Tag Archives: Vladimir Komarov

[November 12, 1967] Still in the Race! (Apollo-4, Surveyor-6, OSO-4 and Cosmos-186-188)



by Kaye Dee

As I noted in my previous article, October was such a busy month for space activity that I had to hold over several items for this month. But November has already provided us with plenty of space news as well. Even though both American and Soviet manned spaceflight is currently on hold while the investigations into their respective accidents continue, preparations for putting astronauts and cosmonauts on the Moon are ongoing and the Moon race is still on!

“Oh, it’s terrific, the building’s shaking!”

Opening the door to human lunar exploration needs an immensely powerful booster, and the successful launch of Apollo-4 a few days ago on 9 November has demonstrated that NASA has a rocket that is up to the task. Although the Saturn 1B rocket intended to loft Apollo Earth-orbiting missions has already been tested, Apollo-4 (also designated SA-501) marked the first flight of a complete Saturn V lunar launcher.

The sheer power of the massive rocket took everyone by surprise. When Apollo-4 took off from Pad 39A at the John F. Kennedy Space Centre, the sound pressure waves it generated rattled the new Launch Control Centre, three miles from the launch pad, causing dust to fall from the ceiling onto the launch controllers’ consoles. At the nearby Press Centre, ceiling tiles fell from the roof. Reporting live from the site, Walter Cronkite described the experience: “… our building’s shaking here. Our building’s shaking! Oh, it’s terrific, the building’s shaking! This big blast window is shaking! We’re holding it with our hands! Look at that rocket go into the clouds at 3000 feet! … You can see it… you can see it… oh the roar is terrific!”

Firing Room 1 in the Launch Control Centre at Kennedy Space Centre, under construction in early 1966. The Apollo-4 launch was controlled from here

Could it be that the sound of a Saturn V launch is one of the loudest noises, natural or artificial, ever heard by human beings? (Apart, perhaps, from the explosion of an atomic bomb?) I hope I’ll get the opportunity to hear, and see, a Saturn V launch for myself at some point in the future.

The Power for the Glory

Developed by Dr. Wernher von Braun’s team at NASA’s George C. Marshall Space Flight Centre, everything about the Saturn V is impressive. The 363-foot vehicle weighs 3,000-tons and the thrust of its first-stage motors alone is 71 million pounds! No wonder it rattled buildings miles away at liftoff!

The F-1 rocket motor, five of which power the Saturn V’s S1-C first stage, is the most powerful single combustion chamber liquid-propellant rocket engine so far developed (at least as far as we know, since whatever vehicle the USSR is developing for its lunar program could have even more powerful motors).

The launcher consists of three stages. The Boeing-built S1-C first stage, when fully fuelled with RP-1 kerosene and liquid oxygen, has a total mass of 4,881,000 pounds. Its five F-1 engines are arranged so that the four outer engines are gimballed, enabling them to turn so they can steer the rocket, while the fifth is fixed in position in the centre. Constructed by North American Aviation and weighing 1,060,000 pounds, the S-II second stage has five Rocketdyne-built cryogenic J-2 engines, powered by liquid hydrogen and liquid oxygen. They are arranged in a similar manner to the first stage engines, and also used for steering. The Saturn V’s S-IVB third stage has been built by the Douglas Aircraft Company and has a single J-2 engine using the same cryogenic fuel as the second stage. Fully fuelled, it weighs approximately 262,000 pounds. Guidance and telemetry systems for the rocket are contained within an instrument unit located on top of the third stage.

Soaring into the Future

This first Saturn V test flight has been tremendously important to the ultimate success of the Apollo programme, marking several necessary first steps: the first launch from Complex 39 at Cape Kennedy, built especially for Apollo; the first flight of the complete Apollo/Saturn V space vehicle; and the first test of Apollo Command Module’s performance re-entering the Earth's atmosphere at a velocity approximating that expected when returning from a lunar mission. In addition, the flight enabled testing of many modifications made to the Command Module in the wake of the January fire. This included the functioning of the thermal seals used in the new quick-release spacecraft hatch design.

