Tag Archives: kaye dee

[January 28, 1967] "Fire in the cockpit!" (The AS-204 Accident)


by Kaye Dee

As I write this, I’m still in shock. It’s only a few hours since the news broke here in Australia of the tragic loss of the crew of Apollo 204 in a fire on the launchpad at Cape Kennedy, during a launch rehearsal. Spaceflight is difficult and dangerous – we know that. Astronauts Freeman, Bassett and See were killed in plane crashes during training; Armstrong and Scott had a narrow escape from inflight disaster during Gemini VIII.

Unconfirmed rumours abound of Soviet cosmonauts who died in unsuccessful space missions before Gagarin, and the Russians have probably had training accidents to which they have not yet admitted. When I wrote about Gemini VIII’s aborted mission, I asked if spaceflight was moving too fast. There’s certainly been a headlong rush on NASA’s part to get to the Moon ahead of the Soviet Union, so perhaps this tragedy is the answer to my rhetorical question.


The first image available showing the fire-ravaged interior of the Apollo 204 spacecraft

Details are still sketchy at this time, although no doubt more information about the accident will emerge in the coming days and weeks as investigations take place. But right now, let’s explore the background to the mission and what we know about the catastrophe.

The Lost Crew
Apollo 204 (AS-204) was intended to be the first manned test flight of the new Apollo Command and Service Modules, the spacecraft that will be used to carry the first NASA astronauts to the Moon within the next few years. As such, two experienced astronaut test pilots were assigned to the flight: USAF Lt. Colonels Virgil “Gus” Grissom, the Command Pilot, and Senior Pilot Edward White. Grissom was the United States’ second space traveller, flying the Mercury MR-4 mission. He also commanded the first manned Gemini mission, Gemini III. Rumour even has it that Grissom was already under possible consideration to command NASA’s first lunar landing mission. Lt. Col. White is famous as the first American to make a spacewalk, during Gemini IV. These veteran astronauts were joined for this mission by rookie US Navy Lt. Commander Roger Chaffee. Chaffee was selected as a member of the third astronaut group and specialised in communications: he had been a CapCom for both Gemini III and IV.


Official Apollo 204 crew portrait, including a model of the new Apollo Command Module which their mission was intended to test. Left to right Ed White, "Gus" Grissom and Roger Chaffee

The Apollo 204 back-up crew consists of experienced Mercury and Gemini astronaut Walter Schirra and first-time fliers Donn Eisele and Walter Cunningham. Astronaut Eisele had originally been assigned in Lt. Commander Chaffee’s role for the Apollo 204 mission but had to be replaced when he needed shoulder surgery in early 1966. I assume that once Apollo missions resume after the accident investigation, this crew will fly the first orbital mission that should have been accomplished by AS-204.

What’s in a Name?
The design for the official Apollo 204 patch, developed by the crew and illustrated by North American Rockwell artist Allen Stevens, carries the designation Apollo 1. At the time that it was approved by NASA, in June 1966, this was the flight’s official name. However, it seems that only recently some doubt arose as to whether the formal designation of the mission would be Apollo 1 after all, which is why it is presently being referred to as Apollo 204, or AS-204. I’ve heard from the Australian liaison officer at NASA, that just last week approval for the patch was withdrawn and that, if this accident had not occurred, the patch might have had to be redesigned, depending on the final mission designation.

But as it stands, the mission patch uses the American flag for a background, with a central image depicting an Apollo spacecraft in Earth orbit. The Moon appears to the right of the Earth, reminding us of the eventual goal of Project Apollo. The designation Apollo 1 and the names of the crew appear in a border around the central image, while the patch is edged with a black border – a touch that is poignantly even more appropriate in view of the loss of the crew. I do hope that this patch, and the designation Apollo 1, will be re-instated as the official insignia of this mission in honour of its lost crew.

The Mission that Should Have Been
The fire that has killed the Apollo 204 crew occurred during a preflight test ahead of a launch scheduled for 21 February. It was planned to be the first manned orbital test flight of the Apollo Command and Service Modules, launched on a Saturn IB rocket. The mission was to have tested launch operations, ground tracking and control facilities, as well as the performance of the Apollo-Saturn launch vehicle. Depending on how well the spacecraft performed, the mission might have lasted up to two weeks, perhaps equalling Gemini VII's record spaceflight and demonstrating that the Apollo spacecraft could function successfully for the duration of the longest Moon flights currently in planning.


The Apollo 204 crew in front of Pad 34, from which they should have launched, and where they have been killed

The Command Module allocated to Apollo 204, CM-012, was a so-called “Block I” version, originally designed before the lunar orbit rendezvous landing strategy was selected. Block 1 spacecraft aren’t able to dock with a lunar module, but future “Block II” versions will.

Was It a Lemon?
The Apollo Command and Service Modules are undoubtedly far more complex than any previously-built spacecraft, so it isn’t surprising that their development has had many teething problems. Over the last few months, I’ve heard from my former colleagues at the WRE that many issues with the Command Module became evident last year, especially when CM-012 was delivered to Kennedy Space Centre in August to be prepared for its flight. Even before it arrived, the Apollo 1 crew had expressed concerns to Apollo Spacecraft Program Office manager Joseph Shea about the quantity of flammable materials, such as nylon netting and Velcro, being used in the spacecraft cabin to hold tools and equipment in place. It seems that, even though Shea ordered these flammable materials removed, this may not have happened.


The Apollo 204 crew sent Program manager Jospeh Shea a parody of their crew portrait to express their concernes about the spacecraft. They are shown praying, and the picture carried the inscription: "It isn't that we don't trust you, Joe, but this time we've decided to go over your head"

When CM-012 arrived at Kennedy Space Center, there were still 113 significant planned engineering changes to be completed, and another 623 engineering change orders were made following delivery! This suggests that many issues with the spacecraft design were still being resolved. Apparently, the engineers in charge of the spacecraft training simulators just couldn’t keep up with all these changes, and I’ve heard that Lt. Colonel Grissom expressed his frustration about this by bringing a lemon from a tree at his home and hanging it on the simulator.


CM-012, at that time designated Apollo 1, arriving at Kennedy Space Centre

There were several problems with the environmental control unit in the Command Module, which was twice returned to the manufacturer for designed changes and repairs. During a high-speed landing test, when the Command Module was dropped into a water tank to simulate splashdown, its heat shield split wide open, and the ship sank like a stone! There were also apparently concerns about a propellant tank in the Service Module that had ruptured during pre-delivery testing. NASA had it removed and tested at Kennedy Space Centre to be sure there were no further problems. 

CM-012 finally completed a successful altitude chamber test on 30 December and was mated to its Saturn IB launch vehicle on Pad 34 at Cape Kennedy on 6 January. So, was this particular spacecraft a lemon – an accident waiting to happen? Or has this tragedy shown that the design of the Apollo Command Module is inherently flawed? We’ll undoubtedly have to wait for the results of the accident investigation before we know the answer.

Countdown to Disaster
At this point, we still know very little about the disastrous fire or what led to its breakout, but my WRE colleagues have helped me put together some information accident from their contacts at NASA. The fire broke out during what had apparently been a trouble-plagued launch simulation known as a "plugs-out" test. This kind pre-flight simulation is intended to demonstrate that the spacecraft will operate as it should on internal power, detached from all cables and umbilicals, and successfully carrying out this test was essential for confirming the 21 February launch date.


The AS-204 crew in the CM simulator on 19 January, as part of their preparations ahead of the "plugs out" test

Almost as soon as the astronauts entered the Command Module, there were problems when Grissom experienced a strange odour in his oxygen supply from the spacecraft, which delayed the start of the test. Problems with a high oxygen flow indication that kept triggering the master alarm also caused delays. There were also serious communications issues: at first, it was Command Pilot Grissom experiencing difficulty speaking with the control room, but the problems spread to include communications between the operations and checkout building and the blockhouse at complex 34, forcing another hold in the simulated countdown.

Fire Erupts
It was not until five and a half hours after the simulation began that the countdown finally resumed, and when it did instruments apparently showed an unexplained rise in the oxygen flow into the crew’s spacesuits. Within seconds, there were calls from the spacecraft indicating that a fire had broken out in the cabin and that the astronauts were facing a serious emergency, trying to escape. The final transmission from inside the spacecraft ended with a cry of pain.

Of course, there are emergency escape procedures for the Command Module, but with the triple spacecraft hatch, it requires at least 90 seconds to get it open, and it seems that the crew had never been able to accomplish the escape routine in that minimum time. There is some evidence that Lt. Col. White was trying to carry out his assigned emergency task of opening the hatch, but in the pure oxygen atmosphere of the spacecraft, the fire became incredibly intense very rapidly and rising internal pressure would have made it difficult, if not impossible to open the inward-opening hatch.


Picture taken shortly after the fire was extinguished showing the external damage to the Command Module caused by the hull rupture resulting from the fire

In less than 20 seconds from the first detection of the fire, the pressure inside CM-012 rose to the point where it actually ruptured the hull of the spacecraft, sending flame, heat and dense smoke into the pad service structure. The ground crew bravely tried to rescue the astronauts, but the dangerous conditions and unsuitable emergency equipment made it virtually impossible. Many were later treated for smoke inhalation. There were fears the CM had exploded, and that the fire might ignite the solid fuel rocket in the launch escape tower above it. If this happened, it could set fire to the entire service structure.

It took about five minutes for the ground crew to finally get the spacecraft hatch open, but their efforts were in vain, as the astronauts were already dead. The exact cause of death has yet to be determined: it may have been physical burns from the fire, or carbon monoxide asphyxia, from the fire's by-products.

Whatever the cause, three brave men have died, and an exhaustive investigation of the fire and its causes will now take place as part of the accident investigation. Exactly what effect this tragedy will have on the future of the Apollo programme will very much depend upon the findings of that investigation. If the design of the Command Module is found to be intrinsically flawed, the necessary redesigns could delay the programme for years, causing NASA to miss President Kennedy’s deadline for a Moon landing, and allowing the Soviet Union to overtake the United States again in the Space Race.

Grissom and White have both said in past interviews that they recognized the possibility that there could be catastrophic failures and accidents in spaceflight and that they accepted that possibility and continued with their work. I’d just like to give the last word in this article to Astronaut Frank Borman, who said in a 1965 interview "I hope that the people in the US are mature enough that when we do lose our first crews they accept this as part of the business". It would not honour the loss of the Apollo 204 crew if this tragedy led to the termination of the Apollo programme.





[November 16, 1966] A Grand Finale (Gemini 12)


by Kaye Dee

As I write, it’s less than a day since the splashdown of Gemini 12 brought NASA’s second manned spaceflight programme to an overwhelmingly successful conclusion, demonstrating that the Space Agency has finally mastered the art of spacewalking. It’s incredible to think that it’s only been 20 months since the first manned Gemini mission was launched, but the packed schedule of ten flights has tested out all the techniques that the space agency needs to advance to its Apollo lunar programme.

