Category Archives: Science / Space Race

Space, Computers, and other technology

[May 28, 1969], The Big One Before the Big One (Apollo-10)



by Kaye Dee

May has been an exciting month for space exploration, with two Soviet space probes arriving at Venus and Apollo-10 safely returning just days ago from its epic lunar voyage, which has constituted a full-dress rehearsal for the first manned Moon landing.

A philatelic cover referring to Apollo-10 as "the Big One before the BIG One"! (Meaning Apollo-11, of course)

The Bridesmaid, not the Bride
Before Apollo-10 lifted off on its big mission as NASA’s final test flight ahead of the planned landing of Apollo-11 in July, for a while there was the possibility that the landing attempt might actually be made on this flight, to ensure that American astronauts reached the Moon before any Soviet cosmonauts!

I’m told by my friends at the Honeysuckle Creek Tracking Station, that there was considerable discussion within NASA about accelerating the lunar landing programme. As early as February, even before the launch of Apollo-9, there were suggestions that, if the Earth orbit test of the Lunar Module (LM) was successful, Apollo-10 might go for the first manned lunar landing. George Mueller, Head of NASA’s Office of Manned Space Flight (left), supported this approach. He may not look it, but Dr. Mueller has been described as someone who “always shoots from both hips”, and he strongly pushed for the Apollo-10 landing scenario.

However, a dress rehearsal mission had been planned since June 1967, and the consensus was that the programme was not quite ready to safely achieve a landing with Apollo-10, with more work needed on different docking techniques, as well as more experience with communications and tracking capabilities at lunar distances.

There were concerns that not enough is known about the effect on planned lunar orbit manoeuvres of the Mascons (gravity peaks caused by heavy material under the lunar surface) discovered by Apollo-8. In addition, the lunar landing computer software wasn’t quite ready, and the LM allocated to the Apollo-10 mission was one that had been planned for use in an Earth orbit flight test. Since it was heavier than a LM intended for a lunar landing, its greater weight might have caused problems lifting off the lunar surface.

LM-4 being prepared for the Apollo-10 mission at Kennedy Space Centre

Thus, on 26 March, with the Saturn-V for its mission already on the launchpad, senior NASA officials finally announced that Apollo-10 would remain the bridesmaid and not become the bride, performing the final full-dress rehearsal for a Moon landing with Apollo-11, rather than itself attempting the historic first lunar touchdown. “With the exception of the actual landing of the Lunar Module on the lunar surface, the mission planned is the same as for the [Apollo-11] lunar mission”, NASA’s announcement of the decision said.

Dr. Paine (right) with Mr. Robert Gilruth, Director of the Manned Spacecraft Centre, celebrating the safe return of Apollo-10

Perhaps Dr. Thomas O. Paine, only confirmed as NASA's third Administrator on 20 March – and a Democrat in the Republican Nixon Administration, which has yet to demonstrate strong enthusiasm for continuing the spaceflight programme of the previous Administration – preferred to err on the side of caution, rather than take another bold gamble like Apollo-8 at such a late stage in the Moon landing programme.

Seasoned Crew
Whether Apollo-10 remained the lunar landing dress rehearsal, or if it had become the first mission to land on the Moon, its crew were well-qualified for either mission scenario, as seasoned veterans of Gemini spaceflights.

Mission Commander Colonel Thomas Stafford previously flew as Pilot of the Gemini-VI mission, and then as Commander of Gemini-IX. On the latter flight, his Pilot was Commander Eugene “Gene” Cernan, assigned as LM Pilot for Apollo-10. The third member of the Apollo-10 crew, Command Module (CM) Pilot Commander John Young, made his first spaceflight as Pilot of Gemini-III, before becoming Commander of Gemini-X. I think NASA would have been hard-pressed to assemble a more experienced crew for this crucial flight.

A Mission Patch with Mission Heritage
North American Rockwell artist Allen Stevens, who has previously collaborated with the crews to design the mission patches for Apollo-1 , 7, and 9, apparently wanted to break away from the circular shape used for so many previous missions. He initially offered the Apollo-10 crew some concepts based on polygonal patch shapes, but these did not appeal.

Instead, US Navy officers Cernan and Young primarily developed the patch, which Stevens then illustrated. Their concept drew heavily on the design of Stafford and Cernan’s Gemini-IX mission patch, especially using the shape of a shield.

Astronaut Cernan has said that the mission patch was based on the mechanics and goals of the mission, and this is exemplified in the dominance of the spacecraft and the mission number represented by a large Roman numeral in the middle of the design.

The final version of the Apollo-10 patch depicts the CM circling the Moon as the LM makes its low pass over the surface, with the Earth in the background. The three-dimensional rendering of the Roman ‘X’ gives the impression that it is sitting on the Moon, its prominence in the illustration indicating the mission’s significance in furthering the Apollo programme. The crew names appear around the rim of the shield.

A Mascot Namesake
With two spacecraft operating independently around the Moon, the CM and LM would need their own individual callsigns, as was the case with Apollo-9. For their historic mission, the Apollo-10 crew looked to the popular “Peanuts” comic strip, injecting a light-hearted note into a critical mission by designating the Command Module “Charlie Brown” and the Lunar Module “Snoopy”. It seems that NASA executives were once again unhappy with the crew’s choice of names, being particularly concerned about the perception of the hapless Charlie Brown as a born loser.

But the two characters, particularly Snoopy, have been associated with spaceflight since last year, when the lovable beagle was adopted as the mascot for NASA’s Manned Spaceflight Awareness programme. This safety campaign, begun in 1963, focuses on encouraging the workforce constructing spacecraft and equipment for NASA to remember that astronaut lives, and mission success, depend upon the quality and reliability of their work: a message that has taken on new meaning and urgency following the Apollo-1 fire. Snoopy, with his daring imaginary adventures (as a World War 1 flying ace, Olympic skater and other action roles), seemed an ideal choice for a mascot to raise morale and increase visibility for the renewed effort.

In 1968, with the permission and participation of “Peanuts” creator Charles Schultz, Snoopy became not only the mascot for this programme, but the symbol of its special achievement award, the “Silver Snoopy”. The award recognises individuals within the NASA workforce and contractors who have made valuable contributions to safety and mission assurance. Recipients receive a silver lapel pin which depicts a spacesuited Snoopy doing his famous “happy dance”.

A batch of Silver Snoopy pins was carried to the Moon on Apollo-8, and each award pin is presented to its recipient by an astronaut. As a person can only be honoured once with a Silver Snoopy award, it has already become a highly-coveted form of recognition.

Snoopy-ing Around
In March this year, Snoopy beat the Apollo-11 crew to a Moon landing in his comic strip fantasies, but he and Charlie Brown are turning up in many guises across the space agency, frequently featuring on motivational posters.

Small models of the boy and his dauntless dog are found in the Apollo spacecraft simulator area, where the astronauts spend much of their time in training. The astronauts have also taken to calling their communications headgear “Snoopy caps”, because of their resemblance to the flying helmet Snoopy wears in his daydreams of battling the Red Baron. The black-and-white design of the caps also recalls Snoopy's white head and black ears. Toy models of Charlie Brown and astronaut Snoopy also graced the consoles in Mission Control while Apollo-10 was in flight.

