESRO 1A Finally in Orbit
My previous European space report noted that the European Space Research Organisation’s (ESRO) first satellite, ESRO 2B, reached orbit ahead of ESRO 1A, the latter satellite delayed due to difficulties in the development of its instrumentation payload. But ESRO 1A was finally launched on 3 October 1968 from Vandenberg Air Force Base in California, using a Scout launch vehicle.

ESRO 1A mounted on its Scout vehicle ahead of its launch at Vandenberg AFB

Fired into a 90° polar orbit, with an initial apogee of 930 miles and a perigee of 171 miles, ESRO 1A is designed for a nominal lifetime of six months. However, it is already looking likely that the satellite will survive much longer and possibly still be in orbit when its follow-up twin ESRO 1B is launched later this year (presently planned for some time in October).

The ESRO1 missions were first outlined in 1963 at scientific meetings of COPERS (Commission Préparatoire Européenne de Recherche Spatiale, which is the French name for the European Preparatory Commission for Space Research, a predecessor of ESRO), but the programme has been developed as a joint venture between NASA and ESRO. NASA provided the Scout vehicle for ESRO 1A, although ESRO will purchase the Scout launcher for the ESRO 1B flight.

Designed by ESRO, the construction of both ESRO 1 satellites is all-European: Laboratoire Central de Telecommunications (Paris) is the prime contractor, with assistance from Contraves AG (Zurich), and Antwerp-based Bell Telephone Manufacturing Company, with final testing taking place at ESRO’s ESTEC facility. Weighing about 187 pounds, the cylindrical, non-stabilised ESRO 1 satellites are 30 inches in diameter and 36.6 inches tall (specifically designed to fit within the Scout vehicle fairing) and powered by solar-cells.

ESRO 1A (‘Aurora’) and ESRO 1B (‘Boreas’) have been designed to study how the auroral zones respond to geomagnetic and solar activity. Their payloads are directly derived from earlier sounding rocket experiments measuring the radiation characteristics of the upper atmosphere. In orbit, the satellites’ axis of symmetry is magnetically aligned along the Earth's magnetic field. They can make direct measurements as high-energy charged particles from the Sun and deep space plunge from the outer magnetosphere into the atmosphere (ESRO 1B will be placed in a lower orbit that 1A to provide comparative data at different altitudes). The satellites can also investigate the fine structure of the aurora borealis and correlate studies on auroral particles, auroral luminosity, ionospheric composition, and heating effects.

ESRO 1A carries seven scientific experiments chosen to measure a comprehensive range of auroral effects. Identical or similar experiments will be carried on ESRO 1B.

Tough Luck: Another ELDO Launch Failure…
Unfortunately, the European Launcher Development Organisation (ELDO) has yet to taste the same success as ESRO, with repeated failures in its Europa satellite launcher test flights, which I've covered in detail in previous articles.

Despite the loss of both Europa F6/1 and F6/2 due to failures of the French ‘Coralie’ second stage, the Europa F7 flight was scheduled for a November launch last year, as the first vehicle to fly with all three of the rocket’s stages active. This eighth firing in the ELDO test programme marked the beginning of Phase 3 of the Europa test flights. It would be the first attempt to launch ELDO’s Italian-built STV (Satellite Test Vehicle) satellite into orbit, as well as the first time that the ELDO down-range guidance and tracking station at Gove in the remote Arnhem Land region of the Northern Territory (primarily developed by Belgium) would actively participate in a Europa launch.

View of the ELDO downrange tracking station, near Gove in the Northern Territory. The area is also known by its Aboriginal name of Nhulunbuy

The failure of the Coralie stage to separate during the F6/2 launch, due to an electrical fault, meant that modifications had to be made to prevent a recurrence of the issue. So there was plenty of tension (and frustration) in the air when last-second delays halted two attempts to launch F7 on 25 November. Both aborts occurred just 35 seconds before the rocket was due to lift off, and were caused by the discovery of a fault in the Coralie staging system between the first and second stages – nobody wanted a repeat of F6/2!

A Coralie second stage engine being checked out at Woomera prior to stacking the Europa vehicle for launch

A launch attempt on 27 November was cancelled due to another fault, as was a fourth attempt on the 28th, which was caused by a faulty indication in a pressure switch system in the engines of the British Blue Streak first stage.

Finally, on the fifth attempt, Europa F7 lifted off on 30 November (Australian time; still 29 November in Europe), but this flight, too, was doomed to be short-lived. The second stage separated and functioned perfectly: this time it was the West German ‘Astris’ third stage that caused the failure.