Two for the Show

Gemini 12's Command Pilot was former Naval aviator Captain Jim Lovell (left in photo above). Making his second spaceflight, Lovell previously flew on the Gemini 7 long duration mission and now holds the record for the longest time spent in space by any astronaut or cosmonaut. Pilot for this mission was rookie astronaut USAF Major Edwin “Buzz” Aldrin, who performed an unprecedented three successful extravehicular activities (EVAs) during this flight. The only member of the astronaut corps to hold a Doctorate, Aldrin is a specialist in rendezvous and docking techniques, and on this mission he put that knowledge to very good use.

A “Halloween” Patch

Gemini 12 was originally scheduled to launch on October 31, so Lovell and Aldrin had considered a Halloween theme for their mission patch. They wanted to evoke Halloween with the use of orange and black colours and also planned to show their Gemini capsule launched on a witch’s broomstick instead of a rocket! However, with the launch rescheduled to November, only the Halloween colour-scheme remained of the original concept.

The final design features the Roman numeral XII at the top of the round patch, in the position it would be on a clock-face. Just like an hour hand, the Gemini spacecraft points to the XII, a reminder that this is the final flight of the Gemini programme. The crescent Moon on the left side of the patch symbolises the ultimate goal of the upcoming Apollo programme.

Training for Weightlessness

Gemini 12's main goal was to complete three EVAs that would demonstrate that NASA had finally cracked the problem of successfully carrying out spacewalking operations, a technique crucial to the Apollo programme.

The astronauts who attempted to perform spacewalks on Gemini 9, 10 and 11, had all reported that operating in orbit was much more difficult and tiring than the simulations conducted using the KC-135 weightlessness training aircraft. They also complained that there were few handholds on the exterior of the Gemini and Agena to help them move around in Zero-G. Consequently, a new approach to training was employed for Gemini 12, which I understand was suggested by Astronaut Aldrin himself, who is a keen scuba diver.


"Buzz" Aldrin practices installing a handrail between the Gemini capsule and Agena target vehicle, in an underwater training simulation

In addition to the KC-135 flights, Aldrin trained in a large pool containing a Gemini mockup. In the pool, special weights were added to the astronaut’s spacesuit to create “neutral buoyancy,” offsetting gravity so he would neither rise nor sink, and Aldrin spent several EVA simulation training sessions of more than two hours underwater.

As well as this new training technique, more handrails and handholds were added to the Gemini capsule, along with a waist tether that would enable Aldrin to turn wrenches and retrieve experiment packages without too much effort.

Dr. Rendezvous Saves the Day, Again!

After two delays caused by technical issues, the final Gemini mission lifted off on the afternoon of November 11 US time. On its third orbit, Gemini 12 prepared to dock with the Agena target vehicle, but problems with the Gemini's onboard radar threatened to make that impossible.

Luckily, Aldrin had already developed procedures for onboard backup rendezvous techniques in the event of radar failure. Drawing on his expertise, Aldrin used a sextant and his slide rule, measuring the angle between the horizon and the Agena. Once he had confirmed the information with his rendezvous chart, Aldrin calculated corrections with the spacecraft’s computer, enabling the rendezvous and docking to be successfully accomplished.

Rendezvous with the Sun

Despite the successful rendezvous, some anomalies with the Agena’s turbopump during launch led to Mission Control cancelling a planned boost to a higher orbit, like that conducted on Gemini 11. Instead, NASA took the opportunity to have the crew photograph a solar eclipse through the spacecraft windows at the beginning of mission day two.

Using the Agena’s secondary propulsion system, Gemini 12 changed orbits to place itself above South America at the right time and location to capture the first colour images of a total solar eclipse free from the interference of the Earth’s atmosphere. During the scant eight seconds that the astronauts could view the eclipse, they snapped four images that are expected to help scientists discover the secrets of the solar corona. The pictures were taken with film sensitive to ultra-violet light, which does not penetrate through the Earth's atmosphere.

Standing Up in Space

About two hours after photographing the eclipse, Aldrin commenced his first EVA, with his head and upper body exposed to space as he stood in the open hatch above his spacecraft seat. During this “stand-up EVA”, which lasted almost two and a half hours, Aldrin took the time to accustom himself to the space environment, which it was thought would better prepare him for his later spacewalk.

One of his first jobs was to install a handrail between his hatch and the docking collar of the Agena that would aid his movements during his day three spacewalk. Aldrin mounted a camera on the side of the spacecraft, with which he took a close-up picture of himself (above), the first shot of its type ever taken! He collected a micrometeorite experiment, and took photographs of the Earth as well as ultra-violet astronomical photography.

Aldrin’s photographic tasks were part of the 14 scientific, medical, and technological experiments planned for Gemini 12. Although five experiments could not be fully completed, those that were included: frog egg growth under zero-g conditions; synoptic terrain and weather photography; airglow horizon photography; and UV astronomy and dim sky photography.

Walking and Working in Space

Gemini 12 flight day three began with some minor fuel cell and manoeuvring thruster issues that would last for the rest of the mission. They did not, however, prevent the highlight of the flight from taking place: a planned two hour tethered spacewalk by Major Aldrin. Until Gemini 12, successfully performing work outside a spacecraft was the one Gemini objective that had eluded NASA, but Aldrin exceeded even the most optimistic hopes for this flight as he performed a record two hours, nine minute and 25 second EVA.

Attached to a 30-foot umbilical cord, Aldrin used the handrail he had installed the day before to assist in attaching a 100-foot long tether between the nose of the Gemini and the Agena. With the handholds, he did not experience the problems Gordon encountered on Gemini 11. Aldrin’s approach to his spacewalk was to go slowly and carefully, resting for two-minute periods between tasks. In fact, about a dozen two-minute rest periods were built into the EVA schedule to prevent Aldrin from becoming exhausted like previous Gemini spacewalkers. 

Moving to the spacecraft’s aft adapter, Aldrin supported himself with overshoe restraints and waist tethers to carry out a number of work tasks. He was able to fasten rings and hooks, connect and disconnect electrical and fluid connections, tighten bolts and cut cables. Aldrin then moved across to the Agena, where he worked at pulling apart electrical connectors and putting them together again. He also tried out a torque wrench designed for the Apollo programme.

At the completion of his spacewalk, Aldrin returned to his Gemini seat with no fatigue and all his tasks accomplished. This demonstrated that the use of neutral buoyancy training, available handholds and foot restraints on the spacecraft, and a slow and measured pace of work while in space, are the ingredients needed for future successful EVAs during the Apollo missions. 

Going for a Spin

The other major task for flight day three was a repeat of the gravity-gradient stabilisation/artificial gravity experiment performed on Gemini 11. Undocking from the Agena, Gemini 12 moved to the end of the tether connecting the two vehicles and then fired its thrusters to slowly rotate the combined spacecraft. Although they had some difficulty keeping the tether taut, the astronauts were able to use centrifugal force to generate a small amount of gravity during the four hour, 20 minute exercise, and achieve gravity-gradient stabilization. After releasing the tether connected to the Agena, Gemini 12 pulled away from the target vehicle and did not re-dock with it again.

One More Time

The last day of Gemini 12’s mission began with an attempt to sight two yellow clouds of sodium particles ejected by a pair of French Centaure rockets launched from the Algerian Sahara. This experiment was designed to measure high altitude winds. Although Lovell and Aldrin could not see the clouds, they did attempt to photograph them using directional instructions from the ground. We’ll have to wait until those films are developed to see if they were successful.

Shortly afterwards, as the spacecraft came over Australia, Gemini 12’s hatch opened for the final time, and Aldrin conducted a second stand-up EVA. Lasting 55 minutes, this brought Aldrin’s total spacewalking time up to a record five hours and 30 minutes! Most of this EVA occurred as Gemini 12 passed over the night side of the Earth, so that Aldrin could aim his camera at “hot young stars”, which have stimulated the curiosity of astronomers all over the world. He also took numerous ultraviolet photographs of stars and constellations.

Mission Accomplished

After a spaceflight lasting 94 hours, 34 minutes and 31 seconds, Geminin 12 made the second computer-controlled re-entry of the programme, splashing down safely in the western Atlantic just three miles from their target, near the recovery aircraft carrier USS Wasp.

Captain Lovell and Major Aldrin have now been recovered and are on their way back to the United States for post-flight debriefing. But we already know that the Gemini 12 mission has been a fitting grand finale to the Gemini project, clearly demonstrating that NASA has achieved all the goals it set for the programme: it has now mastered rendezvous and docking, direct ascent to orbit rendezvous, long-duration spaceflight equivalent to the time of an Apollo lunar mission, and – the trickiest of all, as they discovered – the art of spacewalking.

We should not forget that Gemini has been a team effort, directly involving more than 25,000 people from NASA, the US Department of Defence, other government agencies, universities and research centres, industry and tracking station partners overseas. Everyone involved should feel great pride in the way spaceflight has been advanced in an amazingly short time.

Very soon, the manned Apollo programme will commence, and we can all hope that it will lead to a successful landing on the Moon before the end of this decade. But we should not forget that its success will stand on the shoulders of the Gemini programme.

Postscript

But where are the Russians in the race to the Moon? No Soviet manned flight has been announced since Voskhod 2 in March last year. Has the USSR withdrawn from the race? That seems unlikely, but why do they appear not to have attempted rendezvous and docking missions? Perhaps they have decided to use a different method of reaching the Moon, such as direct ascent, using a massive multi-stage rocket, without the need for orbital rendezvous? After all, as far as we can tell, they still have larger and more powerful rockets than Western nations. Only time will tell, but I think there are still many surprises in store from the USSR before either the East or West wins the Space Race!



(Want more exciting space stories?  Join us for Star Trek tomorrow night at 8:30 PM (Pacific AND Eastern — two showings)!!)

Here's the invitation!



[September 18, 1966] Soaring Higher (Gemini 11)


by Kaye Dee

Back in July, Gemini 10 accomplished an incredibly ambitious mission, and I wondered then what the next Gemini flight could do to top it. Now we know. In its three-day mission, Gemini 11 carried out a packed program: it made a direct ascent to its Agena target vehicle, soared even higher than its predecessor, conducted two EVAs and 12 different experiments, created artificial gravity and even performed the first computer-controlled return to Earth. I’m exhausted just listing all these highlights!


Gemini-11 prime and backup crews (L to R): William A. Anders, backup crew pilot; Richard F. Gordon Jr., prime crew pilot; Charles Conrad Jr. (foot on desk), prime crew command pilot; and Neil A. Armstrong, backup crew command pilot

Anchors Aweigh!

You could almost say that Gemini 11 has been a US Navy mission, since both its crew are naval officers. The Command Pilot, Commander Charles “Pete” Conrad Jr., was selected in the second astronaut group in 1962. He was previously the Pilot for the then-record breaking Gemini 5 mission, spending almost 8 days in space. Making his first spaceflight, Gemini 11 Pilot L.t Commander Richard “Dick” Gordon Jr. was part of NASA’s third astronaut intake in October 1963. Both men were previously naval aviators and test pilots.