 
Up, Up and Away!

Apollo-4 lifted off on schedule at 7am US Eastern time. Just 12 minutes later it successfully placed a Command and Service Module (CSM), weighing a record 278,885 pounds, into orbit 115 miles above the Earth. This is equivalent to the parking orbit that will be used during lunar missions to check out the spacecraft before it embarks for the Moon.

After two orbits, the third stage engine was re-ignited (itself another space first) to simulate the trans-lunar injection burn that will be used to send Apollo missions on their way to the Moon. This sent the spacecraft into an elliptical orbit with an apogee of 10,700 miles. Shortly afterwards, the CSM separated from the S-IVB stage and, after passing apogee, the Service Module engine was fired for 281 seconds to increase the re-entry speed to 36,639 feet per second, bringing the CSM into conditions simulating a return from the Moon.


An image of the Earth taken from an automatic camera on the Apollo-4 Command Module

After a successful re-entry, the Command Module splashed down approximately 10 miles from its target landing site in the North Pacific Ocean and was recovered by the aircraft carrier USS Bennington. The mission lasted just eight hours 36 minutes and 54 seconds (four minutes six seconds ahead of schedule!), but it successfully demonstrated all the major components of an Apollo mission, apart from the Lunar Module (which is still in development) that will make the actual landing on the Moon’s surface. In a special message of congratulations to the NASA team, President Johnson said the flight “symbolises the power this nation is harnessing for the peaceful exploration of space”.

Goodbye Lunar Orbiters…

While Apollo’s chariot was readied for its first test flight, NASA has continued its unmanned exploration of the Moon, to ensure a safe landing for the astronauts. In August, Gideon gave us an excellent summary of NASA’s Lunar Orbiter programme, the first three missions of which were designed to study potential Apollo landing sites. Lunar Orbiter-3, launched back in February this year, met its fate last month when the spacecraft was intentionally crashed into the lunar surface on 9 October. Despite the failure of its imaging system in March, Lunar Orbiter-3 was tracked from Earth for several months for lunar geodesy research and communication experiments. On 30 August, commands were sent to the spacecraft to circularise its orbit to 99 miles in order to simulate an Apollo trajectory.

Lunar Orbiter-3 image of the Moon's far side, showing the crater Tsiolkovski

Each Lunar Orbiter mission has been de-orbited so that it will not become a navigation hazard to future manned Apollo spacecraft. Consequently, before its manoeuvring thrusters were depleted, Lunar Orbiter 3 was commanded on 9 October to impact on the Moon, hitting the lunar surface at 14 degrees 36 minutes North latitude and 91 degrees 42 minutes West longitude. Co-incidentally, Lunar Orbiter-4, which failed back in July and could not be controlled, decayed naturally from orbit and impacted on the Moon on 6 October. Lunar Orbiter-5, launched in August, remains in orbit.

…Hello Surveyor 6

A month after the demise of the Lunar Orbiters, NASA’s Surveyor-6 probe has made a much softer landing on the lunar surface, achieving a “spot on” touchdown in the rugged Sinus Medii (Central Bay – it’s in the centre of the Moon's visible hemisphere) on 10 November (Australian time; 9 November in the US). This region is a potential site for the first Apollo landing, but since it appeared to be cratered and rocky, mission planners needed to know if its geological structure (different to the ‘plains’ areas where earlier Surveyor missions have landed) could support the weight of a manned Lunar Module.

Only an hour after landing safely, Surveyor-6 was operational and sent back pictures of a lunar cliff about a mile from its landing point, which has been described as “the most rugged feature we have yet seen on the Moon”. The first panoramas from Surveyor indicate that the landing site is not as rough as anticipated, and seems suitable for an Apollo landing.