The Astris stage separated and ignited as expected but burned for just seven seconds (instead of the planned 300 seconds) before it exploded. Investigations as to the cause of the failure are ongoing, but at present there are three possible causes under consideration: rigid pressurisation pipes that may have fractured; an explosive bolt, part of the WREBUS flight safety destruct system, that may have been inadvertently been triggered by a stray electrical current; or a rupture of the tank diaphragm in the third stage, which separates the fuel and oxidiser. The diaphragm may have been weakened during pre-flight preparations. At present we can only await the outcome of the investigations and hope that they do not delay the launch of Europa F8, currently scheduled for June or July this year.

…And a Satellite Lost
While it was not the main objective of the F7 flight, it is particularly disappointing that the Italian test satellite did not reach orbit, as it would have become the second satellite launched from Woomera, exactly one year after Australia’s own WRESAT.

The first flight-ready STV satellite being checked out following its arrival at Woomera

The octagonal prism-shaped STV satellites (successors will be flown on Europa F8 and F9) have been built for ELDO by Fiat Aviazione. The 472 pound satellite carries instruments to characterise the launch environment of the Europa vehicle, providing information on the conditions and stresses that future satellites launched on Europa vehicles will need to be capable of surviving.

Despite the loss of both the rocket and the satellite, ELDO has been referring to Europa F7 as a “successful trial”, as it has enabled its engineers to acquire data about the performance of the Coralie second stage in flight and came close to placing a satellite into orbit. ELDO representatives are saying that, the Europa vehicle has “emerged for the first time as a practical proposition.”

Turmoil: the State of European Space Policy
Last May, I asked whether Britain had lost its way in space, and whether European space plans would flourish or wither, due to changing views on the future direction of Europe’s space activities and reductions in funding. Since then, the outlook has become even more uncertain, with disagreements over juste retour project work allocations and the ELDO budget creating turmoil.

In November last year, Ministers, space organisation representatives and space experts from 16 European countries, as well as Australia and Canada, met for the third European Space Conference, held in Bonn, West Germany. At this meeting, a proposal was put forward to merge ELDO and ESRO to form a pan-European space authority by early 1970, which would be known as the European Space Agency.

This idea proved popular with many of the attending nations, but less so with Britain, which expressed the view that it was unlikely that Europe could launch satellites economically. As noted last year, Britain has already announced its intention to withdraw from ELDO, although it has committed to continue supplying Blue Streak first stages for the Europa II vehicle.

However, the British Government has offered to back a revised European space programme designed to yield “practical results”. Britain wants Europe to concentrate on developing applications satellites for weather forecasting, telecommunications, and scientific research, giving up the development of independent European launchers in favour of using American vehicles.

The British proposal includes an offer to contribute to a project for an “information transfer satellite” to be completed by 1975, providing a point-to-point television relay service between London and Paris for the European Broadcasting Union. In addition, Britain would participate in a long-term applied research programme to improve European industrial space capability, in conjunction with funding an immediate economic study of the market for applications satellites. The quid-pro-quo for British support for this ambitious “practical space programme” is that the UK must be released from its present financial commitment to ELDO. This is certainly ironic, given that Britain was the driving force behind the original creation of ELDO!

ELDO's Budget Crisis
After the failure of Europa F7, the ELDO Council met on 19-20 December to vote on the organisation’s 1969 budget, with Britain again the fly in the ointment, declaring that it would not support the new “austerity plan” compromise budget proposed by West Germany to cover the final two years of the Europa-1 development programme.

Using a loophole in the ELDO Convention to characterise the German proposal as a “further programme” (ie: it was not part of the original ELDO programme that it had signed up to), Britain declared that it had “no interest” in the plan and so was not obliged to contribute to it financially. It would only support the 1969 budget if its outstanding contribution to ELDO was reduced to £10 million for the years 1969, 1970 and 1971.

Italy took a similar line, supporting the British view and declaring itself “not interested”, and would not vote for the 1969 budget. In addition, Italy formally rejected as inadequate an offer to become the prime contractor of the apogee motor in the Symphonie communications satellite programme.

This recalcitrance on the part of Britain and Italy has plunged ELDO into a budget crisis, and the organisation has been operating on a contingency funding basis since 31 December. Practical considerations, and the terms of the ELDO Convention, indicate that the impasse needs to be resolved within three months, at which point a budget must be approved or the original treaty becomes invalid.

An excerpt from the journal Nature, reporting on ELDO's budget crisis

A meeting of the relevant Ministers from all seven ELDO member states is currently scheduled for 26 February to seek a political solution to the problem and find a way forward for Europe’s space ambitions before they fragment. What’s that Chinese proverb? “May you live in interesting times”!

An Australian Postscript: No WRESAT-2
In my article on the launch of Australia’s first satellite at the end of November 1967, I mentioned that the Weapons Research Establishment was planning to put a proposal to the Australian Government for the establishment of an Australian space programme, managed by the WRE. This proposal went to the Cabinet for consideration last year, but was rejected by the Government on the basis of cost, despite the modest budget it was proposing. This is not the first proposal for an Australian space programme that has been rejected by Cabinet, which seems to have little appetite for funding Australian civil space projects. To the frustration of all those involved, it looks like WRESAT-1 will not, after all, be followed by WRESAT-2.