In an interview in April, Col. Stafford explained why the astronauts adopted the Snoopy and Charlie Brown callsigns. “Since we're going to the Moon to find all these facts and kind of snoop around, we decided that the Lunar Module is going to be called Snoopy. Snoopy is a comic character that’s a favourite, I know, of many people in the United States and around the world, and to go with it, we'll call the Command Module Charlie Brown”. In the same interview Commander Cernan also referenced the Silver Snoopy as a reason for the name choice, saying “Snoopy is a sort of champion of the space programme, anyway”.



Getting Ready
Despite not landing on the Moon, Apollo-10 was still going to be a big mission, with its flight plan closely following that of Apollo-11. To enable detailed photography of the designated Apollo-11 landing site at the Sun angle planned for the July mission, the launch was postponed from 16 to 17 May. In March, it was delayed again to 18 May, to allow for a better view of the backup landing site. An extra day in lunar orbit was also added to the mission to provide time for additional testing of the LM’s systems and photography of possible future Apollo landing sites.

Col. Stafford and Commander Cernan training for their flight in the LM simulator

The Apollo-10 crew’s intensive mission training schedule saw them putting in five hours of formal training for every hour of their mission’s eight-day duration. This included more than 300 hours each in the CM or LM simulators, and centrifuge training to prepare for the high-acceleration conditions they would endure during re-entry.

An accidental fuel spillage from the first stage of the Saturn V at the end of April fortunately caused no damage, and countdown preparations went ahead as planned, with no major delays. On 14 May, the astronauts received their final lunar topography briefing from scientist-astronaut, geologist Dr. Harrison Schmidt, and were pronounced fit and ready for lunar flight in their final medical checks. Everything was ready for the full-dress rehearsal of a manned lunar landing!

Mission Commander Stafford pats a giant Snoopy plush toy for luck, as the crew walk out to the Astronaut Transfer Van. Snoopy is being held by Cernan's secretary, Jamye Flowers

Lift Off!
Due to mission scheduling requirements, Apollo-10 was slated to lift off from Launch Complex 39B at Kennedy Space Centre, the first Apollo mission to use that pad. (LC 39A, used for Apollo-8 and 9 is being used for Apollo-11, whose Saturn V vehicle was rolled out to the pad just a few days before the Apollo-10 launch). Firing Room 3, at Kennedy Space Centre’s Launch Control Centre was also used for the first time on Apollo-10’s launch.

Mission Director of Flight Crew Operations Deke Slayton and other NASA officials in Firing Room-3 during Apollo 10's pre-flight preparations

Apollo-10 lifted off exactly on time at 16.49 GMT on 18 May. Although pogo effects gave the astronauts something of a rough ride into orbit, this fortunately had no impact on the mission. However, during Trans-Lunar Injection (TLI) burn, shuddering vibrations caused by the S-IVB stage pressure relief valves blurred the astronauts’ vision, to the point that they feared that the mission might have to be aborted. Fortunately, after five minutes the burn ended satisfactorily, with Apollo-10 safely on the way to the Moon.



The TLI burn occurred about 100 miles above outback Queensland, witnessed on the ground by thousands of people thanks to perfect observing conditions. A local official in the town of Cloncurry gave an interview to NBC News, which I understand was broadcast live in the US, describing what they saw: “The veil surrounding the relatively large white spot of the rocket’s rear end could best be described as resembling a mercury vapor street light seen through thick fog, although it was of a tenuous nature.”

I've not yet seen a picture of the Apollo TLI burn from Queensland, but this photo of the Apollo-8 TLI burn above Hawaii will give some idea of the amazing sight seen by many in remote Queensland towns

Coming to You in Living Colour
The Apollo-10 Westinghouse colour television camera and its custom-made viewing monitor for onboard use in the CM

Apollo 10 has seen the first use of a compact colour television camera, developed by Westinghouse. Installed in the CM, the camera was first used to show mission controllers in Houston the complex transposition, docking, and extraction manoeuvre performed by CM Pilot John Young, to extract the LM from the S-IVB stage, attaching it to the nose of the Command Module for the journey to the Moon.

Soon after the special LM extraction transmission, the first public broadcast on the way to the Moon treated the audience to live colour vistas of the Earth from 25,000 miles away in a thirteen-minute show.



This was followed, before the crew's first sleep period, with a 24-minute TV transmission, that began with views from 36,300 nautical miles in space, showing the Earth floating in the black void of the cosmos. The scene moved LM Pilot Cernan to say: "It's just sitting out there in the middle of nowhere. It's unbelievable…it's just incredible".

The camera was then turned inside the the CM showing the astronauts themselves. Capcom Bruce McCandless commented, “It’s really great. The colours are fantastic.”

Images of the Apollo-10 crew captured during one of the broadcasts from the CM. Stafford (top), Cernan (middle), Young (bottom)

The Apollo-10 crew must have thought their colour camera was a great new toy, as they treated Earth audiences to nineteen colour television transmissions, totalling 5 hours 52 minutes across the entire mission. In one of the early broadcasts, the crew displayed colour illustrations of Charlie Brown and Snoopy, produced by a NASA illustrator, which I understand were intended as colour calibration checks.



During another broadcast on the way to the Moon, Astronauts Stafford and Young were shown side by side, with Young upside down to demonstrate the weightless environment. Col. Stafford, using just a light touch, moved his CM pilot up and down, as Young joked “I do everything he tells me.”

Monitors in Mission Control show the Stafford-Young broadcast from the CM demonstrating the weightless environment

The first broadcast after Trans-Earth Injection was initially received in Australia and distributed to the local television networks (albeit in black and white, since we don't yet have colour television), prior to transmission back to the United States and on to the rest of the world. This functioned as a test for the systems that have been put in place to handle Australia's potential role as the prime receiver for Apollo-11's lunar surface transmissions.

Amusingly, the normally laconic Cernan and Stafford gushed like schoolboys on an outing, clearly excited to be floating in weightlessness, on their way to the Moon. Speaking of which, it was just shortly before this flight that NASA determined what was causing some astronauts to get "space sick" during missions. It wasn't a cold or food-related; it was weightlessness, itself, affecting the inner ear adversely.


Eating Out
Food for the astronauts is being continually improved, and new items were added to the menu on this mission, such as small sandwiches with real bread, and ham, chicken and tuna salad. I've heard that this expanded menu was a real boost to the crew's morale as they travelled to the Moon – although looking at pictures of some space foods, I'm not so sure that they are appetising, even if they are nutritious.



(above) Some of the new menu items available to the Apollo-10 crew. (below) I'm not so sure about the new dehydrated chicken salad!



Another innovation for Apollo-10 has been the introduction of the "wet pack" or "spoon bowl" packaging, allowing the astronauts to eat many meals with a spoon! To reduce the risk of food floating away and becoming a nuisance and potential hazard to electronic equipment, the spoon-eatable wet pack food is mixed with just enough water to make it sticky, so that it clings to the inside of the container and sticks on the spoon.