Deep Space Network stations in Australia are helping to support the Surveyor-6 mission, as well as Surveyor-5, that landed in the Mare Tranquilitatis (Sea of Tranquillity) in September and is still operational. Hopefully both spacecraft will survive the next lunar night, commencing two weeks from now. NASA plans to send one more Surveyor probe to the Moon, in January, so look out for a review of the completed Surveyor programme early next year.

Watching the Sun for Astronaut Safety

With the Sun moving towards its maximum activity late next year or early in 1969, and likely to still be very active when the Apollo landing missions are occurring (assuming that the programme resumes some time within the next 12 months), NASA has wasted no time in launching another spacecraft in its Orbiting Solar Observatory (OSO) series, to help characterise the effects of solar activity in deep space. A NASA spokesman was recently quoted as saying that “A study of solar activity and its effect on Earth, aside from basic scientific interest, is necessary for a greater understanding of the space environment prior to manned flights to the Moon”.

OSO-4 under construction

Launched on 18 October, OSO-4 (also known as OSO-D) is the latest satellite developed under the leadership of Dr. Nancy Grace Roman, NASA’s first female executive, who is Chief of Astronomy and Solar Physics. The satellite is equipped to measure the direction and intensity of Ultraviolet, X-ray and Gamma radiation, not just from the Sun, but across the entire celestial sphere.

The OSO-4 spacecraft, like its predecessors, consists of a solar-cell covered “sail” section and a “wheel” section that spins about an axis perpendicular to the pointing direction of the sail. The sail carries a 75 pound payload of two instruments that are kept pointing on the centre of the Sun. The wheel carries a 100 pound payload of seven instruments and rotates once every two seconds. This rotation enables the instruments to scan the solar disc and atmosphere as well as other parts of the galaxy. The satellite’s extended arms give it greater axial stability.

Hopefully, OSO-4 will have a long lifespan, producing data as solar activity increases across the Sun’s cycle, and enhancing safety for the Apollo and Soviet crews who will venture beyond the protection of the van Allen belts on their way to the Moon.

What are the Soviets Up To?

The USSR has been remarkably quiet about its manned lunar programme. One could almost think that they had given up racing Apollo to the Moon, if not for the rumours and hints that constantly swirl around. Rumours abounded at the time of the tragically lost Soyuz-1 mission that it was intended to be a space spectacular, debuting in the Soyuz a new, much larger spacecraft which would participate in multiple rendezvous and docking manoeuvres, and possibly even crew transfers, with one or more other manned spacecraft.

Such a space feat has yet to occur, but the mysterious recent space missions of Cosmos-186 and 188 suggest that the Soviets have something of the sort in mind for the future, and are still quietly working to develop the techniques that they will need for lunar landing missions and/or a space station programme.

It Takes Two to Rendezvous

On 27 October, Cosmos-186 was launched into a low Earth orbit, with a perigee of 129 miles and an apogee of 146 miles and an orbital period of 88.7 minutes. Cosmos-187 was launched the following day, and there has been speculation that it was intended to be part of a rendezvous and docking demonstration with Cosmos-186 but was placed into an incorrect orbit. However, as is so often the case with Cosmos satellites, the Soviet authorities only described their missions as continuing studies of outer space and testing new systems, so the actual purpose of this mission remains a mystery.


A rare Soviet illustration of what is believed to be the Cosmos-186-188 docking

However, Cosmos-186 was joined by a companion on 30 October, when Cosmos-188 was placed into a very similar orbit with a separation of just 15 miles. This clearly demonstrates the precision with which the USSR can insert satellites into orbit. The two spacecraft then proceeded to perform the first fully automated space docking (unlike the manual dockings performed by Gemini missions from Gemini-8 onwards), just an hour after Cosmos-188 was launched. Soviet sources, and some electronic eavesdropping by the now-famous science class at Kettering Grammar School in England, using surprisingly unsophisticated equipment, indicate that Cosmos-186 was the ‘active’ partner in the docking. It used its onboard radar system to locate, approach and dock with the ‘passive’ Cosmos-188.

