Tag Archives: space

[November 12, 1967] Still in the Race! (Apollo-4, Surveyor-6, OSO-4 and Cosmos-186-188)



by Kaye Dee

As I noted in my previous article, October was such a busy month for space activity that I had to hold over several items for this month. But November has already provided us with plenty of space news as well. Even though both American and Soviet manned spaceflight is currently on hold while the investigations into their respective accidents continue, preparations for putting astronauts and cosmonauts on the Moon are ongoing and the Moon race is still on!

“Oh, it’s terrific, the building’s shaking!”

Opening the door to human lunar exploration needs an immensely powerful booster, and the successful launch of Apollo-4 a few days ago on 9 November has demonstrated that NASA has a rocket that is up to the task. Although the Saturn 1B rocket intended to loft Apollo Earth-orbiting missions has already been tested, Apollo-4 (also designated SA-501) marked the first flight of a complete Saturn V lunar launcher.

The sheer power of the massive rocket took everyone by surprise. When Apollo-4 took off from Pad 39A at the John F. Kennedy Space Centre, the sound pressure waves it generated rattled the new Launch Control Centre, three miles from the launch pad, causing dust to fall from the ceiling onto the launch controllers’ consoles. At the nearby Press Centre, ceiling tiles fell from the roof. Reporting live from the site, Walter Cronkite described the experience: “… our building’s shaking here. Our building’s shaking! Oh, it’s terrific, the building’s shaking! This big blast window is shaking! We’re holding it with our hands! Look at that rocket go into the clouds at 3000 feet! … You can see it… you can see it… oh the roar is terrific!”

Firing Room 1 in the Launch Control Centre at Kennedy Space Centre, under construction in early 1966. The Apollo-4 launch was controlled from here

Could it be that the sound of a Saturn V launch is one of the loudest noises, natural or artificial, ever heard by human beings? (Apart, perhaps, from the explosion of an atomic bomb?) I hope I’ll get the opportunity to hear, and see, a Saturn V launch for myself at some point in the future.

The Power for the Glory

Developed by Dr. Wernher von Braun’s team at NASA’s George C. Marshall Space Flight Centre, everything about the Saturn V is impressive. The 363-foot vehicle weighs 3,000-tons and the thrust of its first-stage motors alone is 71 million pounds! No wonder it rattled buildings miles away at liftoff!

The F-1 rocket motor, five of which power the Saturn V’s S1-C first stage, is the most powerful single combustion chamber liquid-propellant rocket engine so far developed (at least as far as we know, since whatever vehicle the USSR is developing for its lunar program could have even more powerful motors).

The launcher consists of three stages. The Boeing-built S1-C first stage, when fully fuelled with RP-1 kerosene and liquid oxygen, has a total mass of 4,881,000 pounds. Its five F-1 engines are arranged so that the four outer engines are gimballed, enabling them to turn so they can steer the rocket, while the fifth is fixed in position in the centre. Constructed by North American Aviation and weighing 1,060,000 pounds, the S-II second stage has five Rocketdyne-built cryogenic J-2 engines, powered by liquid hydrogen and liquid oxygen. They are arranged in a similar manner to the first stage engines, and also used for steering. The Saturn V’s S-IVB third stage has been built by the Douglas Aircraft Company and has a single J-2 engine using the same cryogenic fuel as the second stage. Fully fuelled, it weighs approximately 262,000 pounds. Guidance and telemetry systems for the rocket are contained within an instrument unit located on top of the third stage.

Soaring into the Future

This first Saturn V test flight has been tremendously important to the ultimate success of the Apollo programme, marking several necessary first steps: the first launch from Complex 39 at Cape Kennedy, built especially for Apollo; the first flight of the complete Apollo/Saturn V space vehicle; and the first test of Apollo Command Module’s performance re-entering the Earth's atmosphere at a velocity approximating that expected when returning from a lunar mission. In addition, the flight enabled testing of many modifications made to the Command Module in the wake of the January fire. This included the functioning of the thermal seals used in the new quick-release spacecraft hatch design.

 
Up, Up and Away!

Apollo-4 lifted off on schedule at 7am US Eastern time. Just 12 minutes later it successfully placed a Command and Service Module (CSM), weighing a record 278,885 pounds, into orbit 115 miles above the Earth. This is equivalent to the parking orbit that will be used during lunar missions to check out the spacecraft before it embarks for the Moon.

After two orbits, the third stage engine was re-ignited (itself another space first) to simulate the trans-lunar injection burn that will be used to send Apollo missions on their way to the Moon. This sent the spacecraft into an elliptical orbit with an apogee of 10,700 miles. Shortly afterwards, the CSM separated from the S-IVB stage and, after passing apogee, the Service Module engine was fired for 281 seconds to increase the re-entry speed to 36,639 feet per second, bringing the CSM into conditions simulating a return from the Moon.


An image of the Earth taken from an automatic camera on the Apollo-4 Command Module

After a successful re-entry, the Command Module splashed down approximately 10 miles from its target landing site in the North Pacific Ocean and was recovered by the aircraft carrier USS Bennington. The mission lasted just eight hours 36 minutes and 54 seconds (four minutes six seconds ahead of schedule!), but it successfully demonstrated all the major components of an Apollo mission, apart from the Lunar Module (which is still in development) that will make the actual landing on the Moon’s surface. In a special message of congratulations to the NASA team, President Johnson said the flight “symbolises the power this nation is harnessing for the peaceful exploration of space”.

Goodbye Lunar Orbiters…

While Apollo’s chariot was readied for its first test flight, NASA has continued its unmanned exploration of the Moon, to ensure a safe landing for the astronauts. In August, Gideon gave us an excellent summary of NASA’s Lunar Orbiter programme, the first three missions of which were designed to study potential Apollo landing sites. Lunar Orbiter-3, launched back in February this year, met its fate last month when the spacecraft was intentionally crashed into the lunar surface on 9 October. Despite the failure of its imaging system in March, Lunar Orbiter-3 was tracked from Earth for several months for lunar geodesy research and communication experiments. On 30 August, commands were sent to the spacecraft to circularise its orbit to 99 miles in order to simulate an Apollo trajectory.

Lunar Orbiter-3 image of the Moon's far side, showing the crater Tsiolkovski

Each Lunar Orbiter mission has been de-orbited so that it will not become a navigation hazard to future manned Apollo spacecraft. Consequently, before its manoeuvring thrusters were depleted, Lunar Orbiter 3 was commanded on 9 October to impact on the Moon, hitting the lunar surface at 14 degrees 36 minutes North latitude and 91 degrees 42 minutes West longitude. Co-incidentally, Lunar Orbiter-4, which failed back in July and could not be controlled, decayed naturally from orbit and impacted on the Moon on 6 October. Lunar Orbiter-5, launched in August, remains in orbit.

…Hello Surveyor 6

A month after the demise of the Lunar Orbiters, NASA’s Surveyor-6 probe has made a much softer landing on the lunar surface, achieving a “spot on” touchdown in the rugged Sinus Medii (Central Bay – it’s in the centre of the Moon's visible hemisphere) on 10 November (Australian time; 9 November in the US). This region is a potential site for the first Apollo landing, but since it appeared to be cratered and rocky, mission planners needed to know if its geological structure (different to the ‘plains’ areas where earlier Surveyor missions have landed) could support the weight of a manned Lunar Module.

Only an hour after landing safely, Surveyor-6 was operational and sent back pictures of a lunar cliff about a mile from its landing point, which has been described as “the most rugged feature we have yet seen on the Moon”. The first panoramas from Surveyor indicate that the landing site is not as rough as anticipated, and seems suitable for an Apollo landing.

Deep Space Network stations in Australia are helping to support the Surveyor-6 mission, as well as Surveyor-5, that landed in the Mare Tranquilitatis (Sea of Tranquillity) in September and is still operational. Hopefully both spacecraft will survive the next lunar night, commencing two weeks from now. NASA plans to send one more Surveyor probe to the Moon, in January, so look out for a review of the completed Surveyor programme early next year.

Watching the Sun for Astronaut Safety

With the Sun moving towards its maximum activity late next year or early in 1969, and likely to still be very active when the Apollo landing missions are occurring (assuming that the programme resumes some time within the next 12 months), NASA has wasted no time in launching another spacecraft in its Orbiting Solar Observatory (OSO) series, to help characterise the effects of solar activity in deep space. A NASA spokesman was recently quoted as saying that “A study of solar activity and its effect on Earth, aside from basic scientific interest, is necessary for a greater understanding of the space environment prior to manned flights to the Moon”.

OSO-4 under construction

Launched on 18 October, OSO-4 (also known as OSO-D) is the latest satellite developed under the leadership of Dr. Nancy Grace Roman, NASA’s first female executive, who is Chief of Astronomy and Solar Physics. The satellite is equipped to measure the direction and intensity of Ultraviolet, X-ray and Gamma radiation, not just from the Sun, but across the entire celestial sphere.

The OSO-4 spacecraft, like its predecessors, consists of a solar-cell covered “sail” section and a “wheel” section that spins about an axis perpendicular to the pointing direction of the sail. The sail carries a 75 pound payload of two instruments that are kept pointing on the centre of the Sun. The wheel carries a 100 pound payload of seven instruments and rotates once every two seconds. This rotation enables the instruments to scan the solar disc and atmosphere as well as other parts of the galaxy. The satellite’s extended arms give it greater axial stability.

Hopefully, OSO-4 will have a long lifespan, producing data as solar activity increases across the Sun’s cycle, and enhancing safety for the Apollo and Soviet crews who will venture beyond the protection of the van Allen belts on their way to the Moon.

What are the Soviets Up To?

The USSR has been remarkably quiet about its manned lunar programme. One could almost think that they had given up racing Apollo to the Moon, if not for the rumours and hints that constantly swirl around. Rumours abounded at the time of the tragically lost Soyuz-1 mission that it was intended to be a space spectacular, debuting in the Soyuz a new, much larger spacecraft which would participate in multiple rendezvous and docking manoeuvres, and possibly even crew transfers, with one or more other manned spacecraft.

Such a space feat has yet to occur, but the mysterious recent space missions of Cosmos-186 and 188 suggest that the Soviets have something of the sort in mind for the future, and are still quietly working to develop the techniques that they will need for lunar landing missions and/or a space station programme.

It Takes Two to Rendezvous

On 27 October, Cosmos-186 was launched into a low Earth orbit, with a perigee of 129 miles and an apogee of 146 miles and an orbital period of 88.7 minutes. Cosmos-187 was launched the following day, and there has been speculation that it was intended to be part of a rendezvous and docking demonstration with Cosmos-186 but was placed into an incorrect orbit. However, as is so often the case with Cosmos satellites, the Soviet authorities only described their missions as continuing studies of outer space and testing new systems, so the actual purpose of this mission remains a mystery.


A rare Soviet illustration of what is believed to be the Cosmos-186-188 docking

However, Cosmos-186 was joined by a companion on 30 October, when Cosmos-188 was placed into a very similar orbit with a separation of just 15 miles. This clearly demonstrates the precision with which the USSR can insert satellites into orbit. The two spacecraft then proceeded to perform the first fully automated space docking (unlike the manual dockings performed by Gemini missions from Gemini-8 onwards), just an hour after Cosmos-188 was launched. Soviet sources, and some electronic eavesdropping by the now-famous science class at Kettering Grammar School in England, using surprisingly unsophisticated equipment, indicate that Cosmos-186 was the ‘active’ partner in the docking. It used its onboard radar system to locate, approach and dock with the ‘passive’ Cosmos-188.