(above) A spoon-bowl container with a beef and vegetable meal. It looks a lot more enjoyable to eat than that chicken salad

Unfortunately, some food on Apollo-10 was not so morale-boosting, as Col. Stafford apparently put too much chlorine in the drinking water used to rehydrate the meals, making the dehydrated foods taste strange.

Cruising Along
The astronauts had a relatively light workload on the way to the Moon, with only one slight course correction to place Apollo-10 on the trajectory Apollo-11 is expected to take. The only real problem they encountered was that the mylar cover of the CM’s hatch pulled loose, spreading shreds of fibreglass insulation into the docking tunnel, CM and LM.

Photograph of the Earth from 100,000 miles, showing parts of Africa, Europe and the Middle East

About 62 hours after launch, Apollo-10 crossed into the Moon’s gravitational sphere of influence, passing about 10 hours later into the darkness of the lunar shadow. Just on 76 hours into the mission, Apollo-10 passed behind the Moon, with the Lunar Orbit Insertion burn occurring out of radio contact with the Earth. Fortunately, this manoeuvre experienced no issues and Apollo-10, now safely in lunar orbit, emerged from the behind the Moon to begin the real work of the mission. “You can tell the world that we have arrived,” Col. Stafford announced.

The Real Work Begins
Almost as soon as they were back in contact with the Earth, the crew began describing the lunar terrain they were flying over, with Commander Cernan saying, “It might sound corny, but the view is really out of this world.” Within the first couple of hours at the Moon, after circularising their orbit at approximately 60 nautical miles above the Moon, the crew began planned observations of lunar surface landmarks. This included photographing three of the proposed Apollo-11 landing sites (which the astronauts would also photograph at a lower altitude from LM Snoopy), as well as many craters and other surface features.

(top) A view of the prime Apollo-11 landing site. (bottom) Crater Necho on the far side of the Moon

For their first telecast from lunar orbit, the Apollo-10 crew described the lunar terrain speeding below them, which included the approach to the Apollo-11 landing site in the Sea of Tranquillity. I could only see this broadcast in black and white, but I understand that for viewers in the US and other parts of the world, the colour and quality of the television images was quite breathtaking: these stills made available to me by the Australian NASA representative certainly suggest that!

(top) Colour view of craters Messier and Messier-A (bottom) Crater Maskelyne

Waking Up Snoopy
When Commander Cernan opened Snoopy’s hatch for the first time, to be engulfed in fibreglass particles from the earlier damage to the CM hatch, bits got into his hair and eyebrows. Col. Stafford helped remove some of these particles, remarking that the LM Pilot “looked like he just came out of a chicken coop”. Though the astronauts used a vacuum cleaner to remove as much of the fibreglass particles as possible, tiny flecks annoyingly continued to circulate in the spacecraft, making the astronauts itch. They got into the air conditioning system and had to be constantly scraped from the CM’s filter screens for the rest of the mission.

Despite the fibreglass nuisance, Cernan partially activated the LM, conducted communications checks, and prepared the vehicle for its test flight. “I’m personally very happy with the fellow”, the LM Pilot later reported to Mission Control, saying in reference to the next day’s flight “We’ll take him out for a walk and let him stretch his legs in the morning.”

A spectacular Earthrise image captured during Apollo-10's first orbit of the Moon

Taking Snoopy for a Walk
Apollo-10’s first full day in lunar orbit was going to be its busiest, with the critical eight-hour sequence of manoeuvres in lunar orbit to simulate all aspects of Apollo-11 mission operations except the landing itself. Stafford and Cernan transferred to Snoopy, while Young remained in Charlie Brown. Despite some issues with the docking tunnel, Mission Control assured the astronauts that it was safe to undock, and the two craft separated while they were out of contact behind the Moon.

Returning to contact with Earth, Commander Young made a visual inspection of the LM and then fired the CM’s thrusters to separate from Snoopy. With a GO from Mission Control, Snoopy commenced its Descent Orbit Insertion burn while on the lunar farside, to lower itself to about 50,000 feet. This critical manoeuvre took place behind the Moon, so that the low point of its orbit would be reached on the nearside near the Apollo-11 landing area in the Sea of Tranquillity. As they looped back around to the nearside of the Moon, Cernan reported to Capcom Charles Duke, “We is down among them, Charlie,” referring to their low altitude over the lunar landscape.

A low-altitude view of the Apollo-11 prime landing site, focussed towards the upper right of the image

Snoopy successfully tested the landing radar, a particularly critical test in advance of the actual landing mission, as the crew maintained a running commentary describing the landscape below them, including all the landmarks leading up to the planned Apollo 11 landing site. This was followed by a firing of the LM’s Descent Propulsion System to set up the right orbital geometry for a simulated liftoff from the Moon during the next orbit.

Crisis averted
As Snoopy’s crew prepared to separate the LM’s ascent stage from the lower stage, the vehicle began to gyrate and tumble out of control, causing Cernan to utter a shocked expletive that was broadcast live, bringing some complaints about his language (though I think his outburst was perfectly understandable in the circumstances).

Col. Stafford quickly discarded the descent stage and fought to manually regain control of the LM, suspecting a thruster stuck firing.  Fortunately, after about eight seconds Snoopy was brought back under control and the Ascent Stage, was able to safely climb to orbit, mimicking the orbital insertion manoeuvre after launch from the lunar surface that Apollo-11 would have to conduct.

For a tense hour, it looked as if the Apollo-11 mission was in jeopardy. If the ascent stage always subjected its crew to "wild gyrations" upon firing, that was a problem that had to be solved, and pronto. Fortunately, the actual cause of the problem was determined quickly: it seems that a switch controlling the mode of the abort guidance system, a sort of back-up computer, has been left on, conflicting with the main guidance computer. That issue is easily resolved with a better checklist!

Blue Moon
There are rumours that NASA deliberately did not load Snoopy with enough propellant to safely land on the Moon and return to orbit, in order to dissuade Stafford and Cernan from unofficially attempting the first lunar landing. However, I’m told that, since Snoopy was overall too heavy to attempt a safe return from the lunar surface, the ascent stage was loaded with the equivalent quantity of propellant that it would have had remaining if it had lifted off from the lunar surface and reached the altitude at which the Apollo-10 ascent stage was fired.

After coasting for about an hour, Snoopy performed manoeuvres to bring it close to Charlie Brown, while the two craft were behind the Moon. Just after they returned to contact with the Earth, Commander Young completed the CM-LM docking, with Stafford joking that “Snoopy and Charlie Brown are hugging each other.” During its independent flight of 8 hours 10 minutes, Snoopy met all planned objectives for the Lunar Module flight tests.

The scene in Mission Control as the LM and CM are safely docked together

With all the astronauts safely back in the CM, Snoopy was cut free from Charlie Brown. To prevent any further contact between the two spacecraft, Snoopy’s ascent engine was automatically fired to fuel depletion, sending it safely out of lunar orbit and into an orbit around the Sun. LM Pilot Cernan said sadly, “I feel sort of bad about that, because he’s a pretty nice guy; he treated us pretty well today.”