While the two spacecraft were mechanically docked, it seems that an electrical connection could not be made between them, and no other manoeuvres appear to have been carried out while Cosmos-186 and 188 were joined together. Perhaps there were technical issues surrounding the docking, but an onboard camera on Cosmos-186 did provide live (if rather low quality) television images of the rendezvous docking and separation, and some footage was publicly broadcast.

After three and a half hours docked together, the two satellites separated on command from the ground and continued to operate separately in orbit. Cosmos-186 made a soft-landing return to Earth on 31 October, lending credence to the speculations that it was testing out improvements to the Soyuz parachute system, while Cosmos-188 reportedly soft-landed on 2 November.

Speculating on Soviet Space Plans

Was Cosmos-186 a Soyuz-type vehicle, possibly testing out modifications made to prevent a recurrence of the re-entry parachute tangling that apparently led to the loss of Soyuz-1 and the death of Cosmonaut Komarov? Building on speculations from the time of the Soyuz-1 launch, there have even been suggestions that Cosmos-186, while unmanned, was a spacecraft large enough to hold a crew of five cosmonauts. There is also speculation that Cosmos-188 may have been the prototype of a new propulsion system for orbital operations. Does this mean, then, that the USSR is planning some kind of manned spaceflight feat in orbit to celebrate the 50th anniversary of the Communist Revolution? Or that it will soon attempt a circumlunar flight, to reach the Moon ahead of the United States?

Whatever their future plans may be, the automated rendezvous and docking of two unmanned spacecraft in Earth orbit shows that the USSR’s space technology is still advancing rapidly. The joint Cosmos 186-188 mission proves that it is possible to launch small components and assemble them in space to make a larger structure, even without the assistance of astronauts. This means that massive rockets like the Saturn V might not be required to construct space stations in orbit, or even undertake lunar missions, if the project is designed around assembling the lunar spacecraft in Earth orbit. Has the Cosmos 186-188 mission therefore been a hint of what the USSR's Moon programme will look like, in contrast to Apollo? Only time will tell…




[April 26, 1967] Fallen Cosmonaut ( The Loss of Soyuz 1)


by Kaye Dee

Back in November last year, while writing about Gemini 12, I asked “where are the Russians?”, since there had not been a manned Soviet space mission since Voskhod 2, in March 1965. I didn't expect that when I finally came to write about the next Soviet space flight, it would be to report the first death to occur during a space mission: an incident as deeply shocking as the Apollo 1 fire just three months ago. Sadly, the return of Soviet manned spaceflight and the introduction of its new Soyuz spacecraft (the name means “Union” in Russian) has been mared by the death of its crew and the destruction of the spacecraft itself.

Re-entry Mishap
Early yesterday (25 April Australian time), after more than twelve hours of silence about the mission, the official Soviet newsagency TASS announced that Cosmonaut Vladimir Komarov had been killed after the failure of the parachute on his Soyuz 1 spacecraft, following re-entry. As I write this, little is known about what actually happened, but it appears that the parachute lines became tangled in some way, preventing the chute from fully opening, so that the spacecraft smashed into the ground at high velocity. However, it is not clear whether Cosmonaut Komarov died before the spacecraft hit the ground, or whether he was killed on impact.


Newspaper article from the 25 April edition of The Canberra Times announcing the loss of Soyuz-1

New Spacecraft, Ambitious Mission
As is always the case with the USSR’s space programme, nothing was known about the Soviet Union’s latest space mission until it was safely in orbit. We now know that Soyuz 1 was the first flight of a new spacecraft, believed to be even bigger than the Voskhod, which, as we saw, could carry a crew of three. Moscow television has supposedly described the Soyuz as “huge”. Just as Mercury and Vostok, and Gemini and Voskhod, could be considered parallel programs, Soyuz is assumed to be the equivalent of Apollo, and part of the USSR’s Moon landing programme about which we know so little. Could the Soyuz be capable of carrying a crew of four, or even five cosmonauts?

