Tag Archives: molniya

[August 26, 1968] No time for a breath (Summer space round-up)


by Gideon Marcus

There are some months where the space shots come so quickly that there's scarcely time to apprehend them all, much less report on them!  Every other day, it seems, the newspaper has got a headling about this launch or that discovery, and that's before you get to the announcements about the impending moon missions.

So, in rapid-fire style, let's see how many exciting new missions I can tell you about on a single exhale (while you stand on one leg, no less…that's a Jewish joke).

A Pair of Yankee Explorers

On August 8th, a Scout rocket took off from Vandenberg Air Force Base (the Western Test Range) in Southern California carrying the two latest NASA science satellites.  It was a virtual duplicate of the launch nearly four years ago of Explorers 24 and 25: a balloon for measuring air density in the upper atmosphere, and a more conventional satellite with an array of instruments for surveying the Earth's ionosphere.  Affectionately dubbed "Mutt and Jeff", these two craft were sent into polar orbit (hence the Pacific launch site).  If you're wondering why NASA is repeating itself, that's because the sun has a profound effect on the Earth's atmosphere.  It is important to measure its impact throughout the 11 year solar cycle, from minimum to maximum output, to better understand the relationship between the solar wind and the air's upper layers.

Not much can go wrong with a balloon, but Explorer 40, after deploying its spindly experiment arms, suffered a malfunction.  Its solar panels are not delivering as much power as they should.  NASA is confident, however, that this will not compromise the mission, which is planned to last more than a year.

Alphabet Soup

Time was, we gave proper names to our satellites.  Now it's all acronyms and arcane jumbles of letters and numbers.  That's all right.  I can decipher them for you!

Advanced Technology Satellite (ATS) 4

August 10 marked the launch of "Daddy Longlegs" ATS 4, the fourth of seven satellites in this series.

Some of you may remember ATS-1–you may recall that ATS-1 helped relay the first worldwide "Our World" broadcast last year. 

ATS-1 is actually still working, just like its two siblings.  ATS-2, launched April 5, 1967 was judged a failure since the second stage of its carrier rocket malfunctioned, stranding it in an eccentric orbit.  Still, the several science experiments onboard have returned information on cosmic rays and such in space.  ATS-3, which went up November 5, 1967, was the last to ride an Atlas Agena D rocket.  Armed with a panoply of experiments, including two transceivers, two cameras, and a host of radiation detectors, that satellite worked perfectly, returning the first color picture of the entire Earth!

ATS-4, unlike its predecessors, is a strictly practical spacecraft, carrying no science experiments, but makes up for it in engineering marvels.  One is a a day-night Image Orthicon Camera, a teevee transmitter that would provide continuous color coverage of the world from high up in geosynchronous orbit (i.e. orbiting at the same rate as the Earth turns, keeping it more or less stationary with respect to the ground).  Another is a microwave transmitter, turning ATS into a powerful communications satellite like its progenitor

ATS-4 also was to test out a gravity gradient stabilization system, basically using the subtle gradations of the Earth's pull on the satellite's arms to keep it oriented in orbit.  Finally, ATS-4 has an ion engine aboard.  These drives, perfect for space, work by shooting out Cesium electrons.  They are incredibly economical compared to conventional rockets, but their thrust is quite low, meaning they must be fired continuously to have an appreciable effect on velocity.

Sadly, as with ATS-2, ATS-4's Atlas Centaur failed on the second stage, stranding the satellite in a low, largely useless orbit.  Well, I guess that's why you launch lots of them!

ESSA 7

We haven't given the ESSA series of satellites much love, which I suppose is what happens when a technology stops being novel and instead becomes routine, even essential.  After all, who reports on every airplane that takes off anymore?

But it's worth talking about the latest satellite, ESSA 7, launched August 16, to summarize what the system has done for us over the last several years.