On Their Way Home
During their final day in lunar orbit, the Apollo-10 crew took stereo images of the Apollo-11 landing site, gave another 24-minute colour TV broadcast, and prepared the spacecraft for its critical Trans Earth Injection manoeuvre, that would send the CM out of lunar orbit and on its way back to Earth. Just as with Apollo-8, this critical engine firing occurred while the spacecraft was behind the Moon and out of radio communications with Earth.

With extra fuel left over from the lunar activities, Apollo-10 burnt it off to accelerate the spacecraft back to Earth, the return trajectory taking only 42 hours rather than the normal 56. By the time it reached re-entry, the CM was travelling at 24,791 mph relative to Earth on re-entry, making the crew of Apollo 10 the fastest humans in history!

During their relatively lazy return to Earth, the Apollo-10 astronauts indulged themselves with the first shave in space. Using safety razors, a thick shaving gel and a wet cloth to wipe away gel and whiskers, the crew displayed freshly shaven visages during their final broadcast from space.

Eight days after launch (with a mission elapsed time of 192:03:23), Apollo-10 splashed down safely in the Pacific Ocean on 26 May, about 400 nautical miles east of American Samoa and just a couple of miles from the recovery ship USS Princeton. The carrier crew witnessed the spectacular sight of the Service Module streaking across the pre-dawn sky in a blazing fireball as it burned up, followed by the Command Module silhouetted against the brightening sky under its three big parachutes.

When the astronauts, waiting in their “rubber-ducky” to be retrieved, looked up at the recovery helicopter hovering above they saw “Hello there Charlie Brown” written across the underside of the fuselage!

After taking a congratulatory phone call from President Richard Nixon, the crew were flown to Pago Pago and then on to Ellington Air Force Base near Houston, where they are now undergoing medical checks, debriefing and, of course, re-union with their families.

Apollo-10 has completed an epic voyage that has in many ways surpassed even Apollo-8. Its completion of a successful full-dress rehearsal, means that nothing now stands in the way of the first manned landing taking place in July 1969, with Apollo-11 – that will be the BIG one, to stand on the shoulders of this big test-flight mission. I can't wait!


">

[May 20, 1969] Ad Astra et Infernum (June 1969 Fantasy and Science Fiction)

photo of a man with glasses and curly, long, brown hair, and a beard and mustache
by Gideon Marcus

To the Stars

Venus has gotten a lot of attention from Earth's superpowers.  Part of it is its tremendous similarity to our home in some ways: similar mass, similar composition, similar distance from the Sun (as such things go).  But the biggest reason why so many probes have been dispatched to the Solar System's second world (to wit: Mariner 2, Mariner 5, Venera 1, Veneras 2 and 3, and Venera 4) is because it's the closest planet to Earth.  Every 19 months, Earth and Venus are aligned such that a minimum of rocket is required to send a maximum of scientific payload toward the Planet of Love.  Since 1961, every opportunity has seen missions launched from at least one side of the Pole.

This year's was no exception: on January 5 and 10, the USSR launched Venera (Venus) 5 and 6 toward the second planet, and this month (the 16th and the 18th), they arrived.

Our conception of Venus has changed radically since spaceships started probing the world.  Just read our article on the planet, written back in 1959, before the world had been analyzed with radar and close-up instruments.  Now we know that the planet's surface is the hottest place in the Solar System outside the Sun: perhaps 980 degrees Fahrenheit!  The largely carbon dioxide and nitrogen atmosphere crushes the ground at up to 100 atmospheres of pressure.  The planet rotates very slowly backward, but there is virtually no difference between temperatures on the day and night sides due to the thick atmosphere.  There is no appreciable magnetic field (probably because the planet spins so slowly) so no equivalent to our Van Allen Belts or aurorae.

This is all information returned from outside the Venusian atmosphere.  Inference.  To get the full dope, one has to plunge through the air.  Venera 4 did that, returning lower temperatures and air pressures.  This was curious, but it makes sense if you don't believe the Soviet claim that the probe's instruments worked all the way to the ground—a dubious assertion given the incredibly hostile environment.  No, Venera 4 probably stopped working long before it touched down.

The same may be true of Veneras 5 and 6.  TASS has not released data yet, but while the two probes were successfully delivered onto Venus' surface, we have no way of knowing that they returned telemetry all the way down.  Indeed, the Soviet reports are rather terse and highlight the delivery of medals and a portrait of Lenin to Venus, eschewing any mention of soft landing.  The news does spend a lot of time talking about solar wind measurements on the way to Venus—useful information, to be sure, but beside the point.


The Venera spacecraft and lander capsule

Anyway, at the very least, we can probably hope to get some clarity on what goes on in the Venusian air.  It may have to wait until next time before we learn just what's happening on the ground, however.

To Hell

I bitched last month about the lousy issue of The Magazine of Fantasy and Science Fiction.  Well, I am happy to say that the May issue is more than redeemed by this June 1969 issue, which, if not stellar throughout, has sufficient high points to impress and delight.


by Gray Morrow

Sundance, Robert Silverberg

Silverbob has a knack for poetic, evocative writing as well as rich settings.  He has successfully made the transition from '50s hack SF author to New Wave vanguard.  Which is why this rather forgettable tale is all the more disappointing.

It's about a Sioux spaceman named Tom Two Ribbons who is part of a terraforming contingent on a virgin planet.  Except what his compatriots call terraforming, he calls genocide, for the millions of indigenous Eaters that they are clearing out to make room for farms are, he claims, intelligent.  To prove his point, he goes out among the aliens, dancing their way and his way, hoping to avert catastrophe. 

But is any of it real?  Or is it all a figment of his traumatized mind?

I just found it all a bit hollow and affected, and also confusing.  Not bad, but nowhere near Silverbob's best.

Three stars.

Pull Devil, Pull Baker!, Michael Harrison

A Jewish dentist finds himself implacably hostile to an Aryan patient, and, to his dismay, finds himself wanting to cause him pain in the examination chair.  Turns out the two have a history that goes back centuries to another life, when the drill was in the other hand, so to speak.

So unfolds an age-crossing riddle, at the end of which lies a treasure of untold riches, if only it can be deciphered.

I dug this one.  Maybe I'm biased.  Four stars.

The Landlocked Indian Ocean, L. Sprague de Camp

De Camp offers himself up as a sort of half-rate Willy Ley, explaining why, for so long, the Indian Ocean was conceived of as a big lake rather than part of the world sea.  There's a lot of good information here, but it's not quite as compellingly presented as it could be.

Three stars.

A Short and Happy Life, Joanna Russ

Here's a great little prose-poem on ingenuity involving a barometer.  Good stuff.  Four stars.

A Run of Deuces, Jack Wodhams

Aboard a superluminary cruise ship, the bored passengers come up with a betting pool to relieve their ennui: the winner of the pot is whomever guesses at what distance from their destination the ship will pop out of hyperspace.

A lot of sex.  A lot of languour.  A predictable ending.  A low three (or a high two, if you're not in a good mood).