Unconfirmed reports suggest that Soyuz 1 was intended to undertake a surprisingly ambitious mission for the shakedown flight of a new vehicle. The craft was apparently planned to rendezvous in orbit with at least one, and possibly two, other spacecraft, with between six and nine cosmonauts joining Komarov in space before the end of the mission. The low altitude of Komarov's orbits (the lowest to date in the Soviet manned programme), only 138 miles above the Earth, certainly hint that rendezvous and docking operations were included in the flight programme, as a low orbit conserves power resources. This would have been a significant spaceflight first indeed, especially if – as has also been rumoured – there were plans for a crew transfer between one of these other spacecraft and Soyuz 1.

Crew Transfers Planned?
The fact that Komarov was the only cosmonaut on board Soyuz 1 certainly gives the crew trasnfer rumour some credence, as cosmonauts from one or two other spacecraft could have transferred to Soyuz 1 to fill its empty crew couches. Of course, we have no idea whether this transfer would have taken place through a docking tunnel between two spacecraft, or via a spacewalk, since we know nothing about the Soyuz vehicle itself. However, unless the Soviet manned space programme has been conducting an equivalent to the Gemini programme in secret over the past two years, its cosmonauts have little rendezvous experience (apart from Vostok 3-4 and 5-6), no docking experience, and have conducted only one spacewalk, whereas NASA has firmly mastered these critical techniques needed for the Apollo Moon programme. Perhaps the USSR intended to start catching up by carrying out extensive practice of these techniques during this first Soyuz mission? Or perhaps they have largely ignored them because they are planning a completely different approach to their manned lunar programme?

The official photo of Cosmonaut Komarov, released when the Soyuz 1 mission was announced, shows him wearing a spacesuit similar to that worn by Cosmonaut Alexei Leonov when he made the world’s first spacewalk. This photo can be seen in the reproduction of the article from The Canberra Times, above. It offers an intriguing hint that Komarov himself was possibly intended to make a spacewalk, or swap into another spacecraft for his return to Earth. However, confusing the issue is the picture below, which shows Komarov walking to board Soyuz 1 wearing a flight suit (similar to the one he wore as commander of Voskhod 1) rather than a spacesuit.

Problems with the Soyuz Spacecraft?
So why didn’t this rumoured space feat take place? Soyuz 1 was launched on 23 April. No problems were publicly reported during the early orbits of the mission, and Cosmonaut Komarov sent greetings from space “to the hardworking Australian people”. In another message, he also slammed the Vietnam War, in which Australia is fighting alongside the United States and other allies, sending a propaganda broadcast from orbit: "My warm greetings to the courageous Vietnamese people, fighting with dedication against the bandit aggression of American imperialism for freedom and independence", he said.

Soyuz 1 returned from space on its 19th orbit, after just 27 hours in space. It seems unlikely that this was the intended mission duration if rendezvous/docking and spacewalks with multiple spacecraft were really planned. The shortness of the flight may therefore be an indication that there were problems with the spacecraft, which is not necessarily unexpected with the first flight of a new vehicle. No other spacecraft launched to rendezvous with Soyuz 1, so perhaps this aspect of the mission was abandoned when problems arose.

Reports from amateur space-trackers in Italy also claim that they picked up messages in which Komarov complained to the Soviet Mission Control that they were “guiding [him] wrongly” during re-entry. Whether problems with the Soyuz spacecraft in orbit were responsible for the parachute failure that caused Soyuz 1 to plummet to Earth is perhaps something that we may not know for decades, if ever, given the habitual secrecy of the Soviet space programme.