There’s also a nod to the crew’s US Navy background in their mission patch, which was designed in Navy colours of blue and gold. The major milestones of the mission are indicated by stars. The first orbit rendezvous with the Agena is indicated by the tiny star on the line representing the mission’s low Earth orbit, while the actual docking is marked by the large star on the left. The star at the top marks the plan to reach a record high apogee, and the star on the right signifies Astronaut Gordon's spacewalk. The three events symbolised by the three large stars are also depicted visually, with representations of the docked Gemini 11 and Agena, a gold line representing the high apogee orbit and a spacewalking astronaut. The Roman numeral XI soars above the Earth from the launch site in Florida.

Preparing for Apollo

An important goal of Gemini 11 was to prove the feasibility of the plan for direct ascent rendezvous on Apollo lunar missions, in which a returning Lunar Module will lift off from the Moon’s surface to rendezvous with the Command Module as it passes overhead. To practice this technique, Gemini 11 would attempt to rendezvous directly with its Agena target vehicle on its first orbit, rather than taking around four orbits, as has been the case on earlier Gemini flights. To achieve this manoeuvre, the Atlas-Agena target vehicle had to launch within the desired time, while the Gemini itself had only a two-second launch window!

Present and future in one picture. As Gemini 11 lifts off from the Cape Kennedy Air Force Station's Launch Complex 19, the first Apollo Saturn V rocket is on Launch Complex 39A at Kennedy Space Centre. This Saturn V is a non-flight Facility Verification Vehicle that is being used for pad fit checks

Although technical issues twice delayed the launch, Gemini 11 finally lifted off exactly on time 12 September (US time): its target vehicle had been launched an hour and 37 minutes earlier. Manoeuvres for Gemini to catch up with the Agena began quickly, and before its first orbit had been completed, Gemini 11 was flying in formation with its target and ready to dock. The actual docking was achieved nine minutes after rendezvous, just one hour and 34 minutes after liftoff. With an achievement like this, it’s amazing to think that the first rendezvous between two orbiting spacecraft occurred only nine months ago! Unlike Gemini 10, the Gemini 11 docking consumed less fuel than expected and both Commander Conrad and Lt. Commander Gordon conducted two docking exercises with the Agena, before a final manoeuvre established the docked spacecraft in a 178 x 188 mile orbit.


After a first orbit rendezvous, Gemini 11 is docked with its Agena. The target vehicle's antenna is seen extending upwards

“Ride ‘em Cowboy”

The first Extra-Vehicular Activity of the mission occurred 24 hours after launch, when Astronaut Gordon left the spacecraft to begin a spacewalk that was scheduled to last about 105 minutes, while he remained tethered to Gemini 11 by a life support umbilical line. After setting up a movie camera and retrieving a micrometeorite experiment, the next task involved fastening a 100-foot tether, stored in the Agena's docking collar, to a docking bar on the Gemini's nose. These would be used for experiments in passive stabilisation and the first creation of artificial gravity in space (see below!)


"Ride 'em cowboy," said Gemini 11 Command Pilot Conrad as Astronaut Dick Gordon rested on the Agena target vehicle. This view was taken over the Atlantic Ocean at approximately 160 miles above Earth

Like previous Gemini EVAs, working in space for an extended period proved more tiring than in the simulations and Gordon became exhausted, overstressing his spacesuit’s life support system. After attaching the tether, he stopped to rest, sitting astride the Agena, like a cowboy riding a bucking bronco. Heavy perspiration inside the suit obscured the astronaut’s vision, virtually blinding his right eye and the faceplate of his helmet became fogged due to heavy breathing. As a result, the EVA was terminated, with Gordon spending just 21 minutes outside the spacecraft. 

Reaching New Heights

On 14 September, more than 40 hours into the mission, the Agena target vehicle’s primary propulsion system was fired for 25 seconds to thrust the docked spacecraft to a maximum altitude of 853 miles, establishing a new manned spaceflight altitude record! The Gemini 11 crew were enthralled by the spectacular view from this unprecedented vantage point. They particularly commented on the blueness of the water and marked curvature of the Earth below them.


Conrad and Gordon reached the maximum altitude of their high orbit over the southern hemisphere. As they looked west over the western half of Australia, Conrad said "We're looking straight down over Australia now. We have the whole southern part of the world out one window. Utterly fantastic."

After two orbits at this record-breaking altitude, completed in 3 hours, 23 minutes, Conrad and Gordon once again used the Agena’s engines to drive the joined spacecraft back down to their original low Earth orbit.

Standing Up in Space

On flight day three, Astronaut Gordon performed the mission’s second EVA, a “stand-up" spacewalk like that conducted on Gemini 10. Positioned in the open hatch, standing on his seat, Gordon spent two hours and eight minutes photographing the Earth, clouds and stars, as part of the range of experiments to be performed during the flight. During this period, Conrad manoeuvred the spacecraft to point Gordon and his camera in whatever direction was required. Unlike his first EVA experience, Gordon found the “stand-up” spacewalk so peaceful that he actually fell asleep!


Astronaut Dick Gordon stands in the open spacecraft hatch during the Gemini 11 mission

Inflight Experiments

The photography that Gordon undertook during his “stand-up” EVA were part of a packed program of 12 scientific experiments planned for Gemini 11. These included photography of the Earth for research in geology, geophysics, geography, oceanography, and related fields, and photography of clouds to study the fine structure of the Earth's weather system. Other experiments focused on astronomy and upper-atmosphere studies, while three experiments had specific military applications. There was a biological experiment looking at whether weightlessness enhances the effects of radiation on human white blood cells and Neurospora crassa fungi. An interesting photographic experiment investigated the regions of the L4 and L5 libration points of the Earth–Moon system. These are zones trailing and ahead of the Moon's orbit that are gravitationally stable. It is theorized that there might be clouds of particulate matter, or even tiny mini-Moons, which it is theorised may be orbiting the Earth in these regions.

Making Artificial Gravity!

After the stand-up EVA, 50 hours into the mission, Gemini 11 commenced a fascinating experiment in creating artificial gravity. Undocking from the Agena target vehicle, the Gemini 11 spacecraft slowly manoeuvred to stretch out the tether that Gordon had connected between them during his first spacewalk, and then allow the two tethered spacecraft to slowly rotate around one another.

The movement of the tethered spacecraft was first erratic, but stabilised after about 20 minutes, so that the rotation rate could then be increased. The astronauts found it challenging to keep the rope tether between the spacecraft tight, but they were able to demonstrate the "passive attitude stabilisation" of two spacecraft connected by a tether.


While tethered to their Agena target vehicle, the Gemini 11 crew manoeuvred their craft to keep the tether taut between the two. By firing their side thrusters to slowly rotate the combined spacecraft, they were able to use centrifugal force to generate about 0.00015 g of artificial gravity

The circular motion at the end of the tether created a slight artificial “gravitational acceleration” within Gemini 11. This is the first time artificial gravity has been demonstrated in space, even though that gravitational force was only 1.5 one-thousandths that of Earth. After about three hours, the rope tether was released, and the spacecraft moved apart.

Final Rendezvous

Although a fuel cell failed after the artificial gravity experiment, the remaining fuel cells were able to satisfactorily cope, and just under five hours before planned re-entry, Gemini 11 made a final “flyby” rendezvous with the Agena. This last rendezvous had not been part of the original flight plan but was made possible because of the fuel efficiency of the earlier rendezvous and docking manoeuvres. The fact that this rendezvous was made without use of the rendezvous radar, which had malfunctioned, is a testament to the skill and training of the Gemini 11 crew.


Gemini 11's Agena target vehicle seen during the "flyby" rendezvous. The tether from the artificial gravity and passive stabilisation experiment can be seen still attached to the vehicle

Coming Home Under Computer Control

Gemini 11’s return to Earth was the first fully automatic splashdown in the history of the US space program. On 15 September, at the end of its 44th orbit, Gemini 11’s retro-rockets were fired and the automatic re-entry was accomplished by computer commands directly to the thrusters. On earlier Gemini missions, the Command Pilot took controls of the re-entry at about 75 miles up, using the spacecraft's offset centre of gravity to generate lift for changes in direction. For Gemini 11, these manoeuvres were accomplished by computer commands. This process proved successful, and the capsule splashed down only 1.5 miles from the planned position in the Atlantic Ocean. A helicopter from the USS Guam picked up Conrad and Dick Gordon, taking the astronauts to the recovery ship.


Command Pilot Conrad climbs from Gemini 11 minutes after its successful computer-controlled splashdown

Heading to a Grand Finale

With Gemini 11, NASA demonstrated that it has has well and truly mastered rendezvous and docking. But the difficulties encountered by Lt Commander Gordon on his first EVA, and the problems that occurred on the spacewalks in previous missions, show that Extra-Vehicular Activity remains a challenge to be conquered. EVA is vital to the success of the Apollo programme, so Gemini 12, the final mission in this programme, will have spacewalking as its primary objective: it will be a grand finale indeed if Gemini 12 can demonstrate that the problems of EVA, like those of rendezvous and docking, have been successfully solved.






[August 26, 1966] Shooting the Moon – and Going Even Further (Lunar Orbiter, AS-202 and Pioneer 7)


by Kaye Dee

It’s been a busy month in deep space exploration, with new space probes exploring the Moon and conditions in interplanetary space, while another step forward in testing the hardware for the Apollo programme has just taken place.

Surveying the Moon

NASA may have called its lunar soft lander Surveyor 1, but its latest lunar mission, Lunar Orbiter 1, is actually surveying the Moon from orbit. It is the first of a series of Lunar Orbiter spacecraft that NASA wants to send to the Moon, with a launch planned every three months to obtain high-resolution photographs of potential Apollo landing sites. These probes will also extensively map the Moon’s surface with a resolution of 200 feet or better and study the Moon’s gravitational field as well as its radiation and micrometeoroid environments. The Boeing Missile Production Centre in Seattle is building the solar-powered spacecraft, with NASA’s Langley Research Centre managing the project.

Launched on 10 August (US time), Lunar Orbiter 1’s goals include imaging nine primary and seven secondary potential Apollo landing sites on the Earth-facing side of the Moon at medium and high resolutions, as well as photographing 11 areas on the hidden lunar far side at lower resolution. Although the spacecraft experienced a temporary failure of its navigation system (based on tracking the star Canopus) and overheated too, both these problems were resolved by the time it reached the Moon.

After a 92-hour cruise, Lunar Orbiter 1 entered an elliptical 117-by-1,160-mile orbit around the Moon, to become the first US probe to orbit our natural satellite (the USSR’s Luna 10 became the first spacecraft to orbit the Moon back in April). On 15 August, Lunar Orbiter 1 activated its 145-pound camera system and began testing it by scanning and transmitting back to Earth several pre-exposed frames of film.

A Photography Studio in Lunar Orbit

Photography is critical to the purpose and success of the Lunar Orbiter missions, and the advanced Lunar Orbiter camera system has been built by Eastman-Kodak. Rumours I heard during my recent visit to Woomera indicate that it is based on a system originally designed for a classified military satellite. Lunar Orbiter’s “camera” is actually a double instrument, using two lenses to take a wide-angle medium-resolution shot and a high-resolution image on the same film. The narrow angle, high-resolution camera has a resolution of just three feet, while the resolution of the wide-angle camera is 25 feet.