Operation Changeling (Part 2 of 2), Poul Anderson

Last month, we were (re-)introduced to the Matuchek family: Steve the werewolf, Virginia the combat wizard, Valeria the moppet, and Svartalf the familiar.  When Valeria was kidnapped by the agents of Hell, it was only a matter of time before her parents (and their cat!) would have to penetrate the perverse underworld to retrieve her.

Enlisting the aid of a pair of dead mathematical geniuses, in this installment, the trio warps into the infernal dimension, where they must face off against hordes of demons, baffling spatial topography, and the most evil of beings humanity has ever known.

There is good Anderson, there is boring Anderson, and there is middlin' Anderson.  This story is firmly in the "good" camp, with vivid descriptions, engaging (and often funny) characters, and the sort of light, fantastic adventure we haven't seen from Anderson since Three Hearts and Three Lions.  Poul does somber, dour, very well, so I think it's more work for him to keep things light—even as our heroes are arrayed against the forces of darkness!  It's never frivolous, but there's a fey quality that keeps things on the right side of horrific.

And that episode in Hell!  I've never read the like.  My only regret is that it's not longer, with a little more time for the Matuchek squad to come up with their novel solutions so that the reader can better follow along.  Perhaps it'll get expanded into a full length book at some point.  I hope so!

Four stars for this installment and the book as a whole.

The Fateful Lightning, Isaac Asimov

A boffo piece on the discovery of electricity.  It's good, although I found the explanation of how lightning rods actually work somewhat incomplete.

Four stars.

Repeat Business, Jon Lucas

A mom-and-pop boat charter take on a quartet of "travel agents" who are obviously (to the reader, at least) a bunch of aliens.  The E-Ts are sussing out the charterers and their sailing vessel to see if they might be a hit back home on Sirius or Spica or wherever they're from.

It's not a badly written tale, but it's so obvious, and the protagonists so clueless, that it feels sub-par.  Maybe this would have passed muster a couple of decades ago.  Now it's old hat.

Two stars.

Back to Earth

And there you have it: big news in the skies and in the SFnal pages of F&SF.  There's really no unpleasant reading at all in this month's mag, even if it isn't all novel or cutting edge, and the Anderson really ends with a bang—or a flash of brimstone, perhaps.  Combined with the exciting space news, and the recent launch of Apollo 10 (article to come!) I am really feeling over the Moon.

If you read this month's issue, and watch the ongoing Apollo coverage, I'm sure you will be, too!






[March 16, 1969] Flight of the Space Spider (Apollo 9)



by Kaye Dee

Riding on Apollo's Coat-tails
The Traveller recently referred to President Nixon’s 8-day European tour, but it would seem Mr. Nixon deliberately decided to pave the way by riding on the coat-tails of the general international applause accorded to the historic Apollo-8 mission. Shortly before he announced his own trip to Europe, the President personally dispatched Apollo-8 commander Colonel Frank Borman and his family on an eight-nation European goodwill tour. (The other Apollo-8 crewmembers, already in training as part of the Apollo-11 backup crew, were not available to participate in the tour.)


Departing on 2 February, Col. Borman, his wife Susan, and two sons undertook a 19-day tour, visiting the UK, France, Belgium, the Netherlands, West Germany (including West Berlin), Italy (including Vatican City), and Spain (like Australia, home to an Apollo Manned Space Flight Network station and a Deep Space Network facility): an itinerary very closely paralleling that later followed by President Nixon!

The Borman family meets the Royal Family and Col. Borman presents a picture of the Moon to the Pope during his goodwill tour of Europe

Col. Borman said that he was particularly gratified to make the journey because of a conviction that space efforts “can be a very positive force for creating better relations among the people of the world”.

A Long-Delayed Mission
But while Colonel Borman was embarking on his diplomatic mission, the crew of the long-delayed first test flight of the Lunar Module (LM) in Earth orbit were in the final stages of preparations for the Apollo-9 mission, which splashed down just a few days ago with all its objectives successfully completed. Intended to be Apollo-8, the mission was bumped later in the sequence due to a succession of technical delays in the development of the LM, the first manned spacecraft designed solely for operations in space.


Apollo-9’s main task was to qualify the LM for manned lunar flight, demonstrating that the craft could perform all the necessary manoeuvres required for a landing on the Moon. The flight was therefore intended to be very much a mission of “firsts” that would finally fully test-out the entire suite of hardware needed to accomplish a Moon landing mission. It would see the first flight of the complete Apollo Saturn vehicle – Saturn V launcher (AS-504 for this mission), Command Service Module (CSM-104) and Lunar Module (LM-3) – as well as the first docking and extraction of a LM from the Saturn S-IVB stage.


 
Putting the LM through its paces would involve the first flight tests of its upper and lower stages, with the first firings of their engines in space, and include the first rendezvous and docking between with the CSM and LM. The mission would also undertake the first spacewalk of the Apollo programme, to test the reliability of the Apollo A-7L space suit and the Portable Life Support System (PLSS) backpack, essential for lunar surface operations.

The Crew Who Waited
Original 1966 crew photo of Astronauts Scott, McDivitt and Schweickart. Their training for the flight that eventually became Apollo-9 commenced in January 1967, even before the Apollo-1 fire

Probably the best prepared mission crew to date, the Apollo-9 crew originally came together in January 1966, as the back-ups for Apollo-1, before being assigned as the first crew to fly the LM. Their 1,800 hours of mission-specific training was equivalent to about seven hours for every hour of their eventual flight!

With so much riding on a successful LM test flight, Apollo-9’s crew comprised two veteran Gemini astronauts and one rookie. Mission Commander Air Force Col. James McDivitt previously commanded the Gemini-IV mission, during which the first US EVA was conducted. Command Module Pilot Lt.-Col. David Scott, also with the US Air Force, was Pilot of Gemini-VIII, its flight cut short by the first US in-flight space emergency, but for which he undertook considerable EVA training.

Finally Go for launch! Astronauts McDivitt, Scott and Schweickart in their official Apollo-9 pre-flight crew portrait

The new kid on the block for Apollo-9 was LM Pilot Mr. Russell Schweickart, originally selected in the third group of astronauts in 1963. An experienced fighter pilot, serving with the U.S. Air Force and the Massachusetts Air National Guard between 1956 and 1963, Mr. Schweickart joined NASA as a civilian, from a position as a research scientist at the Experimental Astronomy Laboratory of the Massachusetts Institute of Technology (MIT). Mr. Schweickart is nicknamed “Rusty” for his red hair (but in Australia, with our sense of humour, we’d have called him “Bluey”!).

Introducing Gumdrop and Spider
Because Apollo-9 would have two spacecraft from the same mission operating independently for the first time (unlike the Gemini VI-VII rendezvous, in which the two spacecraft were separate missions with their own callsigns), they each required separate callsigns for easy communications identification. NASA Administrators therefore finally lifted the ban on spacecraft names, which has been in operation since the beginning of the Gemini programme, permitting the crew to select their own names for the CM and LM.

The Apollo-9 CSM and LM being prepared for launch at Kennedy Space Centre

The astronauts chose “Gumdrop” for the CM, based on the shape of the capsule, which resembles the popular sweet, and “Spider” for the LM, given the spider-like appearance of the lander, with its four spindly legs. Unfortunately, it seems that certain NASA officials were not happy with these choices, feeling they were not dignified enough, so I hope they will not place restrictions on the names that can be selected for future missions, or force the crews to revert to dull numerical callsigns.