There were eleven satellites in the TIROS series of weather craft, the first launched in 1960.  In February 1966, with the launch of ESSA 1, the Environmental Science Services Administration (ESSA) took over the cartwheel satellites, making the series officially operational.

All of them have worked perfectly, launched into sun-synchronous polar orbits about 900 miles up that circle the Earth from north to south as the planet rotates eastward beneath.  So perfect is ESSA 7's orbit that it will cross the equator at virtually the same time every day, drifting from that time table by only four minutes every year.

ESSA satellites have returned 3000 warnings of hurricanes, typhoons, and cyclones, reporting not just on the existence but the intensity of these dangerous storms.  As of May 27 of this year, ESSA satellites had taken a million photos of the Earth's weather–that's $42 per picture, since the total launch cost of an ESSA is $6 million.


An image of Tropical Storm Shirley taken August 19, 1968

Up in the Kosmos

If we had to cover the launch of every Kosmos (Cosmos) satellite out of the Soviet Union, we'd have to go to a daily schedule.  There's such a thing as too much of a good thing, right?

But the Russkies are putting them up on the average of one a week, so it's worth sampling them occasionally to keep tabs on all the stuff they're putting in orbit.  Especially since the Kosmos is a catch-all designator, even more broad than our Explorer series.  It includes military satellites, science satellites, weather satellites, even automatic tests of the Soyuz spacecraft.

Here's a brief outline of the launches this last month:

Kosmos 230

This is a typical Soviet launch press release:

The Soviet Union launched another Cosmos satellite today and the Sputnik was reported functioning normally, Tass, the official Soviet news agency, said.  The device, Cosmos 230, is sending information to a Soviet research center for evaluation.

We know it was launched July 5 into a 48.5 degree inclined orbit, that it soars between 181 and 362 miles above the Earth, and that it's still in orbit as we speak, circling the Earth every 92.8 minutes.

As for what it's for… well, your guess is as good as mine.  That said, it's probably not a spy satellite.  How do I know?  Read on, and I'll show you what a spy sat looks like so you can spot them yourself!

Kosmos 231

The Soviet Union has launched another satellite in its program of exploring outer space, the official Tass news agency said Thursday.  It said Cosmos 231 was launched Wednesday [July 10] and is functioning normally.  The latest Cosmos is orbiting the earth once every 89.7 minutes in a low orbit from 130 miles to 205 miles.  Its angle to the earth was 65 degrees.

Seems innocuous enough, right?  Doesn't tell you anything more than the other one.  Except…

First tip-off: the angle.  A zero degree angle would be along the equator, never leaving 0 degrees latitude.  A 90 degree angle is polar, heading due north and south.  The lower the angle, the narrower a band of the Earth a satellite covers.

A 65 degree angle is sufficient to cover a wide swathe…including all of the continental United States.

The altitude is quite low, too.  The closer, the better–if you want to look at something from orbit.

But the real kicker is this: the spacecraft reentered on July 18, just eight days after launch.  Normally, when you send a science satellite up, you want it to stay in orbit as long as possible to get more back for your buck…er…ruble.  You only deorbit a spacecraft (and make no mistake–Kosmos 231 had to have been deorbited; its orbit wasn't that low) when there's something onboard you want to get back.  Like a person…or film.

We know there wasn't anyone onboard Kosmos 231.  The Soviets would have told us.  By the way, I'm not the only one who thinks the Kosmos was a spy satellite, taking pictures in orbit and then landing the film for processing.  There's a blurb in the July 15th issue of Aviation Weekly and Space Report which says the same thing.  And they reached that conclusion before the craft even landed, just based on the orbit!

By the way, if you're wondering what the Soviet spy satellites look like, we actually have a better idea of theirs than ours!  We're pretty sure they're based on the Vostok space capsules used to carry cosmonauts.  In fact, it's an open question whether or not the spy sat was evolved from the Vostok or the other way around!