The first medium-resolution image taken by Lunar Orbiter 1, showing part of the Mare Smythii region

Once it takes a picture, Lunar Orbiter functions as a photography studio in space, developing its film onboard using a semi-dry process. The developed film is scanned in narrow strips using a photomultiplier, with the scans transmitted back to Earth. The signals are then reconverted into photos in a way that is quite fascinating. I was fortunate enough to see this process for myself while I was visiting NASA’s Island Lagoon deep space tracking station near Woomera last week. The signals representing each scanned strip are reconverted to images on film and then each strip is laid on a board, one beside the other, to build up the photograph. Once all the film strips comprising the complete frame have been received and laid out, the final image is photographed. This produces the “striped” effect seen in the pictures that NASA has already released.

Getting to Work

Lunar Orbiter acquired its first images of the Moon on 18 August, taking 16 high-resolution and four medium-resolution frames. While the medium-resolution photos were of good quality, a problem with the spacecraft’s motion compensation system caused blurring of the early high-resolution images, although this has now been resolved. A separate issue with the film developing system has also required the film to be advanced more frequently than planned, resulting in the need to take additional unplanned photographs. This has proved a bonus for mission managers, enabling them to shoot additional photographs at unusual oblique angles by temporarily reorienting the spacecraft. Perhaps these special images will produce useful perspectives that can be more fully explored on later Lunar Orbiter missions.

A medium-resolution view of the Moon's heavily-cratered far side, with the unusual crater Tsiolkovsky (with the dark interior) appearing in the top right

Initially, Lunar Orbiter concentrated on imaging the Moon's hidden side, of which we know so little, before moving on to its main task of surveying the proposed Apollo landing sites. On 20 August, the spacecraft altered its orbit to approach as close as 36 miles above the Moon’s surface, and on 25 August, it lowered its orbit still further, to 25.2 miles, to get the most detailed views of potential Apollo landing sites. This will help scientists to determine which ones will be safest for the first manned missions to the Moon.

An Historic Image

On 23 August, as Lunar Orbiter 1 emerged from behind the Moon, it captured what has to be one of the most important images so far produced in space exploration: a view of the Earth appearing to rise over the lunar horizon. This is the first time that our home planet has been photographed from so far out in space, and also the first time that the Earth and the Moon have appeared in the same picture. The hi-resolution image, seen below, is breathtaking in black and white – I just wish it could be reproduced at a larger scale here. so that you could see all the detail it provides. Just imagine how much more spectacular this view of the Earth will be when we can finally see it in colour, perhaps taken when the first Apollo astronauts orbit the Moon! 

As I write this, Lunar Orbiter has recently taken another image of the Earth from the Moon and is continuing its primary task of imaging Apollo landing sites. The spacecraft will soon run out of film and take its last photographs, although transmission of the 200 or so scanned images may not be completed until mid-September. Its photography mission may then be over, but the probe will continue to return data on radiation and micrometeoroid conditions around the Moon. Once its maneouvring fuel is almost depleted, ground controllers will command Lunar Orbiter 1 to de-orbit and crash onto the Moon. This will ensure that its presence as a dead satellite in orbit will not interfere with future Lunar Orbiter or Apollo missions.

Prelude to Apollo

While Lunar Orbiter has been assisting the Apollo programme with its work in lunar orbit, here on Earth the latest step forward in the manned lunar program has just taken place. 25 August saw the sub-orbital flight of AS-202, the second unmanned test flight of a production Block I Apollo Command and Service Module and the third for the Saturn 1B rocket.

Originally intended as the second test flight of the Saturn IB vehicle, the mission was delayed until after AS-203 because its Apollo Command and Service Module (CSM-011) was not yet ready. CSM-011 is essentially a production model capable of carrying a crew, although it was not fully fitted out and lacked the crew couches. This was the first flight of the spacecraft’s guidance and navigation system as well as the fuel cell electrical system. The flight was also designed to test the Command Module’s heat shield.

The performance of the Saturn 1B was perfect, putting the spacecraft into a ballistic trajectory. Separating from the launcher’s second stage at an altitude of 419.8 nautical miles, the CSM was pre-programmed to make four burns to test its service propulsion system (SPS). The first, and longest, burn lasted 3 minutes, 35 seconds, lifting the spacecraft apogee to 617.1 nautical miles, 874.8 nautical miles downrange. The two final burns lasted only three seconds each, designed to test the rapid restart capabilities of the engine.

The spacecraft performed a skip re-entry to shed speed. It first descended to 36 nautical miles before lifting back up to 44 nautical miles and descending again. The Command Module splashed down south-east of Wake Island, about 205 nautical miles from the target landing site, but was retrieved by the aircraft carrier USS Hornet.

The success of this flight indicates that the Block I spacecraft and Saturn IB are ready to carry a crew into orbit, so the next mission, AS-204, may well be manned. What an exciting development that will be!

Continually Pioneering

Moon missions, manned spaceflight and planetary explorers capture the attention of the public, but NASA’s Pioneer series of probes are quietly continuing to gather scientific information about the Sun and conditions in interplanetary space.

Launched on 17 August, Pioneer 7 joins its predecessor Pioneer 6, as the second of five spacecraft designed to make a long term study of the solar wind, solar magnetic field and cosmic rays. This research will contribute to the Apollo programme as well, by producing a better understanding of the radiation environment that the astronauts will encounter on the Moon, which is not protected by a magnetic field like the Earth.

NASA illustration depicting the locations in interplanetary space of the Pioneer 6, 7 and the future Pioneer 8 (Pioneer C) spacecraft 37 days after launch

Where Pioneer 6 is orbiting the Sun between the orbits of Earth and Venus, Pioneer 7 is heading 12 million miles beyond Earth’s orbit, taking up station at approximately 1.1 Astronomical Units, between the orbits of Earth and Mars. Its 140-pound package of seven scientific instruments is the same as that carried on Pioneer 6. One of these instruments, the cosmic ray anisotropy experiment, was developed by Dr. Ken McCracken, an Australian physicist interested in the hazards of space radiation to astronauts and the behaviour of cosmic rays. With professorships at both the University of Adelaide and the University of Texas, McCracken is earning himself the nickname “Sir Launchalot” for the number of instruments he has already flown on satellites, sounding rockets and high-altitude balloons!

With NASA’s Ames Research Centre as the project managers, Pioneer 7 was built by TRW and is identical to Pioneer 6. Each spin-stabilised spacecraft is cylindrical, with the main body measuring 37 inches in diameter by 35 inches high. Solar panels are mounted around the body, with a long magnetometer boom extending 82 inches long. The antenna mast is 52 inches long and the entire spacecraft weighs approximately 150 pounds. The spacecraft have a design life of six months, but Pioneer 6 has already outlived that, and there is every expectation that Pioneer 7 will exceed its design life as well.

Off the Earth

Perhaps the most fascinating aspect of this update is that all of the launches involve extraterrestrial destinations. The focus has turned from the Earth to its nearest neighbors. How far we have come in just a few years! Where might we be headed come 1970?






[July 24, 1966] Doubling Up (Gemini 10)


by Kaye Dee

A few days ago, Gemini 10 returned from the most ambitious US spaceflight to date. It literally took the Gemini programme to new heights and has firmly cemented the United States’ lead over the Soviet Union in the race to the Moon. Featuring not one, but two orbital rendezvous and two EVAs, Gemini 10 was a complex mission designed to increase NASA’s experience with these two techniques vital to the success of the Apollo lunar programme.

Designed by astronaut John Young’s wife Barbara, the Gemini 10 patch is simple, but highly symbolic. It features the Roman numeral 10 and two stars representing the two rendezvous attempts; Castor and Pollux (the two brightest stars in the constellation Gemini); and the two crew members. A stylized rendezvous is also depicted.

Crew for a Complex Mission

The Command Pilot for Gemini 10 was US Navy Commander John Young (left in the picture below), making his second spaceflight after acting as the Pilot of Gemini 3. Sitting in the right-hand seat as Pilot was US Air Force Major Michael Collins. A member of NASA’s third astronaut group, he is the first astronaut born outside the United States: his father is an Army officer and was stationed in Rome at the time of Collins’ birth.

Critical Timing

Blasting off on July 18, Gemini 10 was the first dual launch of a target vehicle and a manned Gemini flight to occurr exactly as planned. Launch timing was crucial, as Gemini 10 had only a 35-second window if it was going to rendezvous with two Agena targets in different orbits. The launch of the first rendezvous target, Agena 10, could not be delayed by more than 28 minutes, or it would result in a two-day wait until the second Agena already in orbit (originally launched for Gemini 8) would again be in position for the dual rendezvous plan to succeed. Agena 10 lifted off just two seconds late. One hundred minutes later it was followed by Gemini 10, launching exactly on time.

An amazing timelapse photo of Gemini 10's launch, showing the supporting rocker arm tower falling away

First Rendezvous

Despite the perfect launch, the path to Gemini 10’s first rendezvous was not completely smooth. An error made by John Young during the second burn – needed to rendezvous with the Agena about 160 miles above the Earth – required two additional burns to correct. By the time Gemini 10, on its fourth orbit, rendezvoused and docked with Agena 10, 60% of its fuel had been consumed. This placed constraints on the remainder of the mission, leading to the cancellation of several scheduled scientific experiments and additional docking practice.

Fortunately, the docking itself was successful and Mission Control decided to keep Gemini 10 docked to the Agena as long as possible. The target vehicle carried 3,400 pounds of fuel, some of which could be used for attitude control of the docked vehicles.


Docked to the nose of Agena 10, Gemini 10 Pilot Michael Collins took this impressive photograph of the Agena's engine firing as it boosted them to a record altitude

Rocketing to New Heights

Most of that fuel was needed for the second phase of Gemini 10’s mission. About seven and a half hours after launch, an 80 second burn of the Agena engine hurtled Young and Collins to an altitude of 474 miles, the farthest anyone has so far been from the Earth. This new record completely eclipses the previous record of 310 miles set by Voskhod 2 last year.

As the Gemini was docked nose-to-nose with the Agena, Young and Collins were flying ‘backwards’ as the rocket thrust them towards the higher altitude in a wild ride. Despite their unique vantage point, much of the view from the crew’s windows was blocked by the bulk of the Agena in front of them, so Young and Collins took very few photos: instead, they concentrated on their spacecraft’s instruments, especially the radiation dosage. The crew was particularly concerned about the radiation levels at their record-breaking altitude, as the lower edge of the inner Van Allen radiation belt was only about 150 miles above them. Fortunately, their instruments showed that the radiation levels at that altitude posed no danger to human life.


One of the few photos taken by the Gemini 10 crew at their record altitude, showing the curvature of the Earth. The Straits of Gibraltar are visible, with Europe to the left and North Africa to the right

Speaking of radiation, while Gemini 10 was orbiting aloft, France tested another nuclear weapon at Mururoa Atoll in the South Pacific. Although the astronauts were high too high above the blast zone for radiation to be an issue, Young and Collins were warned not to look at its blinding flash as they passed overhead.

When is a Spacewalk not a Spacewalk? When It’s a “Standup EVA”!