Patching Up
North American Rockwell artist Allen Stevens seems to be quite a favourite with the Apollo astronauts as a mission patch designer. He has designed the patches for Apollo-1, 7 and Apollo-9, and seems to have had a strong influence on the design of the Apollo-8 patch.

Stevens’ Apollo-9 patch evolved from a design he originally developed when Apollo-9 was still anticipated to be Apollo-8. The relatively simple concept depicts all the vehicle elements of the Apollo mission – the Saturn V in launch configuration, with the CSM and the LM flying separately as they would do during orbital test manoeuvres. In the final version of the design they appear against a mottled blue background that could represent either the Earth’s oceans or orbital space. Rather than show the CSM and LM docked together in orbit, as we often see them in NASA illustrations, Stevens chose to depict them in their on orbit ‘station-keeping’ positions, with the CSAM and LM facing each other, although this does give the impression that the CM is attempting to dock with the front of the LM!

Completing the design, the names of the crew and mission circle just inside the red-bordered edge of the patch, with the “D” in McDivitt’s name also filled in red. This is a nod to Apollo-9 being originally designated as the “D” mission in the sequence of Apollo flights prior to the Moon landing.

A Busy Moonport
Due to the long delay with the LM, preparations for Apollo-9 initially overlapped those of Apollo-7 and 8. By February, while the astronauts were spending long hours in mission simulators preparing for their flight, Kennedy Space Centre (KSC) was a hive of activity with Apollo-9 in the final stages of pre-launch testing, and advance preparations for Apollo 10 and Apollo 11 also underway (Apollo 10 is currently due for launch in May and Apollo 11 in July).  

In addition to Apollo-9’s launch preparations, the Apollo 10 spacecraft was moved from the Manned Spacecraft Operations Building (MSOB) to the Vehicle Assembly Building (VAB) for mating with its Saturn V launcher (above left); the first and second stages for the Apollo 11 Saturn V arrived, with the stacking of that launcher commencing in the VAB (above right); and the upper and lower stages of the Apollo 11 LM were also mated in the MSOB, in preparation for testing in the altitude chamber. NASA is really moving at a cracking pace to achieve a manned lunar landing this year!

An Unexpected Delay
The countdown for Apollo-9 commenced on 26 February, for a planned launch on the 28th. But fate stepped in to delay the crew’s trip to space just a bit longer! Ironically, despite their years of training for this mission, the astronauts pushed themselves so hard in their final weeks that, as launch day approached, they developed cold-like symptoms such as sore throats and nasal congestion.

Apollo-9's LM crew, McDivitt and Schweickart, training in the Lunar Module simualator

For NASA’s most complex manned mission to date, senior managers and flight surgeons wanted the crew to be in the best possible health for the 10-day flight. (They were probably also mindful of preventing a recurrence of the issues with the Apollo-7 crew, due to in-flight health problems). Consequently, the launch was rescheduled to 3 March to give the astronauts time to recover.

Finally on their Way!

 

 

 

 

 

 

 

 

 

 

 

 

 

Once KSC medical director Dr Charles Berry finally cleared the crew for launch, Apollo-9 left the pad exactly on time at 16:00GMT on 3 March. Hopefully the smooth launch impressed Vice President Spiro Agnew (on right in the picture below), who was present in the Launch Control Centre in his new role as Head of the National Space Council, especially as President Nixon has asked his science adviser, Dr Lee Dubridge, to report on possible cost reductions within the US space programme.

To maximize the chances of accomplishing them, in case any problems forced an early return to Earth, the most critical mission tasks were scheduled for the first five days of the flight. So once the Saturn rocket’s S-IVB third stage and the CSM were safely in orbit, things moved quickly. During the second orbit, CM Pilot Scott turned the CSM and successfully docked with the Lunar Module, nestled in the Spacecraft-Lunar Module Adapter of the S-IVB stage. The linked spacecraft were ejected from the S-IVB, which was then remotely controlled to simulate Trans-Lunar Injection and eventually be sent into a solar orbit.

Demonstrating that the “probe and drogue” CM-LM docking assembly worked properly is another crucial step towards enabling the future Moon landing. If this system didn’t work, a lunar landing would not be possible.

Once the probe is inserted in the drogue it retracts and pulls the two spacecraft together so that a series of twelve latches locks them tight.

Burning Along
Six hours into the mission, the next task was to establish that the docked CSM-LM could be manoeuvred using the Service Module’s Service Propulsion System (SPS) engine. A five-second burn placed the CSM in an orbit of 125 by 145 miles, to improve its orbital lifetime. This short firing demonstrated the CSM guidance and navigation system’s ability to control the burn and showed that the LM’s relatively light structure could withstand thrust, acceleration and vibration.

Following the first sleep period on an Apollo mission during which all three astronauts slept at the same time, Apollo-9’s second day focussed on putting the SPS engine, and the CSM, to the test, through a series of three burns. The first burn, lasting 110 seconds, raised Apollo 9’s orbit to 213 miles and tested the structural dynamics of the docked spacecraft under conditions simulating a lunar mission. This involved gimballing (swivelling) the SPS engine to determine whether the spacecraft’s guidance and navigation autopilot could dampen the induced oscillations. The CSM remained very stable, with the oscillations damped within just five seconds.

Apollo spacecraft diagram key. CSM (right) and LM (launch configuration) docked. I – Lunar module descent stage; II – Lunar module ascent stage; III – Command module; IV – Service module. 1 LM descent engine skirt; 2 LM landing gear; 3 LM ladder; 4 Egress platform ("porch"); 5 Forward hatch; 6 LM reaction control system quad; 7 S-band inflight antenna (2); 8 Rendezvous radar antenna; 9 S-band steerable antenna; 10 Command Module crew compartment; 11 Electrical power system radiators; 12 SM reaction control system quad; 13 Environmental control system radiator; 14 S-band steerable antenna

The second SPS burn lasted 280 seconds, changing the orbit to 126 by 313 miles, while the short third burn, just 28.2 seconds, changed the plane of the spacecraft’s orbit. These orbital changes were designed to position Apollo-9 for better ground tracking and lighting conditions during upcoming mission activities.

Space Sickness Strikes
Entering the LM and checking out its systems was scheduled for flight day three, but planned operations were initially disrupted when space sickness reared its head. Flight surgeons still know little about this condition, which seems to affect some astronauts but not others, and some more than others.

A view inside Command Module Gumdrop

Both Col. McDivitt and Mr. Schweickart were affected, with McDivitt apparently experiencing some mild nausea. Mr. Schweickart, however, vomited in the CM and again later in the LM. When Col. McDivitt contacted the flight surgeons from the LM to report the medical situation, they were less than happy that the earlier incident had not been initially reported, as they could have treated Schweickart’s symptoms sooner.