While the two spacecraft were mechanically docked, it seems that an electrical connection could not be made between them, and no other manoeuvres appear to have been carried out while Cosmos-186 and 188 were joined together. Perhaps there were technical issues surrounding the docking, but an onboard camera on Cosmos-186 did provide live (if rather low quality) television images of the rendezvous docking and separation, and some footage was publicly broadcast.

After three and a half hours docked together, the two satellites separated on command from the ground and continued to operate separately in orbit. Cosmos-186 made a soft-landing return to Earth on 31 October, lending credence to the speculations that it was testing out improvements to the Soyuz parachute system, while Cosmos-188 reportedly soft-landed on 2 November.

Speculating on Soviet Space Plans

Was Cosmos-186 a Soyuz-type vehicle, possibly testing out modifications made to prevent a recurrence of the re-entry parachute tangling that apparently led to the loss of Soyuz-1 and the death of Cosmonaut Komarov? Building on speculations from the time of the Soyuz-1 launch, there have even been suggestions that Cosmos-186, while unmanned, was a spacecraft large enough to hold a crew of five cosmonauts. There is also speculation that Cosmos-188 may have been the prototype of a new propulsion system for orbital operations. Does this mean, then, that the USSR is planning some kind of manned spaceflight feat in orbit to celebrate the 50th anniversary of the Communist Revolution? Or that it will soon attempt a circumlunar flight, to reach the Moon ahead of the United States?

Whatever their future plans may be, the automated rendezvous and docking of two unmanned spacecraft in Earth orbit shows that the USSR’s space technology is still advancing rapidly. The joint Cosmos 186-188 mission proves that it is possible to launch small components and assemble them in space to make a larger structure, even without the assistance of astronauts. This means that massive rockets like the Saturn V might not be required to construct space stations in orbit, or even undertake lunar missions, if the project is designed around assembling the lunar spacecraft in Earth orbit. Has the Cosmos 186-188 mission therefore been a hint of what the USSR's Moon programme will look like, in contrast to Apollo? Only time will tell…




[October 28, 1967] Unveiling Venus – at Least a Little (Venera-4 and Mariner-5)



by Kaye Dee

Despite the hiatus in manned spaceflight missions while the Apollo-1 and Soyuz-1 accident investigations continue, October has been a very busy month for space activities – so much so that I’ve had to defer writing about some of this month’s events to an article next month!

Spaceflight Slowdown?

4 October saw the tenth anniversary of the launch of Sputnik-1, the Soviet satellite that surprised the world and ushered in the Space Age and the Space Race. Since that first launch, the pace of space exploration has been breathtaking, far surpassing what even its most ardent proponents in the 1950s anticipated.

In the famous Colliers’ “Man Will Conquer Space Soon” article series, reproduced even here in Australia, Dr Wernher von Braun predicted that the first manned mission to the Moon would not occur until the late 1970s

As part of the USSR’s Sputnik 10th anniversary celebrations, many space-focussed newspaper articles were published.  One of these, written by Voskhod-1 cosmonaut and engineer Dr. Konstantin Feoktistov, strongly hinted that Russia's next major space feat would be the launch of an orbiting space platform. This would certainly be an important development in establishing a permanent human presence in space and put the Soviet Union once again ahead in the Space Race, especially if the US and USSR lunar programmes are faltering.

Earlier this month, the head of the NASA, Mr James Webb, said it was increasingly doubtful that either the United States or the Soviet Union would land people on the Moon in this decade. He delivered a gloomy prognostication for the second decade of the Space Age, saying the entire US programme was “slowing down”. Mr. Webb criticised recent Congressional cuts of 10 per cent to the space-agency budget projected for the year ending next 30 June, saying that NASA was laying off over 100,000 people.

Administrator Webb also cast doubt on some proposed NASA planetary exploration missions. “The serious question is whether or not this country wants to start a Voyager mission to Mars in 1968”, he is reported to have said. The Voyager programme is a 10-year project that envisages sending two spacecraft to Mars (one to orbit around it, the other to land on its surface), with the additional possibility of landing a spacecraft on Venus and exploring Jupiter. These would undoubtedly be exciting missions that would reveal new knowledge about these planets, but Mr Webb said he had virtually no money for the Voyager programme as a result of the budget cut.

Parallel Planetary Probes: Venera-4 and Mariner-5

But possible future downturns in space activity can’t detract from this month’s big news: the safe arrival of two spacecraft at Venus!

Back in June, a suitable launch window meant that both the USSR and NASA sent spacecraft on their way to our closest planetary neighbour. First off the blocks was the Soviet Union, which launched its Venera-4 mission (generally known in the West as Venus-4) on 12 June from the Baikonur Cosmodrome in Kazakhstan. NASA’s Mariner-5 followed two days later, on 14 June, launched from Cape Kennedy.

Pre-launch photo of Venera-4

Venera-4 is the most recent Soviet attempt to reach the planet after Venera-2 and 3 failed to send back any data in March last year. There is some speculation that, since its previous Venus mission employed twin spacecraft, Russia may have also intended this Venus shot to be a two-spacecraft mission. It’s possible that the short-lived Cosmos 167 spacecraft, launched on 17 June, was Venera-4’s twin that failed to leave orbit, although with the secrecy that surrounds so much of the Soviet space program, who knows if we’ll ever get the truth of it? Venera-4 was itself first put into a parking orbit around the Earth before being launched in the direction of Venus. A course correction was performed on 29 July, to ensure that the probe would not miss its target.


Mariner-5 being prepared for launch

Mariner-5 is NASA’s first Venus probe since Mariner-2 in 1962. Originally constructed as a backup for the Mariner-4 Mars mission, that probe’s success meant that the spacecraft could be repurposed to take advantage of the 1967 Venus launch window. Interestingly, I understand from my friends at the Sydney Observatory that there were initial suggestions to send the Mariner back-up spacecraft to either comet 7P/Pons–Winnecke or comet 10P/Tempel, before the Venus mission was decided upon. While it’s useful to have additional data from Venus, it would have been fascinating to send an exploratory mission to a comet, since we know so little about these transient visitors to our skies. 

At its closest, Venus is just 36 million miles from Earth, but Mariner-5 followed a looping flightpath of 212 million miles, to enable it to fly past Venus at a distance of around 2,500 miles (about 10 times closer than Mariner-2’s flyby). Australia’s Deep Space Network (DSN) stations at Tidbinbilla, near Canberra, and Island Lagoon, near the Woomera Rocket Range, were respectively the prime and back-up monitoring and control stations for Mariner-5’s mid-course correction burn that placed it on its close flyby trajectory. 

Keys to Unlock a Mystery

Venus has always been a planet shrouded in mystery since its thick, cloudy atmosphere prevents any telescopic observation of its surface. For this year’s launch window, one could almost believe that Cold War tensions had been overcome and the USSR and USA had agreed to work together on a Venus exploration program, given that their two spacecraft effectively complement each other.

Venera-4’s mission was announced as “direct atmospheric studies”, with Western scientists speculating that this meant that it would follow Venera-3 in attempting to land on the planet’s surface. The spacecraft’s arrival at Venus has proved this speculation to be correct, and the few images of Venera-4 now available show the 2,436 lb spacecraft to be near-identical to Venera-3. 11 ft high, with its solar panels spanning 13 ft, Venera-4 carried a 1 metre (3 ft 3 in) spherical landing capsule that was released to descend through the atmosphere while the main spacecraft flew past Venus and provided a relay station for its signals.
Soviet models of the Venera-4 spacecraft and its descent capsule

The 844 lb descent capsule was equipped with a heat shield, capable of withstanding temperatures up to 11,000°C (19,800 °F) and had a rechargeable battery providing 100 minutes of power for the instruments and transmitter. During the flight to Venus the battery was kept charged by the solar panels of the carrier spacecraft. Supposedly, the entire Venera-4 probe was sterilised to prevent any biological contamination of Venus, but some Western scientists have cast doubt on this claim. The capsule was pressurized up to 25 atmospheres since the surface pressure on Venus was unknown until Venera-4’s arrival.
Picture of the Venera-4 descent capsule released by the USSR. Western scientists are wondering what that heat shield is made of

Information recently released by the Soviet Academy of Sciences has said that the descent vehicle carried two thermometers, a barometer, a radio altimeter, an atmospheric density gauge, 11 gas analysers, and two radio transmitters. Scientific instruments on the main body of the spacecraft included a magnetometer and charged particle traps, both for measuring Venus' magnetic field and the stellar wind on the way to Venus, an ultraviolet spectrometer to detect hydrogen and oxygen gases in Venus' atmosphere, and cosmic ray detectors.


Much smaller than Venera-4, the 5401b Mariner-5 was designed to flyby Venus taking scientific measurements: it was not equipped with a camera, as NASA considered this un-necessary in view of the planet’s cloud cover. NASA controllers initially planned a distant flyby of Venus, to avoid the possibility of an unsterilised spacecraft crashing into the planet, but the final close flyby was eventually chosen to improve the chances of detecting a magnetic field and any interaction with the solar wind.

As Mariner-4’s backup, Mariner-5 has the same basic body – an octagonal magnesium frame 50 in diagonally across and 18 in high. However, since it was heading to Venus instead of Mars, Mariner-5 had to be modified to cope with the conditions much closer to the Sun. Due to its trajectory, Mariner-5 needed to face away from the Sun to keep its high-gain antenna pointed at Earth. Its solar panels were therefore reversed to face aft, so they could remain pointed at the Sun. They were also reduced in size, since closer proximity to the Sun meant less solar cells were needed to generate the same level of power. Mariner-5's trajectory also required the high-gain antenna to be placed at a different angle and made moveable as part of the radio occultation experiment. A deployable sunshade on the aft of the spacecraft was used for thermal control, and Mariner-5 was fully attitude stabilized, using the sun and Canopus as references.
View from below showing the main components of Mariner-5

Mariner-5’s prime task was to determine the thickness of Venus’ atmosphere, investigate any potential magnetic field and refine the understanding of Venus’ gravity. Its suite of instruments included: an ultraviolet photometer, a two-frequency beacon receiver, a S-Band radio occultation experiment, a helium magnetometer, an interplanetary ion plasma probe and a trapped radiation detector. The spacecraft instruments measured both interplanetary and Venusian magnetic fields, charged particles, and plasmas, as well as the radio refractivity and UV emissions of the Venusian atmosphere.

During its 127-day cruise to Venus, Mariner-5 gathered data on the interplanetary environment. In September and October, observations were co-ordinated with measurements made by Mariner-4, which is on its own extended mission, following its 1965 encounter with Mars. Similar observations were made by Venera-4 during its flight to Venus, which found that the concentration of positive ions in interplanetary space is much lower than expected. 

Missions Accomplished

A few days before it arrived at Venus, the Soviet Academy of Sciences requested assistance from the massive 250 feet radio telescope at the Jodrell Bank Observatory in the UK, asking the facility to track Venera-4 for the final part of its voyage. This has provided Western scientists with some independent verification of Soviet claims about the mission. Jodrell Bank even announced the landing of the Venera-4 descent capsule more than seven hours before it was reported by the Soviet news agency Tass!