One of the few photos available showing what remained of Soyuz-1 after its imapct with the ground

Lost Cosmonaut
As commander of the earlier Voskhod 1 mission, Colonel Vladimir Komarov was one of the handful of Soviet cosmonauts already known to us in the West. At 40, he was the second oldest of the cosmonauts (after Voskhod 2 mission commander Pavel Belyayev) and the first cosmonaut to make two spaceflights. Said to be highly respected by his cosmonaut colleagues, Komarov overcame a heart murmur, similar to that which grounded Astronaut Donald K. "Deke" Slayton durng the Mercury programmme, and other medical issues to retain his place in the Soviet comsonaut team. He was
married with a 15-year old son and 9-year old daughter. Komarov's 38-year old wife wife, Valentina, has been quoted as saying that she did not even know her husband had been assigned to the Soyuz 1 flight until it was publicly announced after launch. The identity of the cosmonauts slated to fly the other other spacecraft due to be launched as part of Soyuz-1's mission is completeley unknown at this point.


Cosmoanut Komarov with his wife Valentina and daughter Irina

Accident or Incompetence?
Was the loss of Soyuz 1 and Cosmonaut Komarov’s death just a tragic accident? There are persistent rumours that the spacecraft was not actually ready to be flight tested, and that political pressure was brought to bear on the space programme to produce another significant achievement in advance of a major conference marking 50 years since the October Revolution. Another question that arises is whether or not the unexpected death in January 1966 of Chief Designer Sergei Korolev (whose identity was only revealed after he passed away), could have had any impact on the development of the Soyuz and its subsequent fatal first flight?

Professor Sergei Korolev, the formerly anonymous Chief Designer of the Soviet space programme

An Honoured Hero
Like the lost crew of Apollo 1, Col. Komarov is a hero of the quest to explore space and has been posthumously awarded his second Hero of the Soviet Union medal and Order of Lenin. A Kremlin statement expressed the "profound grief" of the Soviet leadership at Komarov's death, and was signed by the Communist Party Central Committee, the Presidium of the Supreme Soviet and the
Council of Ministers. A ten-minute public announcement of Komarov's loss on Moscow television showed the Soviet space monument and a black-bordered version of the official photo of Komarov wearing his spacesuit, while Moscow radio is said to have played sombre music. Komarov’s funeral will be held today, after which his ashes will be interred in the Kremlin Wall. The United States requested permission from the Soviet authorities for two astronauts to attend the funeral as a mark of respect, but disappointingly this was turned down.

Presumably the USSR will now launch an accident investigation similar to that being conducted by NASA to find the causes of the Apollo 1 fire, and will place the Soyuz programme into a hiatus until the invetsigation is complete. With both participants in the Moon race now investigating tragic accidents that have led to the loss of astronaut and cosmonaut lives, will the Moon race ever resume? Or will both programmes instead return to spaceflight with different goals? Only time will tell…. 





[Oct. 16, 1964] Three in One (The next leg of the Space Race)


by Gideon Marcus

A whole new ballgame

It's not often that news of the next stage in the Space Race is eclipsed by an even bigger story.  Yet that's exactly what happened this tumultuous week, a handful of days so crazy that we halted publication ("STOP THE PRESSES!") to keep up with events.

It all started with "Kosmos 47", launched just after midnight (San Diego time) on October 6.  While the Soviets were typically close-lipped about its purpose, from its orbital path, it was suspected that the 24 hour flight was actually an uncrewed test of a new type of Soviet spacecraft.

Sure enough, just six days later, Voskhod ("Sunrise") #1 took off.  On board were three cosmonauts: Commander Vladimir Mikahilovich Komarov, civilian scientist Konstantin Petrovich Feoktistov, and civilian physician Boris Borisovich Yegorov.

This is huge news — both the American Mercury and Soviet Vostok space programs ended more than a year ago.  Those spacecraft only fit one person.  Since then, the United States has been hard at work on both its three-person Apollo lunar craft and its intermediate two-seat Gemini ship.  Although Gemini has already flown once, the first crewed flight won't happen until early next year.