Signing off
Well, in the vernacular of your beloved Walter Cronkite, "That's the way it is." I'm sorry I haven't happier news to report just yet, but you'll hear it here first when I have it!

(And my thanks to my Uncle Ernie, the philatelic collector, for providing the selection of space covers (envelopes) that I have used to illustrate this article.)


[MAY 26, 1968] EUROPA AD ASTRA (EUROPEAN SPACE UPDATE)



by Kaye Dee

The recent launch of the ESRO 2B scientific satellite on 17 May (more on that below) reminds me that it has been a while since I wrote anything about the European launcher development programme being carried out in Australia. There have also been major developments in Europe’s space plans over the past few months, which look like they will significantly change the future of the European space programme.

For readers in the United States and other parts of the world, who may not be familiar with the European space programme, let me take a few moments to introduce the major players and provide a bit of background before talking about recent developments.

Cousins Rather Than Siblings: ELDO, ESRO and CETS
The two most important space bodies in Europe are the European Space Research Organisation (ESRO) and the European Launcher Development Organisation (ELDO). ESRO’s focus is on developing scientific satellites for space research. ELDO looks to develop an independent satellite launch capability for Europe through the Europa rocket, conducting its test flights from the Woomera Rocket Range in Australia.

The French acronym CERS stands for Conseil Européen de Recherche Spatiale

These roles would appear to be complementary, and I have occasionally referred to ELDO and ESRO as “sister” institutions in previous articles, since they have grown up in parallel and have several member states in common. However, I’ve come to think that they are perhaps best considered as “cousins”, as they operate and forward plan quite separately from each other, resulting in a lack of co-ordination across Europe's space activities. While ELDO was established with an assumption that ESRO would be one of the customers for its launch services, ESRO has not waited for a European launcher to become available from ELDO: ESRO 2B has been launched under NASA’s auspices on a Scout vehicle from Vandenberg Air Force Base and for the foreseeable future all planned ESRO satellite launches will be on US rockets.

The French acronym CECLES stands for Conseil européen pour la construction de lanceurs d'engins spatiaux

Mention also needs to be made of the European Conference on Telecommunications by Satellites (CETS), the third space organisation in Europe, which is playing a role in pushing for some of the proposed changes in Europe’s space plans. Unlike ESRO and ELDO, CETS is not active in developing space technologies and vehicles, but provides a forum for European Post, Telegraph and Telecommunications agencies (PTTs) to consider the role of communication satellites and discuss the European role in the INTELSAT global telecommunications satellite system.

ESRO and ELDO: Parallel Lives
Stemming from initiatives taken in 1959 and 1960 by a small group of scientists, led by Italian Prof. Edoardo Amaldi and French physicist Prof. Pierre Victor Auger, ESRO was set up in the early 1960s. Like ELDO, it formally came into existence in 1964. ESRO’s member countries are Belgium, Denmark, West Germany, France, Italy, the Netherlands, Sweden, Spain, Switzerland, and Britain, and the organisation’s focus has been on strictly civil scientific research. Four ESRO members (Britain, France, Italy and West Germany) also have their own national space programmes.

ESRO has already developed a number of technical facilities: the European Space Research and Technology Centre (ESTEC) in the Netherlands, is the newest, opened on 3 April. ESRO has also begun to establish its own space tracking network, ESTRACK, and has its own sounding rocket launch facility, ESRANGE (established in 1964), near Kiruna, Sweden.

The opening of ESTEC on 3 April by HRH Princess Beatrix and her husband Prince Claus included the royal couple being presented with a model of the ESRO 2B satellite

ELDO, on the other hand, was very much a British initiative in 1960-61, seeking partners in Europe for the development of an independent satellite launcher that would use as its first stage the UK’s then-recently cancelled Blue Streak missile. ELDO’s member states are Britain, France, West Germany, Italy, Belgium and the Netherlands. Australia, despite being a non-European country, is also an ELDO member because of its role providing the test launch facilities at Woomera.

The first Blue Streak launch from Woomera in 1964, designated as ELDO F-1, the inaugural test flight of the Europa rocket's first stage

Both organisations operate with a policy of “juste retour” – allocating work to industry in member countries in proportion to their share of financial contribution to the organisation.

So you can see that, unlike the US civilian space programme, under the control of NASA, and the Soviet programme, under central control from the Politburo, there are many fingers in the European space pie, with many complementary and yet competing interests and national agendas.

Not Going Up from Down Under
When I last reported on the ELDO programme, it was to cover the loss of the ELDO F-6 launch in August last year. At the time, I mentioned that a reflight – designated as F-6/2 – was already in planning. Scheduled for December 5, 1967, the first attempt to launch F-6/2 was aborted just 12 seconds before lift-off due to a power failure.