On 18 October, Venera-4’s descent vehicle entered the Venusian atmosphere, deploying a parachute to slow its fall onto the night side of the planet. According to a story that one of the Sydney Observatory astronomers picked up from a Soviet colleague at a recent international scientific conference, because there was still the possibility that, beneath its clouds Venus might be largely covered by water (one of the main theories about its surface), the capsule was designed to float if it did land in water. Uniquely, the spacecraft’s designers made the lock of the capsule using sugar, which would dissolve in liquid water and release the transmitter antennae in the event of a water landing.

Although the Venera-4 capsule had 100 minutes of battery power available and sent back valuable data as it fell through the atmosphere, Jodrell Bank observations, and the official announcement from Tass, indicated that the signal cut off around 96 minutes. While it was initially thought that this meant that the capsule had touched down on the surface, and there were even early reports claiming it had detected a rocky terrain, questions are now being raised as to whether it actually reached the surface, or if the spacecraft failed while still descending. Tass has said that the capsule stopped transmitting data because it apparently landed in a way that obstructed its directional antenna. A recording of the last 20 seconds of signal received at Jodrell Bank was delivered to Vostok-5 cosmonaut Valery Bykovsky during a visit to the radio telescope on 26 October. Perhaps once it is fully analysed, the question of the capsule’s fate will be clarified. Of course, if the landing is confirmed, Venera-4 will have made history with the first successful landing and in-situ data gathering on another planet.

Diagram illustrating the major milestones during the Mariner-5 encounter with Venus on 19 October
Mariner-5 swept past Venus on 19 October, making a close approach of 2,480 miles. At 02:49 GMT the Island Lagoon DSN station commanded Mariner 5 to prepare for the encounter sequence and 12 hours later its tape recorder began to store science data. Tracked by the new 200 in antenna at NASA’s Goldstone tracking station, Mariner reached its closest encounter distance at 17:35 GMT, and minutes later entered the “occultation zone” before passed behind Venus as seen from the Earth. 17 minutes later, Mariner-5 emerged from behind Venus and completed its encounter at 18:34 GMT.

The following day, Mariner-5 began to transmit its recorded data back to Earth. Over 72½ hours there were three playbacks of the data to correct for missed bits. Mariner-5's flight path following its Venus encounter is bringing it closer to the Sun than any previous probe and the intention is for to be tracked until its instruments fail.

A Peep Behind the Veil

So what have we learned about Venus from these two successful probes? There has long been controversy among astronomers as to whether Venus is a desert planet, too hot for life, or an ocean world, covered in water. The data from both Venera and Mariner has come down firmly on the side of the desert world hypothesis.
Astronomical artist Mr. Chesley Bonestell's 1947 vision of a desert Venus

The effects of Venus’ atmosphere on radio signals during Mariner-5’s occultation experiment have enabled scientists to calculate temperature and pressure at the planet's surface as 980°F and 75 to 100 Earth atmospheres. These figures disagree with readings from Venera 4 mission, which indicate surface temperatures from 104 to 536°F and 15 Earth atmospheres’ pressure, but both sets of data indicate a hellish world, with little evidence of water and an extremely dense atmosphere.

Venera has established that Venus’ atmosphere consists almost exclusively of carbon dioxide with traces of hydrogen vapour, very little oxygen, and no nitrogen. Mariner-5's data indicates that the atmosphere of Venus ranges from 52 to 87 per cent carbon dioxide, with both hydrogen and oxygen in the upper atmosphere: it found no trace of nitrogen. It detected about as much hydrogen proportionately as there is in the Earth's atmosphere. Mariner scientists, however, have pointed out that further analysis and refinements of both Russian and American data could clear up the apparent discrepancies.

Although Mariner’s instruments could not penetrate deeply enough into Venus’ atmosphere to obtain surface readings, they determined that the outer fringe of the atmosphere, where atoms were excited by direct sunlight, had a temperature of 700°F, below which was a layer close to Zero degrees, lying about 100 miles above the surface. Chemicals in the atmosphere, or electrical storms far more intense than those of Earth, give the night side of the planet an ashen glow.
A view of the Mariner-5 control room at JPL during the Venus encounter

A fascinating finding is that the dense atmosphere acts like a giant lens, bending light waves so they travel around the planet. Both American and Russian researchers agree that astronauts standing on the surface would feel like they were “standing at the bottom of a giant bowl”, with the back of their own heads a shimmering mirage on the horizon. Vision would be so distorted that the sun would appear at sunset to be a long bright line on the horizon: its light could penetrate the atmosphere, but not escape because of scattering, so that it would appear as a bright ball again for a time at sunrise until the atmosphere distorted its rays.

Neither spacecraft found any evidence of radiation belts comparable to the Van Allen belts around the Earth, and both established that Venus has only a very slight magnetic field, less than 1% that of the Earth. Observing how much Venus' gravity changed Mariner 5's trajectory established that Venus’ mass is 81.5 % that of Earth. Tracking of radio signals from Mariner-5 as it swept behind Venus, has shown that the planet is virtually spherical, compared with Earth's slightly pear-shape. (Other celestial mechanics experiments conducted with Mariner-5 obtained improved determinations of the mass of the Moon, of the astronomical unit, and improved ephemerides of Earth and Venus).

Life on Venus?

Although neither spacecraft was equipped to look for life on Venus, their findings will undoubtedly contribute to the growing scientific controversy over whether life does, or can, exist there. Based on its Venera results, the Soviet Union has said that Venus is “too hot for human life”, although Sir Bernard Lovell, the Director of Jodrell Bank Station, has suggested that future probes might find remnants of some early organic development, even if conditions today make life highly unlikely. However, German/American rocket pioneer and space writer Dr Willy Ley, has suggested there might be the possibility of “a very specialised kind of life on Venus”, possibly at the poles, which he believes would be cooler that the currently measured temperatures. The USSR’s Dr Krasilnikov has said that Earth bacteria could withstand the atmospheric pressure on Venus and might even be able to survive the intense heat. 


But just as Mariner-4 demolished fantasies of canals made by intelligent Martians, so the results from Venera-4 and Mariner-5, in allowing us a glimpse behind its cloudy veil, have swept aside any number of science fiction visions of Venus. Edgar Rice Burroughs’ verdant Amtor, with its continents and oceans, and Heinlein’s swampy Venus are no more. They have been replaced by a new vision of a hellish Venus, almost certainly inimical to life, with fiery storms raging in a dense, metal melting atmosphere which traps and bends light waves in a weird manner. I wonder where the SF writers of the future will take it?





[August 24, 1967] Up and Around (Lunar Orbiter)


by Gideon Marcus

Wall to Wall Coverage

When President John F. Kennedy, on May 4, 1961, commited the United States to "achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth," he initiated not one, but several parallel endeavors.

To land a man on the Moon requires not just a spaceship, a rocket, and the infrastructure to support them, it requires reconnaissance.  When the President made that speech, the closest photographs of the lunar surface had been taken from 250,000 miles away.  The smallest details our 'scopes could make out at the time were about a quarter mile wide.  This is fundamentally useless when trying to determine whether a given site is flat enough to be suitable for landing a spacecraft.  Guessing the height of lunar mountains from their shadows at such resolution was similarly impossible.  Who knew how many hidden peaks lurked to snag Apollo astronauts on their way down?

Project Ranger was NASA's first major lunar project, each spacecraft taking pictures of the Moon before crashing into it. Three successful missions achieved resolutions as sharp as a foot and a half.  Good enough, resolution-wise, but can you imagine having to send a Ranger for any one of dozens of potential landing sites?  The cost would be prohibitive.  Ranger's follow-up, the soft-landing Surveyor was able to determine if the lunar surface could be landed on, but it was no better at mapping the Moon than Ranger.


Potential Apollo site areas

As early as 1960, NASA knew it would need an orbiting spacecraft if it was ever to thoroughly map the Moon.  There was Earthly precedent — the Discoverer spy satellite was at that time already taking high resolution photographs of the Earth for military surveillance purposes.  But getting a spacecraft all the way to the Moon, and it being able to provide footage of 99% of the lunar surface?  That was another kettle of fish.  That required a big rocket to carry a big satellite that could carry a big imaging system.  TV imaging was quickly discarded as being too bulky and low resolution.

In 1962, Space Technology Laboratories put forth an orbiter proposal that used a film system, with each frame to be imaged and transmitted back to Earth.  This was the first workable design, and combined with elements of an RCA proposal, NASA was able to officially solicit contractors for the project in mid-1963.  Ultimately, Boeing won the contract, in large part because of their design's use of Eastman Kodak's new dry film development system.  Their camera would be more reliable, lighter, and less susceptible to solar flares ruining the photos.

Like Scales Falling from the Eyes

It took more than two years of development, but by 1966, the 850 pound Lunar Orbiter was ready.  Using the same Atlas Agena as Ranger, the first spacecraft roared off to the Moon on August 10.  Despite some navigational failures and a bit of overheating, Lunar Orbiter 1 braked into lunar orbit on August 14.  The next day, the spacecraft began sending back pictures–not of the Moon, but of previously developed images, to test the system.

Issues plagued the high-resolution camera system throughout the mission, smearing many of the photos.  But by August 29, Lunar Orbiter 1 was able to take 205 pictures of the Moon at altitudes ranging from 1000 to just 30 miles (no air means an orbit can be as low as you like), readout of which began August 30 and finished September 16.  All of the major Apollo landing sites were photographed, and at high contrast.  The cherry on top of the lunar sundae was this photograph of the Earth, the first taken from the vicinity of the Moon, and the longest distance snapshot of our home planet:

This did not mark the end of the first Lunar Orbiter's mission.  For the next six weeks, NASA continued to receive telemetry and data from the probe's micrometeor detectors (no hits recorded).  But by October 28, Lunar Orbiter was a sick ship, indeed, running low on stabilizing jet fuel, overheating, and losing power.  It was starting to broadcast erratically, which threatened to interfere with communications with the upcoming Lunar Orbiter 2.  So, on October 29, during its 577th orbit, Lunar Orbiter 1 was directed to impact with the Far Side of the Moon.

Two for Two

Just eight days later, on November 6, Lunar Orbiter 2 headed for the Moon.  Much of it had been painted black, which addressed the navigation issues (glare blotting out the guide star Canopus).  Overheating was avoided by frequent maneuvers to minimize exposure of heat-absorbing surfaces to the sun.  By November 18, the spacecraft was snapping perfect medium resolution (for broad range) and high res (for potential landing site) pictures of the Moon from a 30 mile orbit.  Mapping was done by the 26th and readout by December 7.  Among the most significant shots included one of the Ranger 8 impact site and another dramatic photograph of Copernicus crater:


(C1 is Ranger's impact crater)


Copernicus from the side

817 pictures were taken in all, only six of which were lost due a glitch in an amplifier on the final day of readout.  Lunar Orbiter 2 is still in orbit, returning data.  In fact, it was hit three times by micrometeors back in November, probably by the same cometary fragments that give us our annual Leonids meteor display.

Following Up

Lunar Orbiter 3, launched February 7, 1967, had a more refined mission than its predecessors.  Its job was to focus on promising sites its sisters had found rather than mapping willy nilly.  NASA engineers planned to closely study its orbit around the Moon for gravitational wiggles, thus making a map of the Moon's insides as well as its surface.