The Gemini crew began their second day in space with the news that they had enough fuel to complete the next phase of their mission, the rendezvous with Gemini 8’s Agena target vehicle. Another wild ride, pushed by Agena 10, lowered the Gemini to a new orbit with an apogee of 237 miles. Now the crew began to prepare for the mission’s first EVA, which would not see an astronaut actually leave the spacecraft. 

As an orbital sunset approached, Collins opened his hatch, exposing both astronauts to the space environment to perform a “standup EVA”. Standing in his seat with the upper part of his body outside the spacecraft, for a view unconstrained by its small windows, Collins commenced a photographic study of stellar ultraviolet radiation. He took 22 images of the southern Milky Way, scanning from Beta Crucis to Gamma Velorum (though, unfortunately, few of the images have proved scientifically usable). As Gemini 10 passed from night back to day, Collins also photographed a colour patch on the exterior of the spacecraft, to see if film could accurately reproduce colors in space. This task was cut short, though, when both Collins and Young experienced an eye irritation that caused their eyes to tear, making it difficult to see. As I write this article, the cause of this irritation is still uncertain, although it is thought to be a leak of lithium hydroxide in the environmental system.

Second Rendezvous

Gemini 10’s third day in space was its most complex and hazardous, commencing with the rendezvous with Agena 8. For the final time, Agena 10 fired its engine, to bring the docked spacecraft within 70 miles of Agena 8. At this point Gemini 10 discarded the Agena, which remains in orbit for use as a target by a future Gemini mission. Gemini 10 continued under its own power, for the first time in almost 48 hours, to reach Agena 8.

The former Gemini 8 target, having been in space since March, was essentially dead, without any power. Commander Young completed the critical final stage of rendezvous without the help of bright running lights and target radar, while trying to conserve enough fuel to let Collins take a one-hour spacewalk. He successfully guided the Gemini to within 10 feet of Agena 8, maintaining station close to the target vehicle without docking. This unique rendezvous simulated the rescue of astronauts from a spacecraft that had lost all electrical power.

A “Working” Spacewalk

With enough maneouvring fuel still available, Collins’ second EVA was now Go! Dubbed a “working spacewalk”, this EVA involved activities around the exterior of Gemini 10 and a traverse across to Agena 8. Like Gene Cernan on Gemini 9, Major Collins experienced difficulties in conducting his EVA tasks, demonstrating the need for more hand- and footholds on the exterior of future space vehicles. Nevertheless, he retrieved a micrometeorite collector from the exterior of the Gemini, containing experiments from Britain, Israel and West Germany. Unfortunately, this collector was later lost in space, apparently floating out of the spacecraft before the final hatch closing. 

Another micrometeorite collector was located on Agena 8. After one failed attempt to retrieve it, Collins used an experimental nitrogen-propelled “jet gun”, the Hand-Held Maneuvering Unit, to propel himself back to the Agena. This time he successfully retrieved the micrometeorite experiment, which is of particular scientific interest because of its long duration in orbit. There are no photos of the spacewalk available, but these training images give some idea of the complexity of the operations. However, low propellant quantity curtailed the spacewalk after only 39 minutes, instead of the originally planned hour. The crew experienced some difficulty in closing the hatch, due to the snake-like 50-foot umbilical used for Collins’ spacewalk and it was later jettisoned, along with the chestpack used by Collins and some other equipment an hour later. 

Return to Earth

About 63 hours into the flight, Young and Collins awoke to homecoming day, completing some final experiments, mostly involving photography of the Earth. Then, 70 hours and 10 minutes after liftoff, re-entry commenced and Young steered Gemini 10 to a pinpoint landing in the Atlantic only three and a half miles from the aiming point. The crew of the prime recovery vessel, the USS Guadalcanal, watched the spacecraft hit the water, as did millions of television viewers via the Early Bird satellite (though not us here in Australia, as we do not yet have access to satellite communications: it’s coming soon, though!).


For the first time the children of the recovery ship crew were allowed to be aboard to watch the splashdown and recovery. Here they join the party celebrating Gemini 10's safe return from a record-setting mission

Gemini 10 was certainly a mission for the record books: I can’t wait to see what further developments Gemini 11 will bring in just a couple of months’ time.






[July 16, 1966] Onward and Upward! (Apollo, Australia, and OV)

Not a month goes by without some interesting tidbits on the space front.  Even between Gemini and Voskhod missions, there's always something going on, all over the world!


by Gideon Marcus

Heavy Lifting

We are used to space shots being manned spectaculars — brave men in space suits heading into the cosmos.  But the missions that precede the human-crewed flights are just as important.  On February 26 of this year, we saw the first full Apollo test flight.  It featured an old-style Command Module, the bit of Apollo that will house crew, but the Service Module was standard production line.  The rocket, too, is going to see service.  Unlike the Saturn 1, which flew ten test flights in a row with remarkable reliability, the Saturn 1B will be used for actual Apollo missions, at least ones that will take place in Earth orbit.

The February flight, dubbed AS-201, was not without problems.  Nevertheless, it comprised a successful launch and landing after a 37-minute suborbital flight.

AS-203, launched July 5, was strictly a booster test.  The goal was to see if the Centaur second stage of the Saturn 1B could restart successfully in orbit, a critical function for lunar missions.  As a booster test, the rocket stack looked a bit odd.  Instead of an Apollo capsule, there was simply a nosecone covering the second stage.  The deletion of even a boilerplate also meant that the rocket could carry more fuel for testing.  By the time the vehicle had reached orbit, there was still 20,000 pounds of hydrogen and 3,000 pounds of oxygen in its tanks.

For four orbits, NASA engineers subjected the vehicle to various stress tests.  Hydrogen and oxygen were vented in various quantities.  In its final orbit, hydrogen was vented but the oxygen vents kept closed to create a tremendous pressure differential.  This eventually caused the rocket to explode, but not before surviving twice the expected endurance of the vehicle.  Call that a success!

Next up will be AS-202, which was bumped to accommodate this flight.  It will be a suborbital test like AS-201, but the Apollo will have fully functional guidance and navigation systems to test.  A few more successful flights, and we'll be on our way to the Moon!

Fraternal Twins

The Air Force has gotten a lot out of its budget "Orbiting Vehicle" program.  The idea behind the program was to utilize space on rocket test launches for satellites using standardized, mass-produced bodies.  This meant a double-savings over custom-built missions on mission-specific flights. 

Of course, things don't always work out as planned.  There are at least three OV series now, and only the OV2s have used spare test flights (in their case, on Titan 3Cs).  The OV3 series uses purpose-launched Scout rockets.  The OV1s, instead of using space on test-launched Atlas rockets (save for the first one), have instead used spare Atlases that were decommissioned from military service last year.  Still, the rockets were just sitting there, so it's still cheaper than it could have been.

In any event, OV1-7 and OV1-8, launched on July 14, represent the second time a pair of OV1 satellites were orbited back-to-back.  This particular launch was a little unusual for two reasons.  Firstly, OV1-7 (a standard OV1 satellite) was supposed to be a particle physics and "earthglow" detector. But it never left its Atlas and fell back to Earth.

Secondly, OV1-8 wasn't an OV1 at all, really.  It was a big balloon.  And not just an ordinary balloon: it was actually an aluminum grid put into spherical shape by being embedded in inflatable plastic.  When OV1-8 got to orbit, it inflated.  The Sun's rays disintegrated the plastic leaving a hollow mesh sphere.  Called PaGeos (Passive Geosynchronous), OV1-8 orbits the Earth at the same rate as its rotation, keeping it pretty much in the same spot in the sky with reference to a ground-based observer. 

And what good is a hollow aluminum balloon?  Why, for bouncing messages off of!  Turns out PaGeos reflects signals five times as well as the old NASA Project Echo balloons.  Also, the hollow nature makes PaGeos much less susceptible to air drag, which shortens the lifetime of a satellite by eventually pulling it down to Earth.  PaGeos was shot into orbit backwards to maximize air drag, yet it is calculated to have a lifespan of four years. 

Though active satellites like Telstar and Syncom have largely replaced passive balloon satellites, the cheapness and durability of passive comsats like PaGeos suggests there may be a specialized use for them in years to come.  I guess we'll just have to wait and see!



by Kaye Dee

(Not) Going Up from Down Under

Hello everyone, Kaye here. Gideon has kindly allowed me an opportunity to provide a quick update on recent space events in Australia. While the British and Australian sounding rocket programmes keep expanding, the European Launcher Development Organisation’s Europa launcher program at Woomera has had its first major failure-and one that was not the fault of the rocket itself!

Following the three successful test flights of the Blue Streak first stage, ELDO F-4 was intended to be the first all-up test of the three-stage Europa vehicle. The first stage was active, with the French second stage and the West German third stage inert dummies. The rocket was also carrying a dummy test satellite that carried some instrumentation to measure the conditions that a real satellite would experience during launch.

Although the 24 May lift-off went perfectly, the impact predictor soon reported that the rocket was veering west of the planned trajectory. At 136 seconds the Range Safety Officer terminated the flight, with the debris raiding down into the lower part of the Simpson Desert. To the disappointment of all involved, the post-flight analysis revealed that the rocket had, in fact, been exactly on course, and inaccurate readings had been received at the Mirikata downrange radar station 120 miles away. Oops! ELDO is now preparing for a new all-up test later this year, possibly in November. 

Waking a Sleeping Beauty

Australia has also recently played a special role in the Surveyor mission currently on the Moon. After the solar-powered probe shut down during the two week lunar night, the task of bringing it back to operational life was entrusted to the NASA Tidbinbilla Deep Space Tracking Station, outside Canberra. The re-awakening process on 8 July was a complete success and the space tracker who sent the "wake up" command was jokingly given a special citation: the Prince Charming Award!

[…and that's the space news for this week.  Stay tuned for full Gemini 10 coverage next week!]






[April 20, 1966] Space Exploration is Hard (Venera 2 and 3, Luna 10 and OAO 1)


by Kaye Dee

While manned spaceflight always grabs the headlines, the past month or so has seen some fascinating, if not always successful, attempts at planetary and lunar exploration and the launch of a new space observatory. The failures of some of these missions remind us that space exploration is hard and success is never guaranteed…

Still Unable to Lift the Veil of Venus

Launched just days apart back in November last year, Soviet Venus probes, Venera 2 and 3 were due to arrive at the Earth’s mysterious, cloud-veiled sister planet at the beginning of March, but both seem to have failed just on the verge of success. 

As early as February 1961, the USSR commenced its attempts to explore Venus with the Venera (Russian for Venus) 1 probe. Although Venera-1 flew past Venus at a distance of 100,000km on 19 May 1961, no data were received, due to a communications failure. According to my friends at the Weapons Research Establishment, following that mission there may have been several failed attempts by the USSR to launch missions to Venus, before Venera 2 and 3 were successfully sent on their way back in November.

(top) Venera 1, the USSR's first Venus probe and (bottom) its official follow on, Venera 2. I wonder how many unannounced failures lie between these two missions?