Opening Up the LM
Although the initial bout of space sickness delayed the start of operations to clear the docking tunnel and access the LM, the astronauts were able to continue with the day’s activities, and both Commander and LM Pilot used the docking tunnel to make the first ever transfer between manned spacecraft without needing to spacewalk. With Lt.-Col. Scott remaining in the CM, and hatches between the Gumdrop and Spider closed, the LM’s communications and life support systems demonstrated that they were operating independently from the CM. Schweickart also deployed Spider’s landing legs (which had been folded for launch) into the position they would assume for landing on the Moon, giving the LM the appearance of its namesake!


A Jumping Spider!
During the nine hours they inhabited Spider, still docked to the CSM, Col. McDivitt and Mr. Schweickart conducted a major test of the Lunar Module’s descent engine, firing it for 367 seconds to simulate the pattern of throttling planned for a descent to the lunar surface. For the final 59 seconds of the burn McDivitt controlled the throttling, varying the thrust from 10 to 40 percent and shutting it off manually, marking the first manual throttling of an engine in space.

This burn, which demonstrated that the LM descent engine could manoeuvre the combined LM-CSM stack, was followed by an additional SPS firing after the LM crew returned to the CM. Together, these burns placed Apollo 9 into an orbit of 142 by 149 miles, ahead of the rendezvous exercises to be performed on day five.

Red Rover (Doesn’t Quite) Cross Over
The step-by-step testing program for Apollo-9 earmarked the fourth day of the mission for a spacewalk to test the reliability of the Apollo EVA suit and the PLSS backpack, necessary because it would be impractical and dangerous for astronauts to move across the Moon’s surface trailing umbilical lines connected to the LM. As the only EVA scheduled before the Moon landing, it was the single opportunity to test the PLSS operationally in space.

Astronaut Schweickart training for his planned EVA

Using the call sign “Red Rover”, “Rusty” Schweickart was originally scheduled to perform a two-hour EVA to simulate a space rescue technique in the event that a CM-LM docking could not be made, crossing from Spider to Gumdrop. This would have involved him exiting the hatch on the LM and making his way along the outside of the spacecraft to the CM hatch, where Lt.-Col. Scott would be standing by to assist access to the CM. However, the LM Pilot’s bout of space sickness led Col. McDivitt to initially cancel the EVA, due to the flight surgeons’ concerns about the dangers of vomiting in a spacesuit. This also meant the cancellation of a planned TV broadcast of the spacewalk itself, which would have been another first.

Wearing Golden Slippers
But with Mr. Schweickart feeling somewhat better by day four, a modified short EVA was substituted to enable the EVA equipment test to be carried out. After McDivitt and Schweickart again transferred to Spider, Mr. Schweickert climbed out onto the LM porch for a 37.5-minute EVA, exclaiming “Hey, this is like spectacular” as he stood in the void. For much of this time, the astronaut’s feet were held in gold-coloured restraints, nicknamed the “Golden Slippers”, but he was also able to move around the LM’s exterior using handholds to retrieve some experiments.

At the same time, David Scott, wearing a bright red helmet, made a stand-up EVA in Gumdrop’s hatch and both astronauts photographed each. Scott, too, retrieved experiments from outside the CM. Mr. Schweickart has said that he found moving around easier than it had been in simulations and was confident that he could have completed the spacewalk to the CM had it gone ahead.

The Spider Takes Flight

The key event in Apollo -9’s programme was the undocking and rendezvous tests scheduled for the fifth day of the mission. These manoeuvres would simulate all the activities required for a successful lunar landing and return to lunar orbit. With McDivitt and Schweickart in Spider, and Scott remaining in Gumdrop, the two craft undocked to commence a complex set of manoeuvres and burns of both the LM descent and ascent engines. These tests also carried a new element of danger. The Lunar Module has no ability to return to Earth on its own, since it lacks a heatshield: if something went seriously wrong its crew could end up stranded in space with no way home.

After 45 minutes separated but station keeping, an initial 24.9-second LM descent engine burn placed Spider into a 137 by 167 mile orbit; a second 24.4-second firing circularized the orbit around 154 by 160 miles, approximately 12 miles higher than Gumdrop. Over the next four hours, McDivitt fired the LM’s descent engine at several throttle settings, before lowering Spider’s orbit to begin a two-hour ‘chase’ to catch-up with Gumdrop. The LM descent stage was then jettisoned, and the ascent stage engine fired for the first time, lowering the LM’s orbit still further and placing Spider 75 miles behind and 10 miles below Gumdrop for the rendezvous manoeuvre.

Although it is planned that in future Moon missions, the Command Module pilot will conduct the rendezvous with a returning LM, for Apollo-9 Spider carried out the rendezvous, to demonstrate that the manoeuvre could be performed by either craft. Apart from this difference, the approach and rendezvous hewed as closely as possible to the current plans for lunar missions. Mission Commander McDivitt flew the LM close to Gumdrop, manoeuvring Spider so that CM Pilot Scott could see each side of the vehicle and inspect it for any damage. As he photographed the ascent stage, Scott joked “You’re the biggest, friendliest, funniest looking Spider I’ve ever seen.”

McDivitt then docked to the CM, guided by Scott, as Sun glare was interfering with his vision. Once Spider’s crew returned to Gumdrop, the ascent stage was jettisoned and remotely commanded to fire its engine to fuel depletion, simulating an ascent stage’s climb from the lunar surface. With the approach and rendezvous operation complete, the only major LM system that had not been fully tested during Apollo-9 was the lunar landing radar.

A Bit Camera Shy
Unlike the previous two missions, Apollo 9’s packed programme restricted the television broadcasts made by the astronauts. Spider was equipped with a Westinghouse b/w Lunar Surface Lunar TV Camera, identical to the one taken to be carried to the Moon’s surface on the first landing, as another equipment trial. This low-light “slow scan” camera produced a 320 line, 10 frames per second non-interlaced picture.

Only two broadcasts were from Spider. The first, seven minutes’ long, occurred on day three and showed Mr. Schweickart and Col. McDivitt working in the confined space of the LM. The second broadcast occurred shortly after the end of the EVA on the fourth day, with Spider’s crew still wearing their spacesuits.

The quality of this 15-minute transmission was much better than the previous day, and the crew treated viewers to a scene of Col. McDivitt eating. The camera was then pointed out the LM’s top window to show Gumdrop, then through one of the forward windows to glimpse one of Spider’s attitude control thruster quads and a landing leg. Finally, the view switched back into the cabin to show the LM’s instrument panel and a radiation detector. Once the LM ascent stage was jettisoned, on day five, there were no further broadcasts as the CM did not carry a television camera.

Cruisin' in Orbit
Once the crowded test schedule of the first five days was complete, the second five days of Apollo-9’s flight, intended to test the endurance of the CSM for the total length of a Moon landing mission, were quiet and relaxed by comparison.

Col. McDivitt thanked the Mission Control team for their work during the hectic first half of the mission and jokingly mused: “Might give you the impression that it might work, huh?” The crew sang a belated “Happy Birthdays” to Christopher C. Kraft, Jr., Director of Flight Operations at the Manned Spacecraft Centre, and Apollo 9 crew secretary Charlotte Maltese.