Unfortunately, while the spacecraft was shooting pictures, the film advance mechanism started to balk.  NASA terminated photography on February 23 after just 211 pictures.  On March 4, with 72 photos still left to be transmitted back to Earth, the film advance motor burned out.  Still, had NASA not stopped shooting pictures earlier, it is likely they would have lost all of the photos.

The shots they did get were unprecedentedly good, including this shot of the Surveyor 1 landing site:

Gilding the lily

At this point, the Lunar Orbiter program had already fulfilled its main requirement: documenting all possible Apollo landing sites.  Now it was time to push the system to its limits.  Lunar Orbiter 4 went up on May 4, 1967, beginning photography on the 11th.  The spacecraft immediately ran into trouble.  The thermal door that regulated camera temperature wasn't closing properly, letting light leak through.  This led to a scramble to test the problem on the ground.  Engineers were able to keep the door partially open, threading the needle between too much glare and dropping the temperature such that condensation fogged the film.  The readout encoder started going, too.  NASA cut off photography atfter 163 shots, but because the encoder was bleating erroneous signals, engineers had to work out a tedious, manual system for film advance and readout.  Still, they got it done by June 1, resulting in 99% coverage of the Moon's near side at ten times the resolution possible from Earth.  This revealed a bonanza of selenological detail.  Plus, 80% of the Moon's Far Side had now been mapped, too.

The last Lunar Orbiter went up on August 1 with a primarily scientific mission.  Shooting began August 6, and on August 8, the spacecraft took an historic shot of the full Earth:

All of the planned 212 shots were taken by August 18 covering five Apollo sites, 36 science sites, and 23 previously unphotographed sites on the lunar Far Side.  An unqualified success, the spacecraft will enter the next phase of its life this week, returning data on the lunar environment and gravitational field along with the still orbiting Lunar Orbiters 2 and 3 (contact with #4 was lost July 17).

Unprecedented

It was just a few years ago that it seemed the Moon was a curse.  Most of the early Pioneer probes failed, with only Pioneer 4 a real success.  Three our of nine Rangers were duds.  Along comes Lunar Orbiter, every mission of which was more or less a triumph.  The way has been paved for the first human beings to set foot on another world in a year or two.

But beyond that, real science has been done.  A few years back, my sister gave me a lovely 1963 map of the Moon, the most detailed possible at the time.  I can't wait for a new map, based on Lunar Orbiter pictures, to come out.

I know what I want for Hannukah this year!






</small

[June 14, 1967] What's Easy for Two (Venus 4 and Mariner 5)


by Gideon Marcus

Red Venus?

Every 19 months, Venus and Earth reach positions in their trips around the Sun such that travel to the former from the latter uses a minimum of energy. Essentially, a rocket blasts off and thrusts itself toward the Sun just long enough to drift inward and meet Venus after about half an orbit (a direct path would be very costly in terms of fuel use). The less energy used, the bigger the spacecraft can be sent. That means more payload for experiments.

The Soviets have been trying to reach the Planet of Love, Earth's closest neighbor (besides the Moon) for more than six years now. In February 1961, they launched Venera 1 (Venus 1), the first interplanetary probe to fly by another world–but it had gone silent by the time it got there.  Veneras 2 and 3 went up three opportunities later, in November 1965, but fell silent the next spring, just before reaching their target.  Indeed, Venera 3, a soft-lander, is believed to have rammed the cloud-shrouded world, becoming the first artificial object to reach another world.  Either way, no useful data was received.

Why didn't they launch any Veneras in 1962 or 1964?  In fact, it looks like they did.  The Soviets don't herald their failures.  Nevertheless, according to NASA officials, we have a pretty good catalog of them, thanks to careful parsing of Russian news reports as well as radar and telemetry data we've managed to gather.  Three Russkie Venus probes were launched in September 1962 and three more in February 1964.  Getting out of Earth orbit can be tough, requiring a second firing of onboard engines once a spacecraft is circling our planet.  Apparently, these six probes never got away.

But Venera 4, launched on June 12, 1967, has apparently passed that first hurdle.  Moreover, at one and a quarter tons, it is several hundred pounds heavier than any of its predecessors.  We don't know much about what's on the latest Communist probe, but scientists speculate some of the extra weight has been devoted to heat shielding.  Venus is very hot, perhaps 900° Fahrenheit, and it is believed that heat is what caused Venera 3 to fail.  Given that TASS, the Soviet news service, reported that Venera 4 is going to Venus, rather than by, it is assumed the spacecraft will make another landing attempt.

Provided it doesn't go slient like its predecessors.  Communicating across planetary distances is a hurdle the Soviets only recently surmounted with their Zond 3 probe, which tested radio reception at about 150 million kilometers' distance–far enough for a Martian mission.  Essentially, Zond 3 was the Soviet version of Pioneer 5–but five years later.  This is suggestive as to the Soviet level of communications technology, at least.  America would seem to have the clear lead there.

Well, I wish the Soviets luck.  Politics or no, I want to know more about that mysterious, seared world that is Venus!

Yankee Two-dle

If Venera 4 fails, it has a back-up of sorts.  Mariner 5, itself a back-up for the Mars-bound Mariner 4, was launched today early this morning, destination: Venus.

Already several hundred thousand kilometers from Earth, zooming at more than 10,000 kilometers per hour, it should reach Venus in October.  The spacecraft, launched via Atlas-Agena, the same rocket that launched our first Venus probe, Mariner 2, is barely a quarter the mass of Venera 4.  Moreover, Mariner 4's TV camera has been deleted, a decision that likely irks Venus scientist Dr. Carl Sagan, who insists doing so is short-sighted, clouds or no. 

But that removal, along with the reduction in the size of the solar panels (less is needed so close to the sun) means that when Mariner 5's planned flight path brings it within 3000 kilometers of Venus, it will be able to investigate the planet with a wide suite of instruments.  An ultraviolet photometer should not only refine temperature estimates of the Venusian upper atmosphere, it will tell us a bit about what gasses constitute it.  For instance, if there be any water there, perhaps life exists in the cloud tops, above the intense heat at the surface.

The rest of the instruments are likely ho-hum for the general audience, but should return a bonanza for scientists.  They include a magnetometer and various radiation sensing equipment that not only will measure the Venusian version of the Van Allen Belts (if they exist–Mariner 2 couldn't find any), but also tell us a lot about the solar wind on the way to Venus.

I will say, I'm glad we're sending a craft to Venus, and it does seem we did it on the cheap ($35 million), but I think I'm with Sagan on this one: for all the effort, it seems we're not going to find out very much about Venus with Mariner 5.  Another reason to root for Venera 4.

And a good reason to write your Congressman about the importance of planning a bigger Venus shot, perhaps on the more powerful Atlas Centaur rocket, when the next opportunity rolls around in January 1969!



Want to find out what we currently know about Venus?  Come read our previous articles on the planet of love!



[May 28, 1967] Around the World in 80 Months (May 1967 Space Roundup)


by Gideon Marcus

Between the tragic aftermath of this year's twin space disasters (Apollo 1 and Soyuz 1) as well as the dramatic results from the Lunar Orbiter and Surveyor Moon explorers, it's easy to forget the amazing things being done in Earth orbit.

So here's a little news grab bag of some flights you may have missed over the last several months (and even years, in some cases):

Moscow calling

Two years ago, the Soviets joined the world of comsats with the orbiting of their first Molniya satellite.  Launched into an eccentric orbit that takes them up to geosynchronous altitudes but then swooping down to graze the Earth, they work in pairs to facilitate transmissions across the 11 time zones of the Soviet Union.

It's an impressive system–half a ton of satellite broadcasting at 40w of power, more than twice that of the Intelsat "Early Bird" satellites.  Unfortunately for the Soviets, it's also been a balky system.  Both of the first two satellites stopped working within a year, Molniya 1B failing to keep station in space.  It's a bad thing when your comsat moves out of position!  This is something more likely to happen in an eccentric orbit than in a more-stable geosynchronous orbit where a satellite goes around the Earth once every 24 hours, remaining more or less stationary (except for a little figure eight over the course of the day) from the perspective of the ground observer.  Worse, because the Molniyas scrape so close to the Earth, it doesn't take much to send them careening into the atmosphere, which happened to 1B March 17, 1967.

Still, the Soviets prefer their odd orbit because it's ideal for their purposes (giving coverage to Eurasia) and, I suspect, requires less booster power.  And it still carries the satellites high enough to return photos like this one, shot by Molniya 1A last year–the first all-Earth photo ever:

Molniya 1C was launched on April 25 last year, Molniya 1D on October 20.  They were replacements for their non-functioning companions.  But Molniya 1C may well have given up the ghost, too.  Molniya 1E was launched on May 24, apparently to replace it. 

May they solve their teething problems sooner rather than later!

A Pair of Imps

Out beyond the Earth's magnetic field is the sun's domain.  High energy plasmas (the "solar wind") and our star's magnetic field fill the vacuum of interplanetary space.  Not very densely, to be sure, but with profound effects on the planets and offering clues as to the nature of the stellar furnace that creates them.

It is not surprising that NASA has devoted so many satellites to understanding and mapping this zone given how many spacecraft (including the upcoming Apollos) will travel through it.  Explorer 18, Explorer 21, and Explorer 28 were all part of the "Interplanetary Monitoring Program" (IMP).  The first two have already reentered, and the last just stopped working a couple of weeks ago.  Luckily, virtually uninterrupted service has been maintained thanks to the launches of Explorer 33 and Explorer 34!


Explorer 33

Explorer 33, launched July 1, 1966, was supposed to be the first of the "anchored" IMPs, returning data from the orbit of the Moon (which does not have a magnetic field or radiations of its own).  Unfortunately, the satellite was shot into space a bit too rapidly to safely decelerate into orbit around the Moon.  Instead, it now has an extremely high (270,000 miles perigee!) but eccentric (low apogee) orbit from which it still can return perfectly good science.  Indeed, NASA planned for this eventuality.


Explorer 34

The other Explorer, #34, was just sent up on May 24.  It is a more conventional IMP and will pick up where #28 left off. 

With four years of continuous data, we now have terrific data sets on the Sun through a good portion of its 11-year cycle, including the recent solar minimum.  I look forward to a slew of reports in the Astrophysical Journal over the next few years!

Yes, I read those for fun.  Doesn't everyone?

Bright Future

If the IMPs exist to monitor the Sun's output, the Orbiting Solar Observatories' job is to directly watch the Sun.  Prior to 1967, two of these giant satellites had been orbited: OSO 1 on March 7, 1962, and February 3, 1965.  A third launch was made on August 25 of the same year, but it failed.

Sadly, the OSOs haven't quite provided continuous coverage over the last five years.  Still they have returned the most comprehensive data set of solar measurements to date.  And, as of March 8, the wiggly needles that mark the collection of data are jiggling again: OSO 3 has been returning data from its nine instruments on all manner of solar radiation–including and especially in the ultraviolet, X-Ray, and cosmic ray wavelengths that are blocked from terrestrial measurement by the Earth's atmosphere.

The timing is perfect–the Sun is just entering its period of maximum output.  OSO 3 will not only tell us more about the nearest star, it will report on its interactions with the Earth's magnetic field and the space environment in near orbit.

A Meteoric Rise

The Soviets have been awfully cagey about a lot of their launches.  Every couple of weeks, another unheralded Kosmos heads into orbit, stays there for a week, then lands.  It's an open secret that they are really Vostok-derived spy satellites that snap shots and return to Earth for film development.  This is utterly reprehensible–certainly WE would never do anything like that.