Although successfully launched at 6 a.m. the following morning, the second stage failed to ignite after separation from the first stage. The vehicle then crashed down into the upper reaches of the Simpson Desert, repeating the failure of Europa F-6/1. This was the second failure of an active French Coralie second stage, and an investigation is still underway to determine the cause.

Despite this failure, the next Europa launch – designated F-7 – is still planned for October or November this year as the first test flight with three active stages. Let’s hope that the issues with the second stage have been resolved by then!

Has Britain Lost Its Way in Space?
Since coming to power in the October 1964, the Wilson Labour Government has shown itself to be considerably less enthusiastic about European space activities than its Conservative predecessor. This would appear to be in large part due to the struggling UK economy, but also a response to the lack of success of Britain’s attempts to join the European Economic Community in 1963 and 67, for which UK participation in European space was supposed to be a sweetener.

In 1965, when the cost of completing the original ELDO programme had already climbed to twice the early estimates, France began to call for a revised – and more expensive – programme to develop the Europa vehicle into a launcher capable of placing satellites into geostationary orbit. Calling the Europa I launcher “obsolete”, as it can only place satellites into polar orbit, France has proposed a more sophisticated and powerful Europa II vehicle that would enable Europe to launch communications and other applications satellites without reliance on the United States (which has already given indications that it will take measures to protect its monopoly on the use of geostationary satellites).

Applications satellites, especially for international communications (as demonstrated by INTELSAT), are almost certainly the way of the future in space developments outside human spaceflight, and West Germany, Belgium and the Netherlands have agreed with the French view. This resulted in a July 1966 proposal to complete ELDO’s Europa I programme and add a Europa II development programme.

The British Government, however, began to express severe doubts about the “technological use and the economic viability” of the ELDO programme and opposed the French-led changes. In 1966, it signalled that Britain would not participate in any further financing of ELDO programmes after present projects were completed. Britain also reduced its financial contributions to ELDO from 38.79% (the largest contribution to ELDO’s budget) to 27%, with the difference being made up by the other four paying members (Australia being a non-paying member, on the basis of providing the Woomera facilities).

The reduction in the British financial clout within ELDO, and the desire for an equatorial launch facility, has been a factor in ELDO planning to move away from Woomera to France’s national launch facility in Kourou, French Guiana, at the completion of the ELDO I programme, anticipated in 1970. This has greatly disappointed my friends at the WRE, who spent considerable effort in preparing plans for a launch facility near Darwin, in the Northern Territory, to support an equatorial launch capability in Australia for the Europa II programme.

The first launch from France's Kourou facility, the future home of the ELDO programme, took place on 9 April this year, with the firing of a Veronique sounding rocket

British Space Industry Weighs In!
In November last year, a report from the National Industrial Space Committee, which represents the space interests of British industry, recommended that the British Government should not reduce, but expand its spending on space research and development, in order to stop the brain drain from the UK and obtain a share in what is already being seen as the lucrative space technology business. It recommended that spending on space-related R&D should be increased by around a 25% increase from the present $A60 million to between $A75 million and $A87.5 million said the committee. Comments at the time from Mr Kenneth Gatland, vice president of the British Interplanetary Society, indicated that a major row was looming between industry and Government over Britain's failure to lead Europe into the commercial field of communication satellites. Although the Post Office, which controls British telecommunications, has expressed “severe doubts” about the commercial benefits of space-communication, this seems a bit strange when the Post Office is also the British signatory to INTELSAT, and the UK is the consortium’s second largest shareholder. “Government advisers”, Mr. Gatland said, “were being accused of leaving Britain high and dry through inept policies, allowing France and West Germany to benefit at Britain's expense.” Instead of the “national scandal” of Britain having spent an estimated $A124,707,500 on ELDO without any tangible end project in view, Mr. Gatland has suggested that Britain should give ELDO a target which would bring a return for the large capital investment.

A European Symphonie?
Whatever Britain’s misgivings regarding satellite communications, France and Germany are eager to move into the field of communications satellites to break INTELSAT’s monopoly on international satellite telecommunications. They have embarked on their own joint communications satellite project, known as Symphonie. As this project has taken options on two Europa II launches for its two satellites, it is, at present, ELDO's only customers! Mr Gatland has urged Britain to join France and Germany in the Symphonie project, which will promise a satellite in three to five years.

An early design for the Symphonie communications satellite, which is intended to be three-axis stabilised

Italy has decided to go it alone on the development of a telecommunications satellite known as Project Sirio. The design will apparently be based on the experimental telecommunications satellite that Italy was originally going to develop for ELDO, before that aspect of the programme was cut to reduce overall costs.

ESRO is also reported to be interested in moving beyond scientific satellites into the applications satellite area, in conjunction with CETS, which has expressed interest in the development of a satellite for television distribution.