Kosmos 232

Launched July 16, its orbital parameters were as follows: 125 to 220 miles in altitude, 89.8 minute orbit, 65 degree inclination.  The newspaper article I read noted that the satellite's path was a common one, and predicted the satellite would be recovered in eight days.

Sure enough, it was on the ground again on July 24.

Sound familiar?

Kosmos 233

Here's another oddball: launched on the 18th, the Soviets didn't release news of its orbiting until at least the 20th.  It's in a near polar orbit, soaring up to 935 miles, grazing the Earth with a perigee of 124 miles.

That's no spy sat.  In fact, I'd guess this one might be a bonafide science satellite, exploring the Earth's Van Allen Belts.  But it could just as easily be the equivalent of our Transit navigational satellites or something.  We won't know until and unless the Communists publish scientific results.

Kosmos 234

Launched July 30, it soared from 130 to 183 miles up with a period of 89.5 minutes and an inclination of 51.8 degrees.  Low orbit?  Check.  Cryptic announcement describing its purpose as "the continued exploration of outer space"?  Check.  But the inclination's a bit low.  Better wait for more information.

Oh wait.  It landed August 5.  Pretty sure we know what this one was!

Kosmos 235

Up August 9, down August 17.  Orbit went from 126 to 176 miles, period was 89.3 minutes, and the inclination was exactly the same as before–51.8 degrees.

I'm not sure the significance of the different inclinations.  Maybe it's a matter of the rocket or the launch location.  Generally, the higher the inclination, the more expensive the shot in terms of fuel since the rocket doesn't get the extra boost of the Earth's rotation.

Operator?

It's been a while since we covered the Molniya communications satellites, one of the few Soviet series we do know something about.  July 5 marked the launch of the ninth comsat in the series, zooming up to a high, not quite geosynchronous, orbit, where it has a nice vantage of the whole of Asia.

This launch comes less than three months after the orbiting of Molniya H, the eighth in the series.  Whether Molniya I is replacing its predecessor, which may have been faulty, or whether the ninth Molniya is simply acting as a backup, is not certain.  The latter seems unlikely, though.  When Molniya G went up just three weeks after Molniya F, it was widely believed that the Russians had sent up two to make sure they could televise their annual November Moscow parade to the other Communist countries.

That's all folks!

That's the big news for this month.  The rest of the year is going to be really exciting, what with the upcoming launch of Apollo 7 and Zond 5.  We're about to enter a new phase of manned lunar exploration.  That said, we promise to keep covering the significant shots closer to home, too.  For us, all space missions are out of this world!


The prime crew for Apollo 7 (l-r) Astronauts Donn F. Eisele, Command Module Pilot; Walter Cunningham, Lunar Module Pilot; and Walter M. Schirra, Jr., Commander






</small

[May 28, 1967] Around the World in 80 Months (May 1967 Space Roundup)


by Gideon Marcus

Between the tragic aftermath of this year's twin space disasters (Apollo 1 and Soyuz 1) as well as the dramatic results from the Lunar Orbiter and Surveyor Moon explorers, it's easy to forget the amazing things being done in Earth orbit.

So here's a little news grab bag of some flights you may have missed over the last several months (and even years, in some cases):

Moscow calling

Two years ago, the Soviets joined the world of comsats with the orbiting of their first Molniya satellite.  Launched into an eccentric orbit that takes them up to geosynchronous altitudes but then swooping down to graze the Earth, they work in pairs to facilitate transmissions across the 11 time zones of the Soviet Union.

It's an impressive system–half a ton of satellite broadcasting at 40w of power, more than twice that of the Intelsat "Early Bird" satellites.  Unfortunately for the Soviets, it's also been a balky system.  Both of the first two satellites stopped working within a year, Molniya 1B failing to keep station in space.  It's a bad thing when your comsat moves out of position!  This is something more likely to happen in an eccentric orbit than in a more-stable geosynchronous orbit where a satellite goes around the Earth once every 24 hours, remaining more or less stationary (except for a little figure eight over the course of the day) from the perspective of the ground observer.  Worse, because the Molniyas scrape so close to the Earth, it doesn't take much to send them careening into the atmosphere, which happened to 1B March 17, 1967.