According to various news releases from the Soviet news agency TASS, the two spacecraft were intended for different exploration missions. Venera 2 was planned to fly past the sunlit side of Venus and examine its enigmatic clouds. The spacecraft was equipped with cameras, a magnetometer and a variety of instruments to measure the radiation environment in space and at Venus. Valuable data on the interplanetary space environment was transmitted back to Earth during the flight to Venus.

All Venera 2's instruments were activated for the flyby on 27 February, at a distance of 14,790 miles. While the instruments were operating, the radio had to be shut down, with the probe storing their data in onboard recorders. The plan was for the stored data to be transmitted it to Earth once contact was restored. However, it seems that ground controllers in the USSR were unable to re-establish communications with the spacecraft after the flyby. Attempts to re-establish contact with Venera 2 ceased on March 4, but if communication with the spacecraft can be made at some future point, Soviet scientists believe that it may still be possible to recover some of the flyby data.

Touchdown?

Unlike Venera 2’s flyby (similar to those of Mariner 2 at Venus and Mariner 4 at Mars), Venera 3’s ambitious goal was to land a small capsule of instruments on the surface of Venus, hopefully to unlock at least some of the secrets hidden beneath its veil of clouds. Because some scientists believe there could be life on Venus, the USSR claims the lander was “sterilised” before its departure from Earth so that would not contaminate the Venusian atmosphere or surface with any microbial terrestrial life.

The Venera 3 lander was a metal sphere about 35 inches in diameter, which carried instruments to measure atmospheric temperature, pressure and composition, and light levels at different altitudes, as well small metal Soviet emblems. Interestingly, because some scientists still hold the view that Venus could be a water world, the lander was designed to be able to float and carried a motion detector, which could determine if it had actually landed in water and was rocking in the waves.

Venera 3 was similar to its sister-probe Venera 2. But look closely and you can see the landing capsule at the bottom of the spacecraft

Weighing 884lbs, the lander was designed to drop through Venus’ atmosphere on a parachute, transmitting data from its instruments directly back to Earth, while the rest of the Venera 3 spacecraft went into orbit around Venus to take other scientific measurements. However, like its sister probe, contact with Venera 3 was lost as it approached Venus. Tracking data indicates that the landing capsule entered the Venusian atmosphere on 1 March, although no telemetry was received from the lander. Nevertheless, the Venera 3 lander has become the first manmade object to impact another planet, which is an achievement in itself. The reasons for the failure of the two Venera spacecraft remain a mystery, although some experts believe that the thick Venusian atmosphere may have had something to do with it.

Newly-released Venera 3 stamp (thanks Uncle Ernie!). It shows the Soviet medal and pendant depicting the planet Earth that were carried on board the lander

Advancing the Soviet Lunar Programme

Despite the problems with its Venus programme, the USSR’s lunar programme seems to be going from strength to strength. Following on from the historic soft landing on the Moon with Luna 9 in February, Luna 10 marks another step forward, becoming the first spacecraft to go into orbit around the Moon. (Of course, it’s obvious that this feat was timed to occur during the 23rd Congress of the Communist Party of the Soviet Union, but I’m sure it was also deliberately planned to upstage the United States’ Lunar Orbiter program, which is due to commence later this year, with a series of spacecraft that will photograph and map the Moon in advance of the Apollo programme).

Luna 10, the first spacecraft to orbit the Moon

A pre-launch photograph of Luna 10 indicates that its design is very similar to that of Luna 9, although the instrument capsule on top has a different shape. Launched on 31 March, Luna 10 went into lunar orbit three days later. Its elliptical orbit approaches as close as to the lunar surface as 217 miles, with its farthest point at 632 miles, and takes just under three hours. The 530lb spacecraft is battery powered, rather than using solar panels, so it is unclear how long it will keep sending data back to the Earth, but at present it is producing a regular stream of information about the space environment in the vicinity of the Moon, that will help us understand how safe (or otherwise) it will be for the first cosmonauts and astronauts to explore cislunar space and the Moon itself.

Close up view of a model of the Luna 10 instrument capsule and the small Soviet metal pendants that it carried onboard

Scientific Instruments aboard Luna 10 include a gamma-ray spectrometer, a magnetometer, a meteorite detector, instruments for solar-plasma studies, and devices for measuring infrared emissions from the Moon and radiation conditions of the lunar environment. However, it is not clear whether the probe is actually carrying a camera to photograph the Moon’s surface. Preliminary data released by the Soviet Union indicates that there are higher concentrations of meteoritic dust in the vicinity of the Moon than in interplanetary space, as well as “electron fluxes” that are “70 to 100 times more intense than the cosmic ray background”.

First day cover commemorating the Luna 10 mission. Soviet space covers are masterpieces of propaganda, with the stamp design, envelope design and postmark all re-inforcing the message of Communist space achievement!

A Propaganda Serenade from the Moon!

As the Space Race heats up, the Soviet leadership is always ready to exploit propaganda opportunities associated with space exploration. To celebrate the CPSU Congress, a synthesised version of the Communist anthem “The Internationale” was broadcast live from Luna 10 to the congress on 4 April. (At least, it was claimed to be live: I wonder if Luna 10’s controllers actually used a pre-recorded version in case there were problems with the spacecraft? After all, it would be very politically embarrassing to have a failure of Soviet technology at such a high profile event for global Communism!)

Sky High Eyes on the Sky

The last mission I want to mention this month is NASA’s Orbiting Astronomical Observatory (OAO) 1, not least because this a major space project managed by a woman! Dr. Nancy Grace Roman, formerly a radio astronomer with the Naval Research Laboratory, joined NASA in 1959 and became Chief of Astronomy in NASA's Office of Space Science in 1960. She has a prestigious international reputation and was the first woman in an executive position at the space agency, where she has established the space astronomy programme.

Dr Nancy Grace Roman in 1962 with a model of another of her space observatory projects, the Orbiting Solar Observatory

The heaviest satellite yet launched by the United States (weighing almost two tons), OAO 1 was launched successfully on 8 April, riding to orbit on an Atlas-Agena D from Cape Canaveral. It carried 10 telescopes and other instruments capable of detecting ultraviolet, X-ray and gamma ray emissions to measure the absorption and emission characteristics of the stars, planets, nebulae from the visible to gamma-ray regions The observatory satellite was intended to give astronomers their first clear look at the heavens without the distorting effect of the Earth’s atmosphere and its results were greatly anticipated.

However, before the instruments could be activated, something caused a power failure that resulted in the mission being terminated after just 20 orbits. Because the spacecraft could not be controlled, its solar panels could not be deployed to recharge the batteries supplying the equipment and instruments on board the satellite. Although this is a blow to space astronomy, I’m sure the OAO programme will continue as future satellites are already in development.

NASA illustration of Orbiting Astronomical Observatory 1. While this satellite has failed, there will be future space observatories in this program






[March 18, 1966] Taking Gemini for a Spin (Gemini 8)


by Kaye Dee

As the race for the Moon heats up, the Gemini program is moving forward at a cracking pace –three months ago, Gemini VII completed its record breaking long-duration mission and NASA’s latest manned space mission, Gemini VIII launched just two days ago on March 16 (US time). By co-incidence, this was right on the 40th anniversary of the first successful launch of a liquid-fuelled rocket by American physicist Dr. Robert Goddard.


Goddard and his first liquid fuel rocket, launched forty years to the day before Gemini VIII. Developing a liquid-fuelled rocket was the necessary first step to making spaceflight a reality

But are things moving too fast? This latest Gemini flight was one of NASA’s most ambitious to date, slated for a 3-day mission to carry out the first rendezvous and docking and the United States’ second spacewalk. However, it was prematurely cut short after about 10 and a half hours, due to an in-flight emergency.

What was Supposed to Happen

Gemini VIII was intended to carry out the four rendezvous and docking manoeuvres originally planned for Gemini VI (the goals of that mission had to be changed due to the loss of its Agena target vehicle and instead it rendezvoused with Gemini VII). Being able to rendezvous and dock two spacecraft is a technique that is vitally important for the success of the Apollo programme, so NASA needs to be sure that it can reliably carry out these manoeuvres.


Gemini VIII approaches its Agena target vehicle in preparation for docking, practicing one of the crucial technologies of the Apollo programme

NASA also needs to gain more experience with extra-vehicular activity (EVA), or spacewalking, which is another crucial technique needed for Apollo. So far, the Gemini programme’s only EVA has been the one carried out by Ed White during the Gemini IV mission in June last year. Astronaut David Scott was scheduled to perform an ambitious spacewalk of over two hours, operating at the end of a 25-foot tether. He was supposed to retrieve a radiation experiment from the front of the Gemini's spacecraft adapter and activate a micrometeoroid experiment on the Agena target vehicle. Then it was planned to test a space power tool by loosening and tightening bolts on a work panel attached to the Gemini.

The most exciting part of the spacewalk would have taken place after Mission Commander Neil Armstrong undocked from the Agena for the first time. Major Scott would have tested an Extravehicular Support Pack (ESP), which contained its own oxygen supply and propellant for his Hand-Held Manoeuvring Unit. A 75-foot extension to his tether would have enabled Scott to carry out several manoeuvres in conjunction with the Gemini and Agena vehicles, while separated from them at distances up to 60 feet.

Very Experienced Rookies


Neil Armstrong (front) and David Scott departing the suit up trailer on their way to the launch pad. Behind Scott is Chief Astronaut Alan Shepard, the first American in space.

Gemini VIII’s crew are both first-time astronauts, but they have a wealth of flight experience between them. Mission Commander Neil Armstrong is the first American civilian in space, and a highly experienced test pilot. Before being selected for NASA’s second group of astronauts, Mr. Armstrong was a Naval aviator during the Korean conflict and then an experimental test pilot with NASA’s predecessor the National Advisory Committee for Aeronautics, which he joined in 1955. He developed a reputation as an excellent engineer, a cool-headed clear-thinker, and an outstanding test pilot with nerves of steel, all of which helped him survive a number of dangerous flight-test incidents. Included in his experience are seven flights aboard the X-15 hypersonic research aircraft.

Gemini VIII Pilot David Scott is a major in the US Air Force, and the first member of the third astronaut group to make a spaceflight. Scott saw active duty in Europe before gaining both a Master of Science degree in Aeronautics/Astronautics and the degree of Engineer in Aeronautics/Astronautics from MIT in 1962. He joined the US Air Force Test Pilot School at Edwards Air Force Base in 1962 and was selected as an astronaut in October 1963. 

A Spectrum of Objectives


Gemini VIII's mission patch. Look closely at the spectrum to see the text.

Now that mission patches seem to have become a standard part of each Gemini flight (after being introduced by the Gemini V crew), Armstrong and Scott designed their mission patch to feature a colour spectrum, which is shown as being produced by the light of two stars – Castor and Pollux, the two brightest stars in the constellation of Gemini – refracted through a prism. The spectrum symbolises “the whole spectrum of objectives” that they planned to accomplish on Gemini VIII, which included various science and technology experiments in addition to the docking and spacewalking activities. Looking closely at the spectrum, you can see that its lines have been drawn to represent the astronomical symbol for the constellation Gemini, as well as the Roman numeral VIII.