Whither or Wither, Europe?
With all this history in mind, Europe’s space plans for the future have undergone considerable change in the past few months. According to a report released in March, Europe's space club has mapped out an ambitious programme for the next 10 years that would include telecommunications satellites for television, broadcasting and telephone calls, meteorological, air traffic control and Earth resources satellites, and large numbers of astronomical and other scientific satellites. This programme, which involves a 10 per cent annual increase of expenditure on European space projects, is intended to be discussed when Science Ministers from the 17 member states of ELDO, ESRO and CETS, meet in Bonn, West Germany, in June.

However, the ambitious proposals released in March evolving as originally anticipated is now unlikely, given the most recent events. On 18 April, Britain's Labour Government announced cuts in spending on space research and cast further doubts on the future of ELDO. Although the Government indicated that it would maintain its contribution to the current ELDO programme at the existing level, it could “see no economic justification for undertaking further financial commitments to ELDO after the present programme,” which is due to conclude in 1970.

This (not totally unexpected news) was followed by an announcement from ESRO on 26 April that it was cancelling its plans for its two largest satellites scientific satellites – a major blow for European space co-operation. The two massive TD 1 and TD 2 satellites (the TD stands for Thor Delta, the intended launch vehicle), each weighing 990 lbs, were to have been built under a 100 million franc (about Aus$17,800,000) contract by an international consortium including Hawker Siddeley Dynamics of Britain, the French firm Matra, the West German group ERNO, and Saab of Sweden.

TD1, scheduled for launch in 1970, was designed to study the relationship between earth and sun. TD2, planned for launch the following year, was focused on research into solar ultra-violet radiation and electromagnetic phenomena in the upper atmosphere. The reason for the satellites’ cancellation seems to be connected with disagreements within ESRO in regard to the juste retour allocation of work for the project.

ESRO’s First satellite in Orbit!
Despite the uncertainties about its future space plans, Europe is currently celebrating the launch of the first ESRO satellite to make it to orbit! ESRO-2B was launched 17 May from Vandenberg Air Force Base in California on a Scout B rocket.

This flight occurred almost exactly one year after the loss of its predecessor ESRO 2A on 29 May, 1967. Also launched from Vandenberg on a Scout B, ESRO 2A was lost due to a malfunction of the rocket’s fourth stage, which prevented the satellite from reaching orbit. These first European satellites were launched on Scout vehicles due to an offer from NASA to launch the ESRO's first two satellites free of charge as a ‘christening gift’ for the organisation (and no doubt to woo ESRO towards continuing with US launchers even when ELDO's Europa rockets become operational!)

ESRO 2B, also known as Iris (International Radiation Investigation Satellite), Iris 2 and ESRO 2, is an astrophysical research satellite developed to study solar and cosmic radiation and their interaction with the Earth and its magnetosphere. This will provide continuity to the solar radiation observations of earlier satellites and continue similar particle measurements carried out by the UK’s Ariel 1 satellite. It is the first mission controlled by teams at the European Space Operations Centre (ESOC) in Darmstadt, Germany.

ESRO 2B being prepared for launch

Placed into a highly elliptical near-polar orbit, with an orbital period of 98.9 minutes, ESRO-2B is about 33.5 inches in length, with a diameter just on 30 inches. It weighs 196 lb and is spin-stabilised, with a spin rate of approximately 40 rpm. The satellite is powered by 3456 solar cells on the outer body panels, supplemented by a nickel/cadmium battery. The satellite carries the same seven instruments as its lost predecessor: to detect high-energy cosmic rays, determine the total flux of solar X-rays, measure trapped radiation, investigate Van Allen belt protons and cosmic ray protons. And if you’re wondering why ESRO 2B is the first European satellite and what happened to ESRO 1, the simple answer is that ESRO 1 has yet to be launched! Difficulties in the development of the payload for the polar ionospheric satellite ESRO 1, designed to study how the auroral zones responded to geomagnetic and solar activity, meant that it was eventually agreed to launch ESRO-2 ahead of it. ESRO 1 is due for launch around October this year, so we here at Galactic Journey will cover its story soon. ESRO 2B being tracked at the ESOC mission control centre












[January 8, 1965] The Skylark of Space (Britain's Skylark Sounding Rocket)


by Kaye Dee

Hopefully Doc Smith will forgive me for borrowing the title of his famous story for my article, but I couldn’t resist because it fits so well. Since I began writing here, I’ve been wanting to talk about the Skylark sounding rocket, the first British rocket capable of reaching space (whether you go by the US Air Force and NASA definition of space beginning at 50 miles, or accept the Federation Aeronautique Internationale definition, based on the work of Theodore von Karman, of 100 kilometres/62 miles).


A different kind of Skylark reaching for the stars!