But while many of Communist flights have been hush hush, one subset of their Kosmos series has been pretty open: the weather satellite flights of Kosmoses 122, 144, 149, and 156!

The first of the Soviet meteorological satellites went into space on June 25, 1966, broadcasting for about four months before falling silent.  For a while, it seemed the Russkies were going to keep the pretty weather photos to themselves, but on August 18 of last year, they suddenly started sharing data over the Washingon/Moscow "Cold Line"–both visibile and infrared pictures, too.  It appears the delay was due to the Soviet reluctance to announce a mission until they're sure of its success.  It is entirely possible that some of the unexplained Kosmoses before 122 were failed flights.


Kosmos 122

The picture quality was pretty low at first, probably due to the length of the line the data must be sent over.  Improvements were made, and the new stuff is great.

Since 122, the Soviets have launched Kosmos 144 on February 28, 1967, Kosmos 149 on March 21 (it reentered on April 7–a failure of its weather-related mission, but it successfully tested the first aerodynamic stabilizer in orbit), and the latest Kosmos, #156, just went up on April 27, 1967.  It is my understanding that photos are being regularly shared with the National Environmental Satellite Service (NESS) in Suitland, Maryland.  I don't know if these are revolutionizing our view of the planet given our successful ESSA and NIMBUS programs, but it does give a warm glow of international cooperation.

If the nukes fly, at least we'll know if it's nice weather over their targets…

From the Far East into the Drink

The Japanese have been working their darndest to become the sixth space power (after the USSR, US, UK, France, and Italy).  Unfortunately, all of their efforts have thus far come up a cropper.

Their Lambda 4S rocket is the first one capable of launching a satellite into orbit, specifically an ionospheric probe with a 52 pound science package.  The problem is the vehicle's fourth stage.  The truck-launched Lambda 3 has been pretty much perfected, but when the new engine was put at the top of the stack, everything went to hell.


The successful precursor of the Lambda 4S, the Lambda 3

On September 26, 1966, the first Lambda 4S was lost when the fourth stage attitude control failed.  The fourth stage didn't even ignite the second time around on December 20.  That happened again on April 13 of this year during the third flight.

It looks like Nissan and JAXA engineers will be going back to the drawing board before trying another flight.  Maybe 1968 will be the year the Rising Sun joins the rising sun above the Earth…

What's next?

This summer, our eyes will surely turn beyond the Earth to Earth's twin, the planet Venus, for June marks the latest opportunity to send probes to the second planet at a premium on fuel consumption and payload allowance.  You can bet we'll be covering Mariner 5 and Venera 4 when they launch!


Testing Mariner 5





[April 28, 1967] Tempest in a Teacup (The Terrornauts)


by Mx. Kris Vyas-Myall

Next week will see the launch of third satellite in the British Ariel programme. Assuming this is successful, it will be significant for a couple of reasons.

UK3 Satellite, hoping to become Ariel 3 if it gets in orbit
UK3 Satellite, hoping to become Ariel 3 if it gets in orbit

Firstly, whilst it is being launched in partnership with NASA in California, it will be the first satellite to be entirely made and tested in Britain, whereas the first two were made in the US. In cooperation between the Royal Airforce, British Aircraft Corporation and General Electric Company, its success would help show that Britain can, if not exactly compete in the space race, at least get a nice chance at a bronze medal.

Secondly, it is carrying five different experiments for UK research facilities, from measuring electron density to atmospheric noise, all of which are going to be important for a more detailed understanding of our world.

One of the most interesting experiments to me is that Jodrell Bank is using it to study medium frequency waves that occur in space. As well as helping understand radio transmissions better this may also help better detect signals coming from extra-terrestrial intelligences. Which is what The Terrornauts is concerned with.

Mr. Brunner…We’re Needed!

The Wailing Asteroid

Back in the ancient days of 1960 our esteemed editor gave a rather damning review of the original novel. However, largely this was due to the prose and the story being dragged out and it was noted that “the premise is excellent”. As such, if a good team was assembled it might well make a good motion picture.

John Brunner

Step forward the first member of this team, John Brunner. One of Britain’s brightest SF authors. Whilst, to the best of my knowledge, he has not written a film script before, he is adept at producing both readable space operas and extremely literary works. He reportedly wanted to remove all the dated pulp era material to concentrate on core science fiction ideas and character work.

Montgomery Tully

Next up, a steady experienced hand of a director is needed, enter Montgomery Tully. Director of over 60 films across 4 decades, including last year’s excellent horror thriller Who Killed The Cat? Although not experienced in SF, many of the best productions of recent years have come from experienced directors outside the field. I will take a Godard or Kubrick experiments over another Irwin Allen or Ed Wood picture.

Amicus Posters

This production is from Amicus studios, the main rival to Hammer studios, with the enjoyable horror anthology Dr. Terror’s House of Horrors, the middling Dalek films and…. whatever The Deadly Bees was. Whilst they do not have the budget of their competitor, they have had ambition to try to do interesting films. Could this be their next success?

Added to this an array of talented actors listed on the cast sheet and things seem setup for a great cinematic experience.

What Could Possibly Go Wrong?

As it turns out, a lot!

Working in the Lab

Let us start with the plot itself. It begins with people working in a field of current interest to many SF fans, attempting to use high powered radio telescopes in order to attempt to find intelligence life outside of our solar system. Dr. Burke’s team have been working on the project for 4 years but failed to produce any results, to the frustration of Dr. Shore, who is annoyed they are using the equipment on the project. Having just 3 months left to discover a sign of life, they receive a repeating signal from an asteroid.

Finding the Cube in an Archeological Dig

What is particularly surprising is it is the same signal Dr. Burke heard as a child. At an excavation with an archaeologist uncle, a mysterious black cube was uncovered. He was given it as present and inside he found strange black crystals that hummed. Falling asleep holding one, he had a dream of an alien world. On that world he heard the same sound. As you can probably tell, this is going to require you to accept a lot of coincidences.

Lab is Taken

After sending a signal back, a spaceship comes and takes the lab away (although not the control room or telescope it was sent from), along with Dr. Burke, his assistants Lund and Keller, and two comedy characters, the accountant Yellowlees and the tea lady Mrs. Jones.

We do have to talk about the odd comic turns. There's no problem with having some light comedy to emphasise the drama and the use of ordinary characters out of their depth is a common charming feature of Nigel Kneale’s SF plays or Hammer Horror films. The issue here is that it is played so broadly in contrast to the po-faced stance of the rest of the cast it sticks out. Charles Hawtrey is a regular member of the Carry-On cast and Patricia Hayes is probably best known for her regular appearances on the Benny Hill Show. I could not help but wonder at times if they had just walked off of those sets temporarily. Just toning down their performances and lightening the others would have done wonders.

ultrasonic hallucination monster
A terrifying ultrasonic hallucination as part of the tests.

Our five space farers find themselves in a structure on the asteroid and spend a lot of time wandering about and solving a series of logic puzzles to prove intelligence (likely inspired by a similar sequence in The Dalek Invasion of Earth), they are given a cube like Dr. Burke received as a child. It turns out to be a store of information on their mission. An ancient race explored the stars and encountered a race only known as “The Enemy” that want to eliminate other intelligent life by using rays that reduce intelligence. The signal from the base indicates The Enemy’s signals are approaching Earth and it is up to these five to use the base to defend humanity.

There is also a brief side trip where Lund trips on to a ‘Matter Transmitter’ and gets sent down to a planet full of green people in togas and shower caps who want to sacrifice her, but this seems largely to be a way to have a traditional pulp action sequence more than anything else. In fact, for such a short film, there is enormous amount of time being wasted. Most egregious is a sequence where they are trying to find a cube to help them and spend ages sampling them all, only to have the real cube presented to them by the unconvincing robot of the base.

Wobbly robots and very unconvincing moons
Wobbly robots and very unconvincing moons

Although looks are not everything it has to be said this film looks cheap. Yes, the budget was smaller than Daleks – Invasion Earth 2150 A.D. or Thunderbirds Are Go, but it is at a comparable level to Island of Terror and The Projected Man, neither of which look as bad as this (despite their many other faults). Even BBC episodes of Doctor Who or Out of the Unknown, which work on less than 10% of the budget for similar runtimes, rarely resemble this level of shoddiness.

The Torch of Doom vs. the Flappy Base
The Torch of Doom vs. the Flappy Base

At the end it looked like we could have a tense and exciting space battle, but instead we have the attacking ship opening to reveal a red torch light and the fortress flailing about like a drunken Octopus.

Finally, the attacking fleet is destroyed but not before the final ship comes to crash into the base. The team manage to use the Matter Transmitter to escape and land in the same archaeological dig the black cube was found by Burke’s uncle. However, not having passports, they are arrested by a local police officer. Given how much The Terrornauts tends towards terrible cliché, it, of course, ends on a bad joke from Mrs. Jones:

I never did much like foreign parts

Hilarious…

Naut The Best Film

Mrs. Jones brings lab techs tea
Why not have a cup of tea and read a magazine instead?

As you can probably tell, this is a poor picture. Logic is consistently tenuous. There is barely enough plot to fill a Ferman vignette, instead being reduced to run-arounds. If I didn’t know its origins, I would have assumed this was a fan’s attempt at a Doctor Who script that was rejected by the production team.

But I think its worst sin is it is just incredibly dull. I don’t think this is due to lack of incident, but it is not about anything. There are no themes or interesting ideas I can tease out, it is just some people from Earth put into space to fight invaders, which they do via following recorded instructions.

Even this might have been salvaged if we had good character work but they all as thin as cigarette cards. Burke is the hero who is always right and can apparently do anything. Lund is his assistant who does whatever he says or randomly gets into trouble so she can be rescued. Keller is there for Burke to talk to. Yellowlees is the fussy and cowardly comic relief. And Jones is the ordinary person who does not quite understand what is going on, also for humour value.

They do not have any growth or go on a real quest. There is no significant difference I can see between the people when they leave Earth and arrive back.

In the end I cannot give this production more than one star.

Future Terrors

2001 Set photo
Kubrick and Clarke, on the set of what we all hope is not The Terrornauts Raid Again

Coming out very soon (we are continually promised) is 2001, the collaboration between another British SF author and experienced British director. Will this end up meeting the same fate? We shall see…





[April 26, 1967] Fallen Cosmonaut ( The Loss of Soyuz 1)


by Kaye Dee

Back in November last year, while writing about Gemini 12, I asked “where are the Russians?”, since there had not been a manned Soviet space mission since Voskhod 2, in March 1965. I didn't expect that when I finally came to write about the next Soviet space flight, it would be to report the first death to occur during a space mission: an incident as deeply shocking as the Apollo 1 fire just three months ago. Sadly, the return of Soviet manned spaceflight and the introduction of its new Soyuz spacecraft (the name means “Union” in Russian) has been mared by the death of its crew and the destruction of the spacecraft itself.

Re-entry Mishap
Early yesterday (25 April Australian time), after more than twelve hours of silence about the mission, the official Soviet newsagency TASS announced that Cosmonaut Vladimir Komarov had been killed after the failure of the parachute on his Soyuz 1 spacecraft, following re-entry. As I write this, little is known about what actually happened, but it appears that the parachute lines became tangled in some way, preventing the chute from fully opening, so that the spacecraft smashed into the ground at high velocity. However, it is not clear whether Cosmonaut Komarov died before the spacecraft hit the ground, or whether he was killed on impact.