And here are the Soviets, already throwing up a three person spaceship!  Could they be closer to a Moon mission than we thought?

On their eighth orbit, Voskhod's cosmonauts passed over the United States and radioed, "From aboard the spaceship, Voskhod, we convey our best wishes to the industrious American people.  We wish the people of the United States peace and happiness."

Interestingly, a second radio exchange was heard afterwards, during orbit sixteen: the three cosmonauts requested permission to extend the mission beyond 24 hours.  The request was denied, and the flight ended just one day after it had begun.

Why is this strange?  Well, one of the stated goals of the mission was "Extended medio-biological investigations in conditions of a long flight."  And while 24 hours is a long flight by American standards (that of Gordo Cooper in Faith 7 was about a day and a half), the Soviets have been flying day-long and longer missions since Gherman Titov's flight in 1961.  Did something go wrong with the spaceship? 

It turns out the problem was on the ground.  Even as the three cosmonauts were making history in space, the Presidium was holding a vote of no confidence, citing Khruschev's age and health as reasons for his dismissal.  Leonid Brezhnev was elevated to Secretary of the Communist Party and Andrei Kosygin was named Premier.  When the space travelers landed, they were whisked to Moscow where they must have been quite surprised to meet the new leadership!

Still, regardless of who is wearing the crown behind the Iron Curtain, there is no question that Voskhod was a tremendous accomplishment.  The question now is: What will they follow it up with?

Beep Beep, says America

Though perhaps not as impressive to some, the United States maintains the lead in automated space science.  Just this month, we launched the two latest Explorer satellites, 21 and 22.  And while those numbers seem a lot lower than what the Soviet "Kosmos" series has gotten up to, we have to remember that Kosmos conceals a wide variety of satellites, most of which have never resulted in a scientific paper.  They have probably snapped a great many photos of Midwest missile bases, though.

In contrast, the Explorer program is just one of many devoted to returning scientific data from the heavens.  Explorer 21, launched on October 4 (seven years after Sputnik) is the second of its type.  Also known as Interplanetary Monitoring Platform (IMP) B, its job is the same as that of Explorer 18, launched in last year — to measure the magnetic fields, cosmic rays, solar wind, and charged particles far from the Earth.  This helps us understand the physics of the solar system, and it lets us map the electromagnetic "terrain" of the space between Earth and the Moon.  The IMPs are blazing a trail for Apollo, making sure it's safe for people out there.

Unfortunately, the third stage on IMP-B's Thor Delta launch booster fizzled, and instead of soaring 160,000 miles from the Earth, Explorer 21 barely gets to 60,000.  This is within the hellish Van Allen radiation belts, so even though Explorer 21's nine instruments are performing perfectly, the data being returned tells nothing about the universe beyond Earth's magnetic system.

However, Explorer 22, launched October 10, is doing just fine.  It's the last of NASA's first phase of ionospheric explorers, measuring the electron density in the upper atmosphere.  Before your eyes glaze, that just means it sees how electrically charged the air is in the layer that reflects radio waves.  Such experiments help us better understand how the Sun affects our broadcasts — and allows us to make plans for unusual space weather events. 

The satellite, also known as Beacon Satellite B ("A" failed to orbit on March 29) is also the first of NASA's geodetic satellites, measuring the shape of the Earth with tremendous precision.  What's neat about Explorer 22 is that the spacecraft is actually quite unsophisticated, just three radio beacons and a laser reflector.  More noteworthy are the 80 tracking stations run by 50 scientific groups in 32 countries.  These provide a worldwide web, collecting navigational data on an unprecedented scale.

And since it's a civilian probe, we'll probably even share the information with the Communists.  You tell me who's winning the Space Race…


[Join us at Portal 55, Galactic Journey's real-time lounge! Talk about your favorite SFF, chat with the Traveler and co., relax, sit a spell…]