Hatching the Skylark

Sounding rockets, which can carry payloads into space, but do not have enough thrust to put them into orbit, are often neglected when discussing the Space Race. But they are perhaps more important (and certainly more often launched!) than satellites.

These suborbital rockets were still a relatively new technology a decade ago, and even by the end of the International Geophysical Year (IGY) only a handful of countries (including Australia, I’m proud to say) had developed a national sounding rocket capability. First announced in 1955, the Skylark sounding rocket was developed for the IGY by the UK Ministry of Defence’s Royal Aircraft Establishment (RAE), in collaboration with the Royal Society’s Gassiot Committee, which focuses on meteorology and upper atmosphere research.


Diagram showing the original design for the Skylark rocket. The design has been evolving ever since, improving the capabilities of the vehicle

The new rocket was originally called the Gassiot High Altitude Vehicle, which is a bit of a mouthful, and the story is that, in 1956, one of the engineers working on the rocket’s design at the RAE decided that he would like to see it named “Skylark”. I don't know if he was a fan of Doc Smith's work, but a class of UK rocket motors is named after British birds, so that was more likely his inspiration for the name. In any case, he apparently put up a paper to his superiors suggesting that the rocket should be renamed to something that would simpler and more memorable for public relations and offered a list of alternatives, none of which were particularly appealing except, very deliberately, Skylark. The plan worked, and the name Skylark was approved for the rocket.

Flying to Australia

Sounding rockets, like test missiles, need a lot of empty land on which to fall back to Earth; Woomera was the obvious place for Britain’s new scientific rocket to be launched. Skylark components and payloads are made in the UK and then flown to Australia by transport planes. These include a special dedicated “explosives” transport plane that carries the rocket engines to Australia fully-loaded with their solid propellant. The rocket motors are delivered directly to Woomera, while the payload parts arrive at the Weapons Research Establishment’s (WRE) Salisbury facility, near Adelaide (see June entry), where they are assembled by WRE technicians and British payload specialists and then transported to Woomera to be fitted to the launch rocket.


A Skylark instrument bay and nosecone being tested in a workshop at the WRE's facility in Salisbury, South Australia

Because of its slow acceleration, the Skylark needs a very long launch rail to ensure its stability in flight and this massive tower dominates Range E at Woomera, where the sounding rocket launches take place. It’s 80 feet tall and weighs 35 tons, so transporting it to Australia was quite a task. Interestingly, because of steel shortages in Britain when the tower was being designed, it’s actually made out of war surplus Bailey bridge segments!


View of Range E at Woomera where sounding rockets are launched. The massive Skylark launch tower dwarfs everything around it. Australia's first sounding rocket, Long Tom, also used this launcher initially

Skylark Acsending


An unusual philatelic cover from Uncle Ernie's collection marking a Skylark launch in 1958 – and British nuclear tests at the Maralinga range, adjacent to Woomera

The first Skylark launch took place in February 1957, before the official start of the IGY in July that year, with the first three flights being performance-proving flights. On its fourth flight, in November 1957, the Skylark showed that it could reach the space environment, soaring to an altitude of 79.5 miles. This flight was also the first to carry a suite of scientific instruments provided by British universities, including two experiments that have since been flown on many Skylarks: a ‘grenade’ experiment and a ‘window’ experiment. In the grenade experiments, grenades are ejected from the rocket during its flight and the explosions detected on the ground by microphones and flash detectors. From these measurements, temperatures and wind velocities at different altitudes can be determined. In the ‘window’ experiment, strips of radar chaff (also known as ‘window’) made from aluminium are ejected into the atmosphere to be tracked by radar, which provides velocity measurements of upper atmosphere winds.


I love this timelapse photo of a Skylark night launch, taken in 1958. SL04, the first Skylark to reach space, was also launched at night, although it seems that no-one thought to take a picture of that historic launch!

Of course, since 1957, the number and range of scientific experiments being flown on Skylarks has steadily increased, helping to provide a new understanding of the conditions in the upper atmosphere and the fringes of space. When the first experiment releasing sodium vapour into the atmosphere to study atmospheric density and winds flew in late 1958, people in areas hundreds of miles from Woomera thought that the strange sight of a reddish-yellow cloud might be associated with Sputnik III, the massive Soviet satellite that was in orbit at the time!


Clouds over South Australia, taken from above by a Skylark rocket in 1962, as part of a meteorological experiment

Skylark Improving

The original design of the Skylark rocket used a single Raven solid rocket motor. To increase its altitude and payload carrying capacity, different variants of the Raven have been used, and in 1960 the Skylark became a two-stage launcher, with the use of a Cuckoo motor for an additional boost on some flights. There have also been experiments with a parachute system, to try to recover some instruments or photographic plates intact, but so far these have not been very successful.