Things Go to Plan

The original Gemini VIII plan was for a three-day mission and at first everything seemed to be going perfectly. One hundred minutes before Gemini VIII, an Atlas rocket lifted off from Launch Pad 14 at the Cape carrying the Agena target vehicle. Unlike Gemini VI, this time the launch was successful, placing the Agena into a 161 nautical-mile circular orbit. Once it was certain that the Agena was safely in orbit, Gemini VIII lifted off from the nearby Pad 19: its launch, too, went without any problems.


A composite image combining the lift-off of the Atlas Agena and Gemini VIII

After an orbital “chase” of more than three and a half hours, Armstrong and Scott had their target in sight: they could visually spot it when they were about 76 nautical miles away. Then, at 55 nautical miles, the computer completed the rendezvous automatically.

Before docking with the Agena, the astronauts spent 35 minutes visually inspecting it, to ensure that it had suffered no damage from the launch. Then Armstrong started to move towards the Agena at 3.15 inches per second. In a matter of minutes, the Agena’s docking latches clicked: the first docking by a manned spacecraft had been successfully completed! Mission Commander Armstrong described the docking as “a real smoothie” and said that the Agena felt quite stable during the manoeuvre. NASA has now proved that it can achieve a critical technique needed for the Apollo Moon landings.

Things Don’t Go to Plan

The docking may have been a smoothie: however, what followed was anything but! Mission Control seems to have had some suspicions that the Agena's attitude control system could malfunction (my friends at Woomera say there was a possibility that the Agena’s onboard computer might not have the correct program stored in it), because the crew were reminded of the code to turn off the Agena’s computer and advised to abort the docking straight away if there were any problems with the target vehicle.


A close-up view as Gemini VIII approaches its Agena target vehicle.

As Gemini VIII lost radio contact with Houston (in a part of its orbit where it was out of range of any of the tracking stations on the ground), the Agena began to execute one of its stored test programs, to turn the two docked spacecraft. That’s when the emergency began! While the full details of the emergency are not yet known, it seems that the Agena started to roll uncontrollably, causing the docked spacecraft to gyrate wildly, making a full rotation every 10 seconds. The situation seems to have been pretty desperate, to judge from some communications picked up by monitors at the Radio Research Institute of the Japanese Postal Services.

Armstrong has reported that he used the Gemini capsule’s orbital attitude and manoeuvring system (OAMS) thrusters to stop the tumbling, but the roll immediately began again. As he struggled to control the rotating vehicles Armstrong noticed that the OAMS fuel dropped quickly, hinting that perhaps the problem was with the Gemini, rather than the Agena.


Diagram showing the location of the OAMS thrusters and the Re-entry Control System thrusters (incorrectly identified as "Reaction Control System")

Then They Get Worse!

Armstrong and Scott decided to undock from the Agena, apparently concerned that the high spin-rate might damage the spacecraft or possibly cause the Agena, still loaded with propellant, to rupture or explode. It turns out, though, that the Agena’s mass must have been actually damping the rotation, because as soon as Gemini VIII undocked it began to tumble even more rapidly, making almost a full end over end rotation per second! The issue was definitely with the spacecraft, and it was an extremely dangerous one. At that rate of spin, the astronauts’ vision became blurred and they have said they were in danger of blacking out!


CapCom Jim Lovell (left) and astronaut Bill Anders following reports from Gemini VIII during the crisis

It was only at this point that Gemini VIII came back into contact with Mission Control, via the tracking ship USNS Coastal Sentry Quebec, stationed southwest of Japan. Armstrong sure is a quick thinker, though. He disengaged the OAMS system and used the re-entry control system (RCS) to finally halt the spin and regain control of Gemini VIII. However, doing this used up almost 75% of the re-entry manoeuvring fuel.

Emergency Abort!

Gemini mission rules dictate that a flight has to be aborted once the RCS is activated for any reason. With so much of the RCS fuel already consumed, and with no guarantee that the tumbling might not occur again, Flight Director John Hodge (on his first mission as Chief Flight Director, too!), quickly decided to abort the mission and bring Gemini VIII back to Earth.

Hodge decided to bring Gemini VIII home after one more orbit, so that secondary recovery forces in the Pacific could be in place. Re-entry occurred over China, out of range of NASA tracking stations, but US Air Force planes spotted the spacecraft as it descended towards its landing site about 430 nautical miles east of Okinawa. Three para-rescuers were dropped to attach a flotation collar to the capsule and stay with the astronauts until the recovery ship arrived. 


Armstrong, Scott and their para-rescuers waiting for the arrival of the recovery ship

Initial reports are that, though exhausted, the crew were in good health when they landed, and they opened the Gemini hatches, ate some lunch, and relaxed in the sun with the para-rescuers while waiting for the recovery ship Leonard F Mason to arrive. Maybe the lunch wasn’t such a good idea, as I’ve heard that the crew and their rescuers were all a bit seasick by the time the ship reached them three hours later.

NASA officials met with the Gemini VIII crew in Japan for a preliminary debriefing, and Armstrong and Scott, together with Gemini VIII are now on their way back to the US. Hopefully, an accident investigation will soon reveal exactly what went wrong and why, causing NASA’s first in-flight emergency. But what we already know is that Armstrong and Scott behaved with cool competence in an extremely stressful and dangerous situation and NASA’s emergency procedures enabled the astronauts to be brought home quickly and safely. Everyone involved should be congratulated for demonstrating that even a crisis can be an important stepping-stone on the road to the Moon! 


Safe and sound aboard the U.S.S. Leonard F. Mason






[February 14, 1966] "…to Replace the Pounds and the Shillings and the Pence" (Australia Goes Decimal)


by Kaye Dee

Today is C-Day (Conversion Day) – the day Australia switches to decimal currency after 140 years of using the British system of Pounds, Shillings and Pence. (I actually think it should have been called D-Day, for Decimalisation Day, but I guess that might have seemed insensitive to some of our returned servicemen). Schoolkids are now sighing with relief that they will not have to learn to do those complicated “money sums” like all the generations before them!

A Rum Deal

Australia’s monetary history is rather colourful. In the early days of the penal colony in Sydney, there was very little hard currency available, and most transactions were by barter. Rum and other spirits became a form of currency, controlled by corrupt military officers, which earned their regiment the nickname “the Rum Corps”. When Governor Bligh (yes, that Bligh of Mutiny on the Bounty fame!) tried to prohibit spirits from being used as a medium of exchange, it resulted in a mutiny that drove him from the colony in 1808. This event is known, not surprisingly, as the Rum Rebellion.


Governor Macquarie, Bligh’s successor, introduced the first Australian currency. He purchased 40,000 Spanish dollars and had a round piece punched out of the middle of each one, producing two coins – the “holey dollar” (valued at five shillings) and the “dump” (valued at one shilling and three pence). His “minter” was a convicted forger!

Real Money

In the mid-1820s, the British Government finally decided to provide the Australian colonies with a proper currency and introduced the British system of Pounds, Shillings and Pence. If you’re not familiar with it, 12 pence (pennies) made up a shilling and 20 shillings made one pound.

Australia used British coins and banknotes right up into the early 1900s. It wasn’t until 1910, nine years after the colonies federated to form the Commonwealth of Australia, that the Australian Pound was introduced. Even then, it was branches of Britain’s Royal Mint in Sydney, Melbourne and Perth that produced the coins, indicating how closely Australia remained tied to Britain. The first Royal Australian Mint was only opened in early 1965 to produce our new decimal coins. 


Australian Pound notes (with pretty boring designs) and the full range of Australian coins available before the changeover to decimal currency. A "florin" was another name for a two shilling coin

Going Decimal

Several times in the past 50 years, there have been suggestions for Australia to adopt a decimal currency system. Decimal currency puts us in line with all the world’s major currencies, apart from the Pound Sterling, and all our trading partners apart from Great Britain. But Britain did not want Australia to change its monetary system, and successive Australian Governments and the Reserve Bank of Australia ultimately accepted the British view.

However, in the late 1950s, Prime Minister Robert Menzies finally recognised the economic and pragmatic importance of converting to a decimalised currency. With Australia’s export trade increasing, the complexity of the Pounds, Shillings and Pence system made the arithmetic of financial transactions unnecessarily difficult (as I know from personal experience). Research showed that decimalisation would save the Australian economy more than £11 million ($22 million) a year, through the increased convenience of a decimal currency. This would quickly offset the £30 million ($60 million) cost of conversion. So, in 1963 the Currency Act nominated 14 February 1966 as the day Australia would go decimal.

In Come the Dollars…

Our new currency needed a name and new designs that would be uniquely Australian. A public competition was held in 1963 to find a name “with an Australian flavour” for the currency. About 1000 submissions were received. These included suggestions such as Austral, Boomer (a male kangaroo), Kanga, Roo, Emu, Digger (an Australian soldier), Zac (old nickname for a sixpence coin; it’s also slang for something worthless), Kwid (a funny spelling of the old slang “quid” meaning a Pound), and Ming (from Prime Minister Menzies’ nickname, which comes from the Flash Gordon character “Ming the Merciless”!).


1963 prototype designs for the possible new "Royal". As you can see, one design followed the style of the existing Pound note, the other was quite modern and tilts towards the style in the eventual dollar design

Mr. Menzies rejected all the competition’s suggestions. Being a fervent monarchist, he proposed instead calling the currency the Royal. However, the public made it clear that they didn’t like that name (I certainly didn’t!), so in September 1963, the Treasurer announced that our new currency would be the dollar (which would be the equivalent of 10 shillings), divided into 100 cents. Everyone was much happier with that.

Monopoly Money
It was decided that the new coins should depict Australian wildlife while the notes should reflect national history and Australia’s contribution to the wider world. Gordon Andrews, one of Australia’s leading industrial designers, has designed the new notes. His bright colours and modern style have already led to some wits comparing the new notes to “Monopoly money”, but I think they look great and represent a nation which is coming out from under Britain’s shadow and finding its own feet. 

Australia's new decimal coins. The 1 cent piece shows a possum (a completely different animal from the American opossum); the 2 cent, a frill-necked lizard; the 5 cent coin shows an echidna (otherwise known as a spiny ant-eater) and the 10 cent a lyre-bird; the 20 cent depicts a platypus and the 50 cent coin carries the Australian Coat of Arms, which includes a kangaroo and an emu

The $1 note acknowledges Australia’s origins depicting Aboriginal art and Queen Elizabeth II, while the $2 highlights Australian agricultural innovation in the development of the superfine wool Australian Merino sheep and rust-disease resistant Federation wheat. The $10 note recognises the freed convicts who helped to build this country and our home-grown poets and writers, and the $20 celebrates internationally renowned Australian aviation pioneers. I understand that next year, once we have become more used to the new notes, a $5 bill will also be introduced. Hopefully, it will recognise the often-overlooked contribution of women to Australia’s history.