Newspaper article from the 25 April edition of The Canberra Times announcing the loss of Soyuz-1

New Spacecraft, Ambitious Mission
As is always the case with the USSR’s space programme, nothing was known about the Soviet Union’s latest space mission until it was safely in orbit. We now know that Soyuz 1 was the first flight of a new spacecraft, believed to be even bigger than the Voskhod, which, as we saw, could carry a crew of three. Moscow television has supposedly described the Soyuz as “huge”. Just as Mercury and Vostok, and Gemini and Voskhod, could be considered parallel programs, Soyuz is assumed to be the equivalent of Apollo, and part of the USSR’s Moon landing programme about which we know so little. Could the Soyuz be capable of carrying a crew of four, or even five cosmonauts?

Unconfirmed reports suggest that Soyuz 1 was intended to undertake a surprisingly ambitious mission for the shakedown flight of a new vehicle. The craft was apparently planned to rendezvous in orbit with at least one, and possibly two, other spacecraft, with between six and nine cosmonauts joining Komarov in space before the end of the mission. The low altitude of Komarov's orbits (the lowest to date in the Soviet manned programme), only 138 miles above the Earth, certainly hint that rendezvous and docking operations were included in the flight programme, as a low orbit conserves power resources. This would have been a significant spaceflight first indeed, especially if – as has also been rumoured – there were plans for a crew transfer between one of these other spacecraft and Soyuz 1.

Crew Transfers Planned?
The fact that Komarov was the only cosmonaut on board Soyuz 1 certainly gives the crew trasnfer rumour some credence, as cosmonauts from one or two other spacecraft could have transferred to Soyuz 1 to fill its empty crew couches. Of course, we have no idea whether this transfer would have taken place through a docking tunnel between two spacecraft, or via a spacewalk, since we know nothing about the Soyuz vehicle itself. However, unless the Soviet manned space programme has been conducting an equivalent to the Gemini programme in secret over the past two years, its cosmonauts have little rendezvous experience (apart from Vostok 3-4 and 5-6), no docking experience, and have conducted only one spacewalk, whereas NASA has firmly mastered these critical techniques needed for the Apollo Moon programme. Perhaps the USSR intended to start catching up by carrying out extensive practice of these techniques during this first Soyuz mission? Or perhaps they have largely ignored them because they are planning a completely different approach to their manned lunar programme?

The official photo of Cosmonaut Komarov, released when the Soyuz 1 mission was announced, shows him wearing a spacesuit similar to that worn by Cosmonaut Alexei Leonov when he made the world’s first spacewalk. This photo can be seen in the reproduction of the article from The Canberra Times, above. It offers an intriguing hint that Komarov himself was possibly intended to make a spacewalk, or swap into another spacecraft for his return to Earth. However, confusing the issue is the picture below, which shows Komarov walking to board Soyuz 1 wearing a flight suit (similar to the one he wore as commander of Voskhod 1) rather than a spacesuit.

Problems with the Soyuz Spacecraft?
So why didn’t this rumoured space feat take place? Soyuz 1 was launched on 23 April. No problems were publicly reported during the early orbits of the mission, and Cosmonaut Komarov sent greetings from space “to the hardworking Australian people”. In another message, he also slammed the Vietnam War, in which Australia is fighting alongside the United States and other allies, sending a propaganda broadcast from orbit: "My warm greetings to the courageous Vietnamese people, fighting with dedication against the bandit aggression of American imperialism for freedom and independence", he said.

Soyuz 1 returned from space on its 19th orbit, after just 27 hours in space. It seems unlikely that this was the intended mission duration if rendezvous/docking and spacewalks with multiple spacecraft were really planned. The shortness of the flight may therefore be an indication that there were problems with the spacecraft, which is not necessarily unexpected with the first flight of a new vehicle. No other spacecraft launched to rendezvous with Soyuz 1, so perhaps this aspect of the mission was abandoned when problems arose.

Reports from amateur space-trackers in Italy also claim that they picked up messages in which Komarov complained to the Soviet Mission Control that they were “guiding [him] wrongly” during re-entry. Whether problems with the Soyuz spacecraft in orbit were responsible for the parachute failure that caused Soyuz 1 to plummet to Earth is perhaps something that we may not know for decades, if ever, given the habitual secrecy of the Soviet space programme.


One of the few photos available showing what remained of Soyuz-1 after its imapct with the ground

Lost Cosmonaut
As commander of the earlier Voskhod 1 mission, Colonel Vladimir Komarov was one of the handful of Soviet cosmonauts already known to us in the West. At 40, he was the second oldest of the cosmonauts (after Voskhod 2 mission commander Pavel Belyayev) and the first cosmonaut to make two spaceflights. Said to be highly respected by his cosmonaut colleagues, Komarov overcame a heart murmur, similar to that which grounded Astronaut Donald K. "Deke" Slayton durng the Mercury programmme, and other medical issues to retain his place in the Soviet comsonaut team. He was
married with a 15-year old son and 9-year old daughter. Komarov's 38-year old wife wife, Valentina, has been quoted as saying that she did not even know her husband had been assigned to the Soyuz 1 flight until it was publicly announced after launch. The identity of the cosmonauts slated to fly the other other spacecraft due to be launched as part of Soyuz-1's mission is completeley unknown at this point.


Cosmoanut Komarov with his wife Valentina and daughter Irina

Accident or Incompetence?
Was the loss of Soyuz 1 and Cosmonaut Komarov’s death just a tragic accident? There are persistent rumours that the spacecraft was not actually ready to be flight tested, and that political pressure was brought to bear on the space programme to produce another significant achievement in advance of a major conference marking 50 years since the October Revolution. Another question that arises is whether or not the unexpected death in January 1966 of Chief Designer Sergei Korolev (whose identity was only revealed after he passed away), could have had any impact on the development of the Soyuz and its subsequent fatal first flight?

Professor Sergei Korolev, the formerly anonymous Chief Designer of the Soviet space programme

An Honoured Hero
Like the lost crew of Apollo 1, Col. Komarov is a hero of the quest to explore space and has been posthumously awarded his second Hero of the Soviet Union medal and Order of Lenin. A Kremlin statement expressed the "profound grief" of the Soviet leadership at Komarov's death, and was signed by the Communist Party Central Committee, the Presidium of the Supreme Soviet and the
Council of Ministers. A ten-minute public announcement of Komarov's loss on Moscow television showed the Soviet space monument and a black-bordered version of the official photo of Komarov wearing his spacesuit, while Moscow radio is said to have played sombre music. Komarov’s funeral will be held today, after which his ashes will be interred in the Kremlin Wall. The United States requested permission from the Soviet authorities for two astronauts to attend the funeral as a mark of respect, but disappointingly this was turned down.

Presumably the USSR will now launch an accident investigation similar to that being conducted by NASA to find the causes of the Apollo 1 fire, and will place the Soyuz programme into a hiatus until the invetsigation is complete. With both participants in the Moon race now investigating tragic accidents that have led to the loss of astronaut and cosmonaut lives, will the Moon race ever resume? Or will both programmes instead return to spaceflight with different goals? Only time will tell…. 





[March 20, 1967] Vistas near and far (April 1967 Fantasy and Science Fiction)


by Gideon Marcus

I see you!

We have now entered a phase of the Space Race where there's enough stuff in orbit that other stuff in orbit can take pictures of it.  Not just deliberate rendeszvous' like dual missions of Gemini 6 and 7, but snapshots of opportunity, like Gemini 11's photo of the Soviet Proton 3.

Last week, NASA released perhaps the most extraordinary example of this nature: the first snapshot of a spacecraft sent to the Moon…by a spacecraft sent to the Moon!  Lunar Orbiter 3, launched early last month, has been busily mapping our celestial neighbor, searching for the choicest landing spots for Apollo (whose first manned mission, I've just learned, has been delayed until next year due to the Apollo 1 fire.) In the course of its surveying, Lunar Orbiter 3 caught a glimpse of Surveyor 1, the first American soft-lander.  It all makes the Moon feel that much closer.

While the newspaper brings us tales of science fiction-made-fact, the stf mags continue to provide the visions of science-to-be.  The latest edition of The Magazine of Fantasy and Science Fiction offers several visions of the future: some poetic, some bleak, and some not really worth reading.  Good thing I'm here to tell you which is which, huh?

A pail of tomorrows


by Gray Morrow

Dawn, by Roger Zelazny

Lord Siddhartha, the Buddha, arrives as the capital for a bit of revelry.  There, he is greeted with honors, for he is a prince of this land, redolent with the smells of spice, the bustle of medieval commerce, the prayers of the devoted.  At first glance, Dawn seems as if it will be a pure fantasy in a richly drawn world.  But there are signs that underneath the veneer of ancient India lies a strictly scientific core.

Indeed, we learn quite soon that Siddhartha is actually Sam, one of the original colonists on this world, a planet whose technology has been deliberately restrained by the cabal of the Firsts and their lackeys, the Masters.  Their firm grip lies in their stranglehold on immortality, facilitated by their ability to transmigrate souls from body to body at will.

Sam wants to bring progress to the world.  Can he and his band of rebels undo the work of centuries?

Zelazny's latest novella is reportedly the first part of a longer work, to be titled "Lord of Light".  If it is as expertly rendered as this fine start, then it'll be a good read, indeed!

Four stars.

The Two Lives of Ben Coulter, by Larry Eisenberg

"The greatest disappointment of Ben Coulter's life was his inability to play the violin well."

So begins the tale of a fellow who turned instead to engineering for the purpose, failing to find it there until he co-developed a technique for the remote control of a living being.  Perhaps, at last, he could program mastery into himself.

Most science fiction authors take inspiration from the science news of the day.  Some, like Doc Smith, are actually scientists.  Larry Eisenberg is perhaps unique in the SF community for extrapolating a scientifiction application of his own invention, the remote controlled pacemaker.

His story, if not quite as personally affecting as his crowning scientific achievement, is a pleasant little piece, nonetheless.

Three stars.

Cloud Seeding, by Theodore L. Thomas

In this fictionless vignette, Thomas suggests combining cloud seeding with chemical distribution.  After all, if you're putting stuff in the sky to make rain, why not use fertilizer or poison of what have you.

Thomas forgets that the seeds for the raindrops are necessarily uselessly tiny.  I almost feel as though these little exercises are not to present interesting ideas, but are puzzles for the reader: spot the fallacy and win a hundred dollars!

Two stars.


by Gahan Wilson

Problems of Creativeness, by Thomas M. Disch

The 21st Century is an overcrowded, socialist paradise.  Everyone is on the childless dole, unless they can prove themselves exceptional, finish college, or join the guerrila forces.  Birdie Ludd, the least exceptional of young men, doesn't want to do any of these things.  But for the love of Milly, pretty enough almost to be a movie star, he was willing to endure almost anything.

Less a story and more a slice-of-life from the perspective of an indolent youth, Problems relies mostly on a vivid stream-of-consciousness style and copious use of the first profanity I've read within F&SF's pages.

Three stars, I guess.