A Skylark rocket enhanced with a Cuckoo boost motor soaring into the stratosphere

Until very recently all Skylark flights were unstabilised, but just last year there were two experimental flights using Sun sensors to provide stabilisation. The development of this technique will make the Skylark more suitable for taking astronomical observations at high altitude, above the thickness of the atmosphere, and I’ve heard that there are plans for small X-ray and Ultra-violet telescopes and other astronomy payloads to be flown on future launches.

A Century of Skylarks


The Research Vehicles Group and others involved with Skylark at Woomera celebrate the 100th Skylark launch

At the end of September the Skylark notched up its 100th flight, which is perhaps not surprising as the launch rate has been steadily increasing. There were 19 flights in both 1963 and 64, and this year looks as if it will be even busier. The WRE has a section that manages the Skylark launches – the Research Vehicles Group: because of the high rate of firings and the time it takes to prepare each rocket for launch, there are four Skylark launch teams within the Group, each one dedicated to a specific Skylark flight.


Technicians from a WRE Skylark launch team preparing a rocket for firing in 1961

1964 also saw another new step for the Skylark, with two launches taking place for the European Space Research Organisation (ESRO) at Italy’s Salto di Quirra Range on Sardinia. This range was established in 1956 under the management of Luigi Broglio, who I mentioned last month as the mastermind behind Italy’s first satellite (see December entry). This Range is providing facilities to ESRO until its own sounding rocket facility near Kiruna in Sweden is completed.

Skylark looks set to become the workhorse of the European sounding rocket program, just as it is for Britain. NASA has even launched Skylarks out of Woomera: as part of a co-operative Ultra-violet astronomy programme with Australia, four ‘NASA’ Skylarks were launched at Woomera in 1961

Skylark in Orbit

Skylark rockets have also played a role in Britain’s Ariel satellite programme, helping to test out instrumentation and experiments before they were included in the satellites. Like Canada , Britain launched its first satellite, Ariel 1, in 1962 (see September entry), with help from the United States, which provided the satellite body in which the British experiments were installed, as well as the launch. In March last year, Ariel 2 was launched for Britain by NASA. In advance of both these flights, so much of the equipment was checked out beforehand on Skylark flights that I’ve heard that some wit described the satellites as “Skylark in orbit”!

Ariel 1

Britain's Ariel 1 and 2 satellites are almost identical. The scientific instruments on both were tested out on Skylark flights before being launched into space

It's been exciting to watch the progress of the Skylark programme and I expect that this versatile sounding rocket will be operational for many years to come. Australia has it's own sounding rocket program that has been designed to complement the Skylark research in many ways. I'll have to devote an article to it in the not too distant future



[Join us at Portal 55, Galactic Journey's real-time lounge! Talk about your favorite SFF, chat with the Traveler and co., relax, sit a spell…]




[December 21, 1964] Italy Joins the Space Race! (San Marco 1 and Explorer 26)


by Kaye Dee

The biggest news in space this month is that Italy has joined the Space Race, with the launch of its first satellite San Marco 1. Named in honour of Saint Mark the Evangelist, the patron saint of Venice and protector of Venetian sailors, the San Marco launch is the first mission in a programme that began in 1961.

The Italian von Braun

The San Marco satellite programme is the brainchild of Luigo Broglio, an Italian military officer and aerospace engineer who’s already earned himself the nickname “the Italian von Braun”. Broglio established the Salto di Quirra missile test range on Sardinia in 1956, which is now also being used to launch British Skylark rockets (like those being used for upper atmosphere research at Woomera) for the European Space Research Organisation (ESRO). ESRO is the sister program to ELDO (see June entry), developing the satellites that will fly on ELDO’s Europa rockets. Convinced by Italian physicist Prof. Edoardo Amaldi (a co-founder of ESRO) that Italy should have its own space program, Broglio persuaded the Italian Prime Minister in early 1961 that Italy should develop a national satellite program and its own satellite launching facility.


Luigi Broglio was both an officer in the Italian Air Force and the Dean of Aerospace Engineering at La Sapienza University

As it happened, the international Committee on Space Research (COSPAR) was meeting in Florence in April that year, so Broglio took the opportunity of discussing with NASA Italy’s participation in the same program that has already enabled Canada and Britain to launch their satellites on NASA rockets (see September entry)

San Marco Approved

The Italian Government approved the San Marco programme in October 1961 with the task of building the San Marco satellites allocated to the Commissione per le Ricerche Spaziali (CRS), or Commission for Space Research. This group of distinguished Italian scientists and engineers was initially formed by Amaldi and Broglio within the Consiglio Nazionale delle Ricerche (CNR), the Italian National Research Council, to canvass support for an Italian space programme.

A formal Memorandum of Understanding between the CRS (represented by Broglio) and NASA (represented by Deputy Administrator Hugh Dryden) was signed on 31 May 1962. Under this MOU, the United States agreed to provide Scout rockets to Italy and train the Italian launch crew, while Italy developed its satellites and built a national launch facility. NASA also agreed to provide two sub-orbital test flights from its Wallops island launch facility, using Shotput sounding rockets, so that the Italian launch crew could gain experience in launch procedures and the CRS could test instruments for the first satellite. These two test flights took place in 1963.