Still, the Soviets prefer their odd orbit because it's ideal for their purposes (giving coverage to Eurasia) and, I suspect, requires less booster power.  And it still carries the satellites high enough to return photos like this one, shot by Molniya 1A last year–the first all-Earth photo ever:

Molniya 1C was launched on April 25 last year, Molniya 1D on October 20.  They were replacements for their non-functioning companions.  But Molniya 1C may well have given up the ghost, too.  Molniya 1E was launched on May 24, apparently to replace it. 

May they solve their teething problems sooner rather than later!

A Pair of Imps

Out beyond the Earth's magnetic field is the sun's domain.  High energy plasmas (the "solar wind") and our star's magnetic field fill the vacuum of interplanetary space.  Not very densely, to be sure, but with profound effects on the planets and offering clues as to the nature of the stellar furnace that creates them.

It is not surprising that NASA has devoted so many satellites to understanding and mapping this zone given how many spacecraft (including the upcoming Apollos) will travel through it.  Explorer 18, Explorer 21, and Explorer 28 were all part of the "Interplanetary Monitoring Program" (IMP).  The first two have already reentered, and the last just stopped working a couple of weeks ago.  Luckily, virtually uninterrupted service has been maintained thanks to the launches of Explorer 33 and Explorer 34!


Explorer 33

Explorer 33, launched July 1, 1966, was supposed to be the first of the "anchored" IMPs, returning data from the orbit of the Moon (which does not have a magnetic field or radiations of its own).  Unfortunately, the satellite was shot into space a bit too rapidly to safely decelerate into orbit around the Moon.  Instead, it now has an extremely high (270,000 miles perigee!) but eccentric (low apogee) orbit from which it still can return perfectly good science.  Indeed, NASA planned for this eventuality.


Explorer 34

The other Explorer, #34, was just sent up on May 24.  It is a more conventional IMP and will pick up where #28 left off. 

With four years of continuous data, we now have terrific data sets on the Sun through a good portion of its 11-year cycle, including the recent solar minimum.  I look forward to a slew of reports in the Astrophysical Journal over the next few years!

Yes, I read those for fun.  Doesn't everyone?

Bright Future

If the IMPs exist to monitor the Sun's output, the Orbiting Solar Observatories' job is to directly watch the Sun.  Prior to 1967, two of these giant satellites had been orbited: OSO 1 on March 7, 1962, and February 3, 1965.  A third launch was made on August 25 of the same year, but it failed.

Sadly, the OSOs haven't quite provided continuous coverage over the last five years.  Still they have returned the most comprehensive data set of solar measurements to date.  And, as of March 8, the wiggly needles that mark the collection of data are jiggling again: OSO 3 has been returning data from its nine instruments on all manner of solar radiation–including and especially in the ultraviolet, X-Ray, and cosmic ray wavelengths that are blocked from terrestrial measurement by the Earth's atmosphere.

The timing is perfect–the Sun is just entering its period of maximum output.  OSO 3 will not only tell us more about the nearest star, it will report on its interactions with the Earth's magnetic field and the space environment in near orbit.

A Meteoric Rise

The Soviets have been awfully cagey about a lot of their launches.  Every couple of weeks, another unheralded Kosmos heads into orbit, stays there for a week, then lands.  It's an open secret that they are really Vostok-derived spy satellites that snap shots and return to Earth for film development.  This is utterly reprehensible–certainly WE would never do anything like that.

But while many of Communist flights have been hush hush, one subset of their Kosmos series has been pretty open: the weather satellite flights of Kosmoses 122, 144, 149, and 156!