The Sword of Pell the Idiot, by Julian F. Grow

Farquhar Orpington-Pell, late a subaltern in Her Majesty's Own Midlothian Dragoons, falls in with a Western doctor on the late 19th Century range.  Their crooked path takes them to a subterranean complex inhabited by aliens.  Things Happen.  Supposed-to-be-funny-but-just-tedious things, capped off by the rather insulting punchline that the transpirings inspired a much better, well known set of books.

Feh.  One star.

"Virtue. 'Tis A Fugue!", by Patrick Meadows

An advanced world refuses the entreaties of humanity to join a terran federation.  Professor Thomas Gunn, a musicologist, provides the key to reaching the hearts of the aliens.  Their language is the culmination of tonality, you see, each sentence its own song.  Our hyper-efficient, sound-codified speak was too declassé to appeal.

It's all a lot of "mun, mun" to me, and in any event, the revelation came out of nowhere.  Indeed, Gunn's story and that of the contact team are completely unrelated until he suddenly appears on the planet in the story's last scenes.

Two stars.

A Matter of Scale, by Isaac Asimov

The Good Doctor goes way out with his latest article.  You know those "the sun is a beachball, and the planets are various small fruit several hundred feet away" models you read in all the science books for kids?  He's decided to go one better, substituting atomic analogs so the distances can be more relatable.

I'm sure it was a fun exercise for him.

Three stars.

Randy's Syndrome, by Brian W. Aldiss

Lastly, another tale of the next, shoulder-to-shoulder, anti-utopian 21st Century.  The foetuses of the world go on strike, refusing to be born into such an awful place.  But is it really a mass strike of the unborn, happy in their womb world of racial memory and distorted, second-hand sensory inputs?  Or is it some kind of planetary neurosis of the mothers?

Whatever it is, it's not science fiction, more a modern myth.  Some might find it clever.

Two stars.

Under the Moon

After such a bright beginning, the April 1967 F&SF stumbles to a finish.  I recognize that science fiction is cautionary as well as aspirational, but I feel one needs to say more than "this future we're heading toward is gonna stink..and by the way, the future is now." 

The Zelazny is worth your time, however.

And, hey, at least the newspaper brings us pretty pictures!





[January 28, 1967] "Fire in the cockpit!" (The AS-204 Accident)


by Kaye Dee

As I write this, I’m still in shock. It’s only a few hours since the news broke here in Australia of the tragic loss of the crew of Apollo 204 in a fire on the launchpad at Cape Kennedy, during a launch rehearsal. Spaceflight is difficult and dangerous – we know that. Astronauts Freeman, Bassett and See were killed in plane crashes during training; Armstrong and Scott had a narrow escape from inflight disaster during Gemini VIII.

Unconfirmed rumours abound of Soviet cosmonauts who died in unsuccessful space missions before Gagarin, and the Russians have probably had training accidents to which they have not yet admitted. When I wrote about Gemini VIII’s aborted mission, I asked if spaceflight was moving too fast. There’s certainly been a headlong rush on NASA’s part to get to the Moon ahead of the Soviet Union, so perhaps this tragedy is the answer to my rhetorical question.


The first image available showing the fire-ravaged interior of the Apollo 204 spacecraft

Details are still sketchy at this time, although no doubt more information about the accident will emerge in the coming days and weeks as investigations take place. But right now, let’s explore the background to the mission and what we know about the catastrophe.

The Lost Crew
Apollo 204 (AS-204) was intended to be the first manned test flight of the new Apollo Command and Service Modules, the spacecraft that will be used to carry the first NASA astronauts to the Moon within the next few years. As such, two experienced astronaut test pilots were assigned to the flight: USAF Lt. Colonels Virgil “Gus” Grissom, the Command Pilot, and Senior Pilot Edward White. Grissom was the United States’ second space traveller, flying the Mercury MR-4 mission. He also commanded the first manned Gemini mission, Gemini III. Rumour even has it that Grissom was already under possible consideration to command NASA’s first lunar landing mission. Lt. Col. White is famous as the first American to make a spacewalk, during Gemini IV. These veteran astronauts were joined for this mission by rookie US Navy Lt. Commander Roger Chaffee. Chaffee was selected as a member of the third astronaut group and specialised in communications: he had been a CapCom for both Gemini III and IV.


Official Apollo 204 crew portrait, including a model of the new Apollo Command Module which their mission was intended to test. Left to right Ed White, "Gus" Grissom and Roger Chaffee

The Apollo 204 back-up crew consists of experienced Mercury and Gemini astronaut Walter Schirra and first-time fliers Donn Eisele and Walter Cunningham. Astronaut Eisele had originally been assigned in Lt. Commander Chaffee’s role for the Apollo 204 mission but had to be replaced when he needed shoulder surgery in early 1966. I assume that once Apollo missions resume after the accident investigation, this crew will fly the first orbital mission that should have been accomplished by AS-204.

What’s in a Name?
The design for the official Apollo 204 patch, developed by the crew and illustrated by North American Rockwell artist Allen Stevens, carries the designation Apollo 1. At the time that it was approved by NASA, in June 1966, this was the flight’s official name. However, it seems that only recently some doubt arose as to whether the formal designation of the mission would be Apollo 1 after all, which is why it is presently being referred to as Apollo 204, or AS-204. I’ve heard from the Australian liaison officer at NASA, that just last week approval for the patch was withdrawn and that, if this accident had not occurred, the patch might have had to be redesigned, depending on the final mission designation.

But as it stands, the mission patch uses the American flag for a background, with a central image depicting an Apollo spacecraft in Earth orbit. The Moon appears to the right of the Earth, reminding us of the eventual goal of Project Apollo. The designation Apollo 1 and the names of the crew appear in a border around the central image, while the patch is edged with a black border – a touch that is poignantly even more appropriate in view of the loss of the crew. I do hope that this patch, and the designation Apollo 1, will be re-instated as the official insignia of this mission in honour of its lost crew.

The Mission that Should Have Been
The fire that has killed the Apollo 204 crew occurred during a preflight test ahead of a launch scheduled for 21 February. It was planned to be the first manned orbital test flight of the Apollo Command and Service Modules, launched on a Saturn IB rocket. The mission was to have tested launch operations, ground tracking and control facilities, as well as the performance of the Apollo-Saturn launch vehicle. Depending on how well the spacecraft performed, the mission might have lasted up to two weeks, perhaps equalling Gemini VII's record spaceflight and demonstrating that the Apollo spacecraft could function successfully for the duration of the longest Moon flights currently in planning.


The Apollo 204 crew in front of Pad 34, from which they should have launched, and where they have been killed

The Command Module allocated to Apollo 204, CM-012, was a so-called “Block I” version, originally designed before the lunar orbit rendezvous landing strategy was selected. Block 1 spacecraft aren’t able to dock with a lunar module, but future “Block II” versions will.

Was It a Lemon?
The Apollo Command and Service Modules are undoubtedly far more complex than any previously-built spacecraft, so it isn’t surprising that their development has had many teething problems. Over the last few months, I’ve heard from my former colleagues at the WRE that many issues with the Command Module became evident last year, especially when CM-012 was delivered to Kennedy Space Centre in August to be prepared for its flight. Even before it arrived, the Apollo 1 crew had expressed concerns to Apollo Spacecraft Program Office manager Joseph Shea about the quantity of flammable materials, such as nylon netting and Velcro, being used in the spacecraft cabin to hold tools and equipment in place. It seems that, even though Shea ordered these flammable materials removed, this may not have happened.


The Apollo 204 crew sent Program manager Jospeh Shea a parody of their crew portrait to express their concernes about the spacecraft. They are shown praying, and the picture carried the inscription: "It isn't that we don't trust you, Joe, but this time we've decided to go over your head"

When CM-012 arrived at Kennedy Space Center, there were still 113 significant planned engineering changes to be completed, and another 623 engineering change orders were made following delivery! This suggests that many issues with the spacecraft design were still being resolved. Apparently, the engineers in charge of the spacecraft training simulators just couldn’t keep up with all these changes, and I’ve heard that Lt. Colonel Grissom expressed his frustration about this by bringing a lemon from a tree at his home and hanging it on the simulator.


CM-012, at that time designated Apollo 1, arriving at Kennedy Space Centre

There were several problems with the environmental control unit in the Command Module, which was twice returned to the manufacturer for designed changes and repairs. During a high-speed landing test, when the Command Module was dropped into a water tank to simulate splashdown, its heat shield split wide open, and the ship sank like a stone! There were also apparently concerns about a propellant tank in the Service Module that had ruptured during pre-delivery testing. NASA had it removed and tested at Kennedy Space Centre to be sure there were no further problems. 

CM-012 finally completed a successful altitude chamber test on 30 December and was mated to its Saturn IB launch vehicle on Pad 34 at Cape Kennedy on 6 January. So, was this particular spacecraft a lemon – an accident waiting to happen? Or has this tragedy shown that the design of the Apollo Command Module is inherently flawed? We’ll undoubtedly have to wait for the results of the accident investigation before we know the answer.

Countdown to Disaster
At this point, we still know very little about the disastrous fire or what led to its breakout, but my WRE colleagues have helped me put together some information accident from their contacts at NASA. The fire broke out during what had apparently been a trouble-plagued launch simulation known as a "plugs-out" test. This kind pre-flight simulation is intended to demonstrate that the spacecraft will operate as it should on internal power, detached from all cables and umbilicals, and successfully carrying out this test was essential for confirming the 21 February launch date.


The AS-204 crew in the CM simulator on 19 January, as part of their preparations ahead of the "plugs out" test

Almost as soon as the astronauts entered the Command Module, there were problems when Grissom experienced a strange odour in his oxygen supply from the spacecraft, which delayed the start of the test. Problems with a high oxygen flow indication that kept triggering the master alarm also caused delays. There were also serious communications issues: at first, it was Command Pilot Grissom experiencing difficulty speaking with the control room, but the problems spread to include communications between the operations and checkout building and the blockhouse at complex 34, forcing another hold in the simulated countdown.

Fire Erupts
It was not until five and a half hours after the simulation began that the countdown finally resumed, and when it did instruments apparently showed an unexplained rise in the oxygen flow into the crew’s spacesuits. Within seconds, there were calls from the spacecraft indicating that a fire had broken out in the cabin and that the astronauts were facing a serious emergency, trying to escape. The final transmission from inside the spacecraft ended with a cry of pain.

Of course, there are emergency escape procedures for the Command Module, but with the triple spacecraft hatch, it requires at least 90 seconds to get it open, and it seems that the crew had never been able to accomplish the escape routine in that minimum time. There is some evidence that Lt. Col. White was trying to carry out his assigned emergency task of opening the hatch, but in the pure oxygen atmosphere of the spacecraft, the fire became incredibly intense very rapidly and rising internal pressure would have made it difficult, if not impossible to open the inward-opening hatch.


Picture taken shortly after the fire was extinguished showing the external damage to the Command Module caused by the hull rupture resulting from the fire

In less than 20 seconds from the first detection of the fire, the pressure inside CM-012 rose to the point where it actually ruptured the hull of the spacecraft, sending flame, heat and dense smoke into the pad service structure. The ground crew bravely tried to rescue the astronauts, but the dangerous conditions and unsuitable emergency equipment made it virtually impossible. Many were later treated for smoke inhalation. There were fears the CM had exploded, and that the fire might ignite the solid fuel rocket in the launch escape tower above it. If this happened, it could set fire to the entire service structure.