A philatelic cover issued to mark the first of the two San Marco Shotput test flights in 1963

Italy decided that its national launch facility would be a modified mobile oil rig platform, that would be towed to an equatorial location off the coast of Kenya. This would enable the Scout rockets to be fired to the east and take advantage of the boost provided by the Earth’s rotation. The Italian oil company Eni was contracted to provide the mobile launch platform, but the construction has been delayed and the offshore facility will not be ready until sometime next year.

Liftoff for San Marco 1

Because of the delays with the launch platform development, San Marco 1 (also known as San Marco A) was fired from Wallops Island as a training exercise for the Italian launch crew ahead of future launches in the Indian Ocean, with the successful launch taking place on 15 December (16 December here in Australia).


San Marco 1 on the launchpad. As a joint US-Italian project, the Scout carries the legends "United States" and "Italia"

The battery-powered satellite sat directly on top of the Scout’s fourth stage, with both the rocket motor and satellite contained within the fairing. The spherical satellite has a total mass of 254 lbs. and a diameter of 26 in. Four antennas are spaced around the equator of the satellite, which is painted longitudinally in black and white for thermal control.


Exterior view of San Marco 1, showing its thermal-regulation colour scheme

The main purpose of the San Marco programme is to conduct ionospheric research. However, being essentially a test satellite, San Marco 1 is only carrying a few experiments. Its major scientific instrument is the “Broglio scale”, which is designed to measure the density of the atmosphere at very high altitudes, although lower than the typical orbital altitudes used by other satellites. The CRS hopes that San Marco 1 and future missions will help to create a more precise model of the upper atmosphere in the low orbit environment. This should improve the re-entry predictions for both spacecraft and missiles. San Marco 1’s other main instrument is a radio transmitter, intended to study ionospheric effects on long-range radio communication. Undoubtedly, the future satellites in the series will be more sophisticated.


Cutaway view of San Marco 1

An interesting aspect of San Marco 1’s launch is that, although it took place in the US, the launch was handled by a NASA-trained Italian launch crew. This places Italy in a unique situation: unlike Canada and Britain, which provided their first satellites to NASA for launch on American rockets by American personnel, Italy effectively launched its own satellite. In fact, Italy now considers itself the third country in the world to operate its own satellite, after the Soviet Union and the United States.


Thanks to Uncle Ernie the stamp collector, here is one of the new launch covers for San Marco 1, highlighting its unique status as an Italian-launched satellite

San Marco 2 is scheduled to launch next year, and I’ll look forward to seeing Italy launch that satellite from its new national facility, which should be in place in Kenya by then.

Another Explorer in Orbit

As I write this, I’m delighted to report that another Explorer satellite has just been confirmed as safely in orbit! NASA is certainly committed to this programme, with such a regular series of satellites designed for understanding the space environment surrounding the Earth (see September entry). Explorer 26 is the latest probe in the series, designed to measure the Earth’s magnetic field and trapped high energy particles within it.


Explorer 26 is similar in design to its predecessors in the Energetic Particle Explorer series.

Explorer 26, also known as Energetic Particle Explorer (EPE)-D and S-3C, is a spin-stabilised, solar-cell powered satellite, weighing 101 lbs and carrying five experiments. Four of these instruments — the Solid-State Electron Detector, Omnidirectional and Unidirectional Electron and Proton Fluxes, Fluxgate Magnetometers and Proton-Electron Scintillation Detector — are designed for geomagnetic and high energy particle studies. The fifth experiment, the Solar Cell Damage experiment, is designed to quantify the degradation in solar cell performance due to radiation and evaluate the effectiveness of glass shields at preventing this degradation. I find this experiment particularly interesting, as solar cells are becoming increasingly used on satellites to provide power supplies that will last much longer than batteries.

The Energetic Particle Explorer series began in 1961 with Explorer 12 (EPE-A), launched in August 1961. All the satellites in the series so far have had the same basic design, but with progressively heavier instrumentation weight. They have all been launched from Cape Canaveral by Thor Delta vehicles.

Dreams for Down Under

I'm envious that Italy has been able to get its own space programme underway, while we here in Australia seem to have no immediate prospect of launching a national satellite. But I shouldn't complain too much: 1964 has been a very exciting year for space activities Down Under, with the ELDO programme finally underway. I’m looking forward to even more significant space achievements in 1965!


NASA characterised the first phase of the San Marco program as a joint US-Italian project. Both flags were flown at Wallops Island during the Shotput test and the San Marco 1 launch



[Join us at Portal 55, Galactic Journey's real-time lounge! Talk about your favorite SFF, chat with the Traveler and co., relax, sit a spell…]