Our new dollar notes, with their fresh modern styling. To make the transition easier for users, the decimal notes have been matched to their counterparts in the “old money” and are similarly, but more brightly, coloured as you can see by comparison with the earlier image of the Australian Pounds

Meet Dollar Bill


Dollar Bill, the decimal changeover mascot, singing his jingle to a classical musician playing an instrument shaped like the Pound symbol

In April last year, a new character appeared on our TV screens and in cinema ads. His name is “Dollar Bill” and he was introduced as part of the government’s campaign to educate everyone about decimal currency before C-Day arrived. Dollar Bill has been on TV every night (sometimes too many times a night!), singing his catchy little jingle to help familiarise people with the new currency values and the date of changeover. The most memorable part of the jingle is: “In come the dollars and in come the cents, to replace the pounds and the shillings and the pence. Be prepared folks when the coins begin to mix, on the fourteenth of February 1966”. I’m not sure why, but the identity of the person who provides the voice for Dollar Bill is being kept a secret.

The jingle’s tune is based on the folk song “Click Go the Shears” (about sheering sheep in outback Australia). Everyone knows that song, so it makes the decimal currency rhyme easy to remember. I think it’s engraved on my brain now: I’ve heard it so many times, I suspect I’ll still be able to sing it when I’m sixty! Those of you in America might be interested to know that the tune was originally an American Civil War song "Ring the Bell, Watchman" by Henry Clay Work, that somehow made its way down under.


The character is very popular with kids and apparently the Decimal Currency Board gets about 500 fan mail letters a week for Dollar Bill from school children. He has appeared on everything from billboards to matchbox covers. 

To appeal to the teenage audience, there’s a hip little rock number called “The Decimal Point Song”, sung by a young man named Ian Turpie. It was never going to rate on the pop charts, but I think young Turpie could have a good career ahead of him in entertainment. For older Australians there’s even a series of television ads called “Get with It, Gran”.


Major retailers are helping customers feel comfortable with the changeover by including decimal prices and their "old money" equivalents in their catalogues

It's not easy for older people, or younger ones either for that matter, to get used to the change, especially if they are not very good at maths. But at least we have two years of changeover, during which both old and new currency can be used. Of course, the kids now in Primary School have it easy, as they'll grow up with the new system. It will be interesting to see on the news tonight how the first day of the changeover goes, but I doubt there will be the chaos that some pessimists are predicting after all the community preparation. And who knows – if things go smoothly, maybe the government will even consider taking Australia metric as well in the future! 


There are quite a few handy little pocket calculators like these available that make the conversion process relatively easy. I'll bet their inventors are making a small fortune






[December 8, 1965] Space is Getting Crowded (A-1/Asterix, FR-1, Explorer-31, Alouette-2, Luna-8, Gemini-7


by Kaye Dee

A few weeks ago, I wrote that November had been a busy month for space missions, but just in the past three weeks the heavens have become even more crowded, with six more launches taking place

France Joins the Space Club-Twice!

Congratulations to France on orbiting its first two satellites within ten days of each other, joining that exclusive club of nations that have either launched their own satellite, or put a satellite into orbit with the help of the United States. In France’s case it has done both!

In addition to its participation in the European Launcher Development Organisation (ELDO), France has its own national space programme, managed by its space agency, the Centre National d'Etudes Spatiales (National Centre for Space Studies, or CNES for short). Established just on four years ago (19 December 1961), CNES has moved rapidly to make France a leading player in the Space Race: it has been working with the French Army on the development of a satellite carrier rocket, named Diamant, and with the United States on a series of satellites dubbed “FR” (for France, of course).

France’s first satellite, A-1, was launched on 26 November on the first flight of the Diamant (Diamond) launcher from the French ballistic missile test site at Hammaguir, in Algeria. With this launch, France has become the sixth country to have a satellite in orbit—and only the third nation after the USSR and United States to launch a satellite on its own launch vehicle (Canada, the UK and Italy all launched their satellites on American rockets). 


France's Diamant rocket lifts off successfully on its maiden flight, carrying the A-1 satellite

The 60ft tall Diamant is derived from France’s “Precious Stones” nuclear ballistic missile development programme. It is a three-stage rocket, with the first stage being liquid-fuelled and the two upper stages derived from solid-fuel missiles. The satellite is officially named A-1 (Armée-1/Army-1) as it is the first satellite launched by the French Army, but the French media quickly nicknamed it Asterix, after a popular character in French comic strips. This character isn’t well-known in the English-speaking world, but apparently “Asterix the Gaul” is hugely popular in France. According to some of the ELDO people at Woomera, the A-1 satellite was originally intended to be the second satellite in the FR series. It was hurriedly selected to fly on the first Diamant test launch, because FR-1 was in the final stages of being readied for launch in the United States (more on that below). 


A-1 being readied for launch, mounted on top of the Diamant's third stage

A-1/Asterix is shaped a bit like a spinning-top and, rather unusually, its body is made of fibreglass, which is decorated with black stripes for passive thermal control, to stop the satellite’s interior overheating. A-1 is 22 inches in diameter and 22 inches high, with four antennae around its midriff. It weighs 92 ½lbs and carries instruments for taking measurements of the ionosphere. Battery powered, A-1 was expected to transmit for about 10 days, but although the launch was successful, the signals from the satellite quickly faded, possibly due to damage to its antennae caused by part of the protective nosecone hitting the satellite as it fell away. However, even though it is no longer transmitting, A-1 will remain in orbit for several centuries!


On 30 November, the French Post Office celebrated the successful launch of France's first satellite with the release of a stamp triptych

France’s second satellite, FR-1, was launched on 6 December local time using a Scout X-4 vehicle from the Vandenberg Air Force Base in California. Originally intended to be the first French satellite, FR-1 is the first of a series of French scientific satellites that have been developed by CNES in conjunction with the Centre National d'Etudes des Telecommunications (National Centre for Telecommunications Studies, or CNET). This project is partially funded by NASA’s Office of Space Science Applications as part of a co-operative programme that commenced in 1959, when the United States offered to launch satellites for any nation that wished to take part. Canada, Britain and Italy have all launched their first satellites under this programme (which is why they were launched on US rockets). Australia has been invited to participate but, so far, our government has rejected proposals from the scientific community on the basis that it cannot afford to fund the development of a satellite.


FR-1, the second French satellite mounted on its Scout launch vehicle, before the rocket is moved to the pad

The FR-1 satellite (France-1, also known as FR-1A) carries experiments to study VLF propagation in the magnetosphere and irregularities in the topside ionosphere. It also has an electron density probe to measure electron concentration in the vicinity of the satellite. Weighing 135lb, FR-1 looks like two truncated octagonal pyramids joined at their bases by an octagonal prism measuring 27 inches across from corner to corner. The body is covered with solar cells and bristles with antennae and probe booms. FR-1 is operating smoothly so far, but it carries no onboard tape recorder, so the satellite’s data has to be transmitted in real time when it passes over designated ground stations.

So why the rush to get the Asterix out before FR-1? The launch of Asterix seems to have been a combination of expediency and French nationalism. CNES and the Army were ready to do the first test launch of the Diamant rocket, and these sort of first tests are usually just done with a ballast payload, so that if the rocket fails nothing important is lost. In this case, CNES seems to have thought that they might as well take the risk of putting a satellite on the rocket, because if it succeeded it would give France the honour of being the third nation to launch its own satellite. As FR-1 was already at Vandenberg being prepped for launch, it was easier to pull out FR-2, which was a smaller satellite and already pretty well completed development, to become the payload for the Diamant flight. If the Diamant launch was then delayed for some reason, or failed, France would still become one of the earliest nations with a satellite in orbit with the launch of FR-1. So, as we say in Australia, they "had a bob both ways" on gaining some space kudos!

ISIS-X: International Cooperation Exploring the Ionosphere

NASA must now have a virtual production line, churning out Explorer satellites like sausages for launch about two weeks apart, if the past month has been anything to go by: there was Explorer-29 on 6 November, Explorer-30 on 19 November and now Explorer-31 on 29 November. This latest Explorer is also known as Direct Measurement Explorer-A (DME-A) and it represents the American half of a joint ionospheric research program with Canada, which is collectively known as International Satellites for Ionospheric Studies-X (ISIS-X).


Explorer-31 ready for shipment to Vandenberg Air Force Base

Explorer-31 weighs about 218lb and carries seven experiments that can be operated simultaneously or sequentially, taking direct measurements immediately in front of, and behind, the satellite's path. Solar cells that cover about 15 percent of the satellite’s surface provide its power. Like FR-1, this small spacecraft does not carry an onboard tape recorder, so its data has to be transmitted ‘live’ when it is turned on while passing over one of NASA’s Space Tracking and Data Acquisition Network (STADAN) ground stations.

Explorer-31 was launched from Vandenberg Air Force Base by a Thor Agena-B rocket, riding piggy-back with its Canadian ISIS-X counterpart, Alouette-2. This satellite has been developed by the Canadian Defence Research Board-Defence Research Telecommunications Establishment, as part of the same programme under which Canada’s first satellite, Alouette-1 was launched back in September 1962. This second Alouette has been developed from the original Alouette-1 back-up satellite, although it has more experiments and is a more sophisticated satellite than its predecessor. The name “Alouette” (skylark) comes from that popular French-Canadian folk song that I think everyone knows, even if they have never learned French.


Photos of Alouette-2 and Explorer-31 are hard to find, but they are reasonably well depicted on this souvenir cover marking their joint launch. It's lucky my Uncle Ernie goes to so much effort to build his space philately collection

At 323lb, Alouette is much larger than Explorer-31, but the two satellites have been placed in near identical orbits so that their data can complement each other. Alouette-2 is designed to explore the ionosphere using the technique of ‘topside sounding’, which determines ion concentration within the ionosphere by taking measurements from above the ionosphere. Alouette-1 was also a topside sounder. The satellite is carrying five instruments, three of which utilise two very long dipole antennae (one is 240ft, the other 75ft long). Alouette 2 also has no onboard data recorder and downloads its data when passing over stations in NASA’s STADAN network.

Luna-8-Fourth Time Unlucky!

Despite its early lunar exploration triumphs with Luna-1, 2 and 3 (which we in the West nicknamed “Lunik”, to match with Sputnik), the USSR has not had much success since with its Moon program. USSR’s Luna-8 probe, launched on 3 December, was the Soviet Union’s fourth attempt to soft-land a spacecraft on the lunar surface this year. Being able to land safely on the Moon is a technique that both the United States and the Soviet Union need to master in order to successfully accomplish a manned lunar landing later this decade. Two of this year’s attempts, Luna-5 and Luna-7, crashed while attempting to land. Luna 6 went off course and missed the Moon, flying by at 99,000 miles.

Luna-8, intended to land in the Oceanus Procellarum (Ocean of Storms), also failed in its mission yesterday. According to TASS, the “probe’s soft-landing system worked normally through all stages except the final touch-down”. It looks like Luna-8 has followed Luna-7 in crashing on the Moon. Let’s see if Russia has better luck with Luna 9!

Gemini 7-Settling in for a Long Haul

Just a day after Luna-8, the latest mission in NASA’s Gemini program, Gemini-7 was launched on what is planned to be a two-week endurance mission, that will include a rendezvous with the Gemini-6 spacecraft. I’m not going to write about this mission, as one of my colleagues here will do that later this month, but I couldn’t sign off on this article without mentioning the latest addition to the impressive list of spacecraft launched in the past few weeks. The Space Race is really speeding up!