It took about five minutes for the ground crew to finally get the spacecraft hatch open, but their efforts were in vain, as the astronauts were already dead. The exact cause of death has yet to be determined: it may have been physical burns from the fire, or carbon monoxide asphyxia, from the fire's by-products.

Whatever the cause, three brave men have died, and an exhaustive investigation of the fire and its causes will now take place as part of the accident investigation. Exactly what effect this tragedy will have on the future of the Apollo programme will very much depend upon the findings of that investigation. If the design of the Command Module is found to be intrinsically flawed, the necessary redesigns could delay the programme for years, causing NASA to miss President Kennedy’s deadline for a Moon landing, and allowing the Soviet Union to overtake the United States again in the Space Race.

Grissom and White have both said in past interviews that they recognized the possibility that there could be catastrophic failures and accidents in spaceflight and that they accepted that possibility and continued with their work. I’d just like to give the last word in this article to Astronaut Frank Borman, who said in a 1965 interview "I hope that the people in the US are mature enough that when we do lose our first crews they accept this as part of the business". It would not honour the loss of the Apollo 204 crew if this tragedy led to the termination of the Apollo programme.





[November 16, 1966] A Grand Finale (Gemini 12)


by Kaye Dee

As I write, it’s less than a day since the splashdown of Gemini 12 brought NASA’s second manned spaceflight programme to an overwhelmingly successful conclusion, demonstrating that the Space Agency has finally mastered the art of spacewalking. It’s incredible to think that it’s only been 20 months since the first manned Gemini mission was launched, but the packed schedule of ten flights has tested out all the techniques that the space agency needs to advance to its Apollo lunar programme.

Two for the Show

Gemini 12's Command Pilot was former Naval aviator Captain Jim Lovell (left in photo above). Making his second spaceflight, Lovell previously flew on the Gemini 7 long duration mission and now holds the record for the longest time spent in space by any astronaut or cosmonaut. Pilot for this mission was rookie astronaut USAF Major Edwin “Buzz” Aldrin, who performed an unprecedented three successful extravehicular activities (EVAs) during this flight. The only member of the astronaut corps to hold a Doctorate, Aldrin is a specialist in rendezvous and docking techniques, and on this mission he put that knowledge to very good use.

A “Halloween” Patch

Gemini 12 was originally scheduled to launch on October 31, so Lovell and Aldrin had considered a Halloween theme for their mission patch. They wanted to evoke Halloween with the use of orange and black colours and also planned to show their Gemini capsule launched on a witch’s broomstick instead of a rocket! However, with the launch rescheduled to November, only the Halloween colour-scheme remained of the original concept.

The final design features the Roman numeral XII at the top of the round patch, in the position it would be on a clock-face. Just like an hour hand, the Gemini spacecraft points to the XII, a reminder that this is the final flight of the Gemini programme. The crescent Moon on the left side of the patch symbolises the ultimate goal of the upcoming Apollo programme.

Training for Weightlessness

Gemini 12's main goal was to complete three EVAs that would demonstrate that NASA had finally cracked the problem of successfully carrying out spacewalking operations, a technique crucial to the Apollo programme.

The astronauts who attempted to perform spacewalks on Gemini 9, 10 and 11, had all reported that operating in orbit was much more difficult and tiring than the simulations conducted using the KC-135 weightlessness training aircraft. They also complained that there were few handholds on the exterior of the Gemini and Agena to help them move around in Zero-G. Consequently, a new approach to training was employed for Gemini 12, which I understand was suggested by Astronaut Aldrin himself, who is a keen scuba diver.


"Buzz" Aldrin practices installing a handrail between the Gemini capsule and Agena target vehicle, in an underwater training simulation

In addition to the KC-135 flights, Aldrin trained in a large pool containing a Gemini mockup. In the pool, special weights were added to the astronaut’s spacesuit to create “neutral buoyancy,” offsetting gravity so he would neither rise nor sink, and Aldrin spent several EVA simulation training sessions of more than two hours underwater.

As well as this new training technique, more handrails and handholds were added to the Gemini capsule, along with a waist tether that would enable Aldrin to turn wrenches and retrieve experiment packages without too much effort.

Dr. Rendezvous Saves the Day, Again!

After two delays caused by technical issues, the final Gemini mission lifted off on the afternoon of November 11 US time. On its third orbit, Gemini 12 prepared to dock with the Agena target vehicle, but problems with the Gemini's onboard radar threatened to make that impossible.

Luckily, Aldrin had already developed procedures for onboard backup rendezvous techniques in the event of radar failure. Drawing on his expertise, Aldrin used a sextant and his slide rule, measuring the angle between the horizon and the Agena. Once he had confirmed the information with his rendezvous chart, Aldrin calculated corrections with the spacecraft’s computer, enabling the rendezvous and docking to be successfully accomplished.

Rendezvous with the Sun

Despite the successful rendezvous, some anomalies with the Agena’s turbopump during launch led to Mission Control cancelling a planned boost to a higher orbit, like that conducted on Gemini 11. Instead, NASA took the opportunity to have the crew photograph a solar eclipse through the spacecraft windows at the beginning of mission day two.

Using the Agena’s secondary propulsion system, Gemini 12 changed orbits to place itself above South America at the right time and location to capture the first colour images of a total solar eclipse free from the interference of the Earth’s atmosphere. During the scant eight seconds that the astronauts could view the eclipse, they snapped four images that are expected to help scientists discover the secrets of the solar corona. The pictures were taken with film sensitive to ultra-violet light, which does not penetrate through the Earth's atmosphere.

Standing Up in Space

About two hours after photographing the eclipse, Aldrin commenced his first EVA, with his head and upper body exposed to space as he stood in the open hatch above his spacecraft seat. During this “stand-up EVA”, which lasted almost two and a half hours, Aldrin took the time to accustom himself to the space environment, which it was thought would better prepare him for his later spacewalk.

One of his first jobs was to install a handrail between his hatch and the docking collar of the Agena that would aid his movements during his day three spacewalk. Aldrin mounted a camera on the side of the spacecraft, with which he took a close-up picture of himself (above), the first shot of its type ever taken! He collected a micrometeorite experiment, and took photographs of the Earth as well as ultra-violet astronomical photography.

Aldrin’s photographic tasks were part of the 14 scientific, medical, and technological experiments planned for Gemini 12. Although five experiments could not be fully completed, those that were included: frog egg growth under zero-g conditions; synoptic terrain and weather photography; airglow horizon photography; and UV astronomy and dim sky photography.

Walking and Working in Space

Gemini 12 flight day three began with some minor fuel cell and manoeuvring thruster issues that would last for the rest of the mission. They did not, however, prevent the highlight of the flight from taking place: a planned two hour tethered spacewalk by Major Aldrin. Until Gemini 12, successfully performing work outside a spacecraft was the one Gemini objective that had eluded NASA, but Aldrin exceeded even the most optimistic hopes for this flight as he performed a record two hours, nine minute and 25 second EVA.

Attached to a 30-foot umbilical cord, Aldrin used the handrail he had installed the day before to assist in attaching a 100-foot long tether between the nose of the Gemini and the Agena. With the handholds, he did not experience the problems Gordon encountered on Gemini 11. Aldrin’s approach to his spacewalk was to go slowly and carefully, resting for two-minute periods between tasks. In fact, about a dozen two-minute rest periods were built into the EVA schedule to prevent Aldrin from becoming exhausted like previous Gemini spacewalkers. 

Moving to the spacecraft’s aft adapter, Aldrin supported himself with overshoe restraints and waist tethers to carry out a number of work tasks. He was able to fasten rings and hooks, connect and disconnect electrical and fluid connections, tighten bolts and cut cables. Aldrin then moved across to the Agena, where he worked at pulling apart electrical connectors and putting them together again. He also tried out a torque wrench designed for the Apollo programme.

At the completion of his spacewalk, Aldrin returned to his Gemini seat with no fatigue and all his tasks accomplished. This demonstrated that the use of neutral buoyancy training, available handholds and foot restraints on the spacecraft, and a slow and measured pace of work while in space, are the ingredients needed for future successful EVAs during the Apollo missions. 

Going for a Spin

The other major task for flight day three was a repeat of the gravity-gradient stabilisation/artificial gravity experiment performed on Gemini 11. Undocking from the Agena, Gemini 12 moved to the end of the tether connecting the two vehicles and then fired its thrusters to slowly rotate the combined spacecraft. Although they had some difficulty keeping the tether taut, the astronauts were able to use centrifugal force to generate a small amount of gravity during the four hour, 20 minute exercise, and achieve gravity-gradient stabilization. After releasing the tether connected to the Agena, Gemini 12 pulled away from the target vehicle and did not re-dock with it again.

One More Time

The last day of Gemini 12’s mission began with an attempt to sight two yellow clouds of sodium particles ejected by a pair of French Centaure rockets launched from the Algerian Sahara. This experiment was designed to measure high altitude winds. Although Lovell and Aldrin could not see the clouds, they did attempt to photograph them using directional instructions from the ground. We’ll have to wait until those films are developed to see if they were successful.

Shortly afterwards, as the spacecraft came over Australia, Gemini 12’s hatch opened for the final time, and Aldrin conducted a second stand-up EVA. Lasting 55 minutes, this brought Aldrin’s total spacewalking time up to a record five hours and 30 minutes! Most of this EVA occurred as Gemini 12 passed over the night side of the Earth, so that Aldrin could aim his camera at “hot young stars”, which have stimulated the curiosity of astronomers all over the world. He also took numerous ultraviolet photographs of stars and constellations.

Mission Accomplished

After a spaceflight lasting 94 hours, 34 minutes and 31 seconds, Geminin 12 made the second computer-controlled re-entry of the programme, splashing down safely in the western Atlantic just three miles from their target, near the recovery aircraft carrier USS Wasp.

Captain Lovell and Major Aldrin have now been recovered and are on their way back to the United States for post-flight debriefing. But we already know that the Gemini 12 mission has been a fitting grand finale to the Gemini project, clearly demonstrating that NASA has achieved all the goals it set for the programme: it has now mastered rendezvous and docking, direct ascent to orbit rendezvous, long-duration spaceflight equivalent to the time of an Apollo lunar mission, and – the trickiest of all, as they discovered – the art of spacewalking.

We should not forget that Gemini has been a team effort, directly involving more than 25,000 people from NASA, the US Department of Defence, other government agencies, universities and research centres, industry and tracking station partners overseas. Everyone involved should feel great pride in the way spaceflight has been advanced in an amazingly short time.

Very soon, the manned Apollo programme will commence, and we can all hope that it will lead to a successful landing on the Moon before the end of this decade. But we should not forget that its success will stand on the shoulders of the Gemini programme.

Postscript

But where are the Russians in the race to the Moon? No Soviet manned flight has been announced since Voskhod 2 in March last year. Has the USSR withdrawn from the race? That seems unlikely, but why do they appear not to have attempted rendezvous and docking missions? Perhaps they have decided to use a different method of reaching the Moon, such as direct ascent, using a massive multi-stage rocket, without the need for orbital rendezvous? After all, as far as we can tell, they still have larger and more powerful rockets than Western nations. Only time will tell, but I think there are still many surprises in store from the USSR before either the East or West wins the Space Race!



(Want more exciting space stories?  Join us for Star Trek tomorrow night at 8:30 PM (Pacific AND Eastern — two showings)!!)

Here's the invitation!