The first of the Soviet meteorological satellites went into space on June 25, 1966, broadcasting for about four months before falling silent.  For a while, it seemed the Russkies were going to keep the pretty weather photos to themselves, but on August 18 of last year, they suddenly started sharing data over the Washingon/Moscow "Cold Line"–both visibile and infrared pictures, too.  It appears the delay was due to the Soviet reluctance to announce a mission until they're sure of its success.  It is entirely possible that some of the unexplained Kosmoses before 122 were failed flights.


Kosmos 122

The picture quality was pretty low at first, probably due to the length of the line the data must be sent over.  Improvements were made, and the new stuff is great.

Since 122, the Soviets have launched Kosmos 144 on February 28, 1967, Kosmos 149 on March 21 (it reentered on April 7–a failure of its weather-related mission, but it successfully tested the first aerodynamic stabilizer in orbit), and the latest Kosmos, #156, just went up on April 27, 1967.  It is my understanding that photos are being regularly shared with the National Environmental Satellite Service (NESS) in Suitland, Maryland.  I don't know if these are revolutionizing our view of the planet given our successful ESSA and NIMBUS programs, but it does give a warm glow of international cooperation.

If the nukes fly, at least we'll know if it's nice weather over their targets…

From the Far East into the Drink

The Japanese have been working their darndest to become the sixth space power (after the USSR, US, UK, France, and Italy).  Unfortunately, all of their efforts have thus far come up a cropper.

Their Lambda 4S rocket is the first one capable of launching a satellite into orbit, specifically an ionospheric probe with a 52 pound science package.  The problem is the vehicle's fourth stage.  The truck-launched Lambda 3 has been pretty much perfected, but when the new engine was put at the top of the stack, everything went to hell.


The successful precursor of the Lambda 4S, the Lambda 3

On September 26, 1966, the first Lambda 4S was lost when the fourth stage attitude control failed.  The fourth stage didn't even ignite the second time around on December 20.  That happened again on April 13 of this year during the third flight.

It looks like Nissan and JAXA engineers will be going back to the drawing board before trying another flight.  Maybe 1968 will be the year the Rising Sun joins the rising sun above the Earth…

What's next?

This summer, our eyes will surely turn beyond the Earth to Earth's twin, the planet Venus, for June marks the latest opportunity to send probes to the second planet at a premium on fuel consumption and payload allowance.  You can bet we'll be covering Mariner 5 and Venera 4 when they launch!


Testing Mariner 5





[May 30, 1965] Ticket to Ride (May space round-up)


by Gideon Marcus

It's been another exciting month in the realm of spaceflight.  We're between crewed missions, what with Voskhod 2 and Gemini 3 having flown in March and the next Gemini due in a few days.  Nevertheless, it has been a field day for robotic spacecraft, with a number of civilian and military packages booking passage aboard a plethora of satellites.  Take a look:

The Shape of Things that Came

Yuri Gagarin soared into history in April 1961, becoming the first human space traveler.  His face became known worldwide. His spacecraft, on the other hand, remained shrouded in mystery. For four years, the shape of the Vostok capsule remained a secret, with only a few dubious artists' conceptions offering any clues to its configuration.

That changed suddenly last month when the Soviets displayed the complete Vostok spacecraft at an exhibition in Moscow.  Now we know that the fanciful cylinders and bullet-shaped craft were completely off the mark — Vostok was spherical.

This is significant.  A sphere is a simple shape, mathematically, and it is not hard to weight a ball such that one end always points down.  In the Vostok, that point is where its heat shield was mounted.  A similar concept was employed with America's Mercury capsule, but the back end of the Mercury is only a small arc of a circle.  That's because American rockets were too weak to loft a full sphere.  Vostok is clearly a much heavier spacecraft than Mercury, and this suggests that the Soviet Vostok rocket was much more powerful than the Atlas and certainly the Redstone that lofted the first astronauts.

The unveiling of Vostok affords us a look into a completely different space program, too.  Earlier in the year, American intelligence determined that the Vostok had been turned into a spy satellite.  Instead of cosmonauts, the new Vostok carries a camera.  After a week snapping pictures in orbit, the capsule parachutes to Earth, and the film is developed.  It's an elegant repurposing, though it has to be more expensive than the American analog, Discoverer.

While the Soviets do not announce their spy missions, it's not too hard to figure out which of their Kosmos "science satellites" are probably spy Vostoks.  Their orbits, sweeping them over Western targets of interest, and their short lifespans on the order of a week give them away.  In just the last two months, it's likely that Kosmoses 64, 65, and 66 were all spy satellites.  In a few days, we'll know if Kosmos 67, launched on May 25, is also a space shutterbug.

Softly, softly

Another probe about which the Soviets are being less than forthcoming is Luna 5.  Launched on May 9, the ton-and-a-half spacecraft was headed for the Moon.  Reportedly, it conducted a mid-course maneuver on May 10, directing it toward the Sea of Clouds — which it hit at 10:10 PM, Moscow time.  Per TASS, "During the flight and the approach of the station to the moon a great deal of information was obtained which is necessary for the further elaboration of a system for soft landing on the moon’s surface."

That might lead one to the conclusion that Luna 5 was the Soviet version of Ranger, a TV probe designed to take pictures until it crashed.  However, Western observers using telescopes saw the plume of dust that one would expect accompanying an attempt at a soft landing.  That such a landing did not occur suggests that Luna 5 was supposed to be an equivalent of our Surveyor, set to launch next year, and that things did not go as planned.  The lunar race thus remains neck and neck.

Exploring, Communicating

The last month saw two more entries into the Explorer series: Explorer 27, launched April 29, is a windmill-shaped little satellite that will measure irregularities in the Earth's shape; a secondary mission is probing the ionosphere.

Meanwhile, Explorer 28 was launched on May 28, and is the latest in the Interplanetary Monitoring Probe series, along with Explorers 18 and 21.  All three craft have high, eccentric orbits that allow them to thoroughly map Earth's magnetic field, though Explorer 18 went kaput earlier this month.

As we saw with last month's flight of Intelsat 1, space-based communications are now a fact of everyday life.  The USSR has now gotten in on the act, following up the flight of Early Bird with their own first satellite called Molniya, launched April 22, 1965.  It has a high, 12-hour orbit, not quite geosynchronous, designed to service the high latitude residents of the Soviet Union during the daytime.  European nations have already requested use of the Molniyas; they feel that the "international" Intelsat corporation too strongly favors the United States.


Finally, the Air Force's second "Lincoln Experimental Satellite," launched May 6, has been a success.  This next-generation communications satellite tests new technologies that will allow it to service hundreds of users at a time.  Its predecessor, LES-1 launched February 11, failed to fire its onboard engine that would kick it from its initial low orbit.  LES-2 had no such problems, and its orbit takes it more than 9000 miles above the surface of the Earth.

Of course, being a military satellite (as opposed to Telstar, Relay, and Syncom), it is possible that we civilians won't see immediate benefits, but I suspect they will trickle down in good time.

Another step Moonward

May 25 marked the ninth successful launch of the Saturn rocket, possibly the biggest rocket on Earth.  At its tip were boilerplates of the Apollo Command and Service Modules.  But these mock spacecraft weren't the stars of the show: inside the cylindrical Service Module was a giant satellite, the second Pegasus.  Appropriately adorned with a pair of enormous wings, Pegasus will stay in orbit for years measuring how many micrometeoroids our astronauts are likely to encounter on their way to the Moon.

The reliability of the Saturn is truly remarkable.  Remember the early days of the Space Race?  Chances were 50/50 then that any given rocket, Atlas, Juno, or Vanguard, would blow up on the launch pad, tilt off course, or otherwise fail.  We're now in an age of maturing space travel.  If Gemini's Titan rocket continues to do as well as the Saturn, I do believe that, by the 1970s, everyday citizens like you and me will be able to get tickets to ride into space. 



This week's Journey Show is a special Space Race episode!  Don't miss it!