There were additional SPS burns on days six and eight to change the spacecraft’s orbit, with no major activities scheduled for the ninth day, although the astronauts made observations of the Pegasus 3 satellite, passing within 1,000 miles and 700 miles of Apollo 9 during two successive orbits. They also observed the LM ascent stage from about 700 miles away.

Observing the Earth
The main activity of the second half of the Apollo-9’s flight was the mission’s only formal scientific investigation, a programme of multi-spectral terrain photography, using four Hasselblad 70 mm cameras pointed out the CM’s round hatch window. This allowed photographs to be taken in four specific wavelengths of the visible and near infrared spectrum simultaneously.

Multi-spectral images. The same view of San Diego and parts of California in four different wavelengths

This experiment was designed to determine whether multi-spectral photography can be effectively utilised for earth resources programmes such as agriculture, forestry, geology, oceanography, hydrology, and geography. The results will help to refine the instruments for the Earth Resources Technology Satellite (ERTS), due for launch in 1972, Landsat, and techniques for multi-spectral photography to be conducted aboard the Skylab space station in the early 1970s.

Altogether 127 complete four-frame sets of photographs were taken over California, Texas, other areas of the southern United States, Mexico, the Caribbean and the Cape Verde Islands. Astronauts also took more than 1,100 standard Earth observation photographs of targets around the world, using colour and colour infrared film and a handheld Hasselblad camera.

Apollo-9 astronauts' colour photograph of the North Carolina coast and a colour infra-red view of California's Salton Sea

Coming Home
Apollo -9 returned to Earth on 13 March (the 14th for us here in Australia), the tenth day of the mission. Re-entry was delayed by one revolution due to heavy seas in the primary recovery area, but Gumdrop splashed down safely in the Atlantic, within three miles of the recovery ship, the USS Guadalcanal, after a mission totalling 241 hours, 53 seconds – just 10 seconds longer than planned!

On board the recovery ship, the crew were treated to a share of a 350-pound cake baked in their honour. Now safely back in Houston for their flight debriefings, NASA’s attention – and the world’s – is already turning to Apollo-10, due to fly in May to test the LM around the Moon!

Ready for the Next Steps
While Apollo-9 might not have seemed as exciting a mission as Apollo-8’s epic lunar voyage, it was critical because it has simulated in Earth orbit, as far as possible, many of the conditions that the astronauts and their equipment will face when the lunar landing attempt is made. Beyond that first landing and its successors, there is the Apollo Applications Programme, and other developments such as the Skylab manned earth orbiting workshop. Everything that has been learned in space with Apollo-9 will be useful sooner or later in future space activities!

And you can bet we'll be covering each and every one of them here on the Journey…

Apollo-9 view of the Moon


[February 16, 1969] Triumph, Tough Luck and Turmoil (European Space Update)



by Kaye Dee

The accelerating pace of the US and Soviet space programmes over the past few months has drawn our attention away from space developments in other parts of the world, especially with the excitement of the historic Apollo 8 lunar mission so recently behind us and Apollo 9’s in-orbit test flight (finally!) of the Lunar Module next month. But there have been many developments on the European space scene since I wrote about it in May last year, so I think it’s time for an update!

Triumph: ESRO 1A Finally in Orbit
My previous European space report noted that the European Space Research Organisation’s (ESRO) first satellite, ESRO 2B, reached orbit ahead of ESRO 1A, the latter satellite delayed due to difficulties in the development of its instrumentation payload. But ESRO 1A was finally launched on 3 October 1968 from Vandenberg Air Force Base in California, using a Scout launch vehicle.

ESRO 1A mounted on its Scout vehicle ahead of its launch at Vandenberg AFB

Fired into a 90° polar orbit, with an initial apogee of 930 miles and a perigee of 171 miles, ESRO 1A is designed for a nominal lifetime of six months. However, it is already looking likely that the satellite will survive much longer and possibly still be in orbit when its follow-up twin ESRO 1B is launched later this year (presently planned for some time in October).

The ESRO1 missions were first outlined in 1963 at scientific meetings of COPERS (Commission Préparatoire Européenne de Recherche Spatiale, which is the French name for the European Preparatory Commission for Space Research, a predecessor of ESRO), but the programme has been developed as a joint venture between NASA and ESRO. NASA provided the Scout vehicle for ESRO 1A, although ESRO will purchase the Scout launcher for the ESRO 1B flight.

Designed by ESRO, the construction of both ESRO 1 satellites is all-European: Laboratoire Central de Telecommunications (Paris) is the prime contractor, with assistance from Contraves AG (Zurich), and Antwerp-based Bell Telephone Manufacturing Company, with final testing taking place at ESRO’s ESTEC facility. Weighing about 187 pounds, the cylindrical, non-stabilised ESRO 1 satellites are 30 inches in diameter and 36.6 inches tall (specifically designed to fit within the Scout vehicle fairing) and powered by solar-cells.

ESRO 1A (‘Aurora’) and ESRO 1B (‘Boreas’) have been designed to study how the auroral zones respond to geomagnetic and solar activity. Their payloads are directly derived from earlier sounding rocket experiments measuring the radiation characteristics of the upper atmosphere. In orbit, the satellites’ axis of symmetry is magnetically aligned along the Earth's magnetic field. They can make direct measurements as high-energy charged particles from the Sun and deep space plunge from the outer magnetosphere into the atmosphere (ESRO 1B will be placed in a lower orbit that 1A to provide comparative data at different altitudes). The satellites can also investigate the fine structure of the aurora borealis and correlate studies on auroral particles, auroral luminosity, ionospheric composition, and heating effects.

ESRO 1A carries seven scientific experiments chosen to measure a comprehensive range of auroral effects. Identical or similar experiments will be carried on ESRO 1B.

Tough Luck: Another ELDO Launch Failure…
Unfortunately, the European Launcher Development Organisation (ELDO) has yet to taste the same success as ESRO, with repeated failures in its Europa satellite launcher test flights, which I've covered in detail in previous articles.

Despite the loss of both Europa F6/1 and F6/2 due to failures of the French ‘Coralie’ second stage, the Europa F7 flight was scheduled for a November launch last year, as the first vehicle to fly with all three of the rocket’s stages active. This eighth firing in the ELDO test programme marked the beginning of Phase 3 of the Europa test flights. It would be the first attempt to launch ELDO’s Italian-built STV (Satellite Test Vehicle) satellite into orbit, as well as the first time that the ELDO down-range guidance and tracking station at Gove in the remote Arnhem Land region of the Northern Territory (primarily developed by Belgium) would actively participate in a Europa launch.

View of the ELDO downrange tracking station, near Gove in the Northern Territory. The area is also known by its Aboriginal name of Nhulunbuy

The failure of the Coralie stage to separate during the F6/2 launch, due to an electrical fault, meant that modifications had to be made to prevent a recurrence of the issue. So there was plenty of tension (and frustration) in the air when last-second delays halted two attempts to launch F7 on 25 November. Both aborts occurred just 35 seconds before the rocket was due to lift off, and were caused by the discovery of a fault in the Coralie staging system between the first and second stages – nobody wanted a repeat of F6/2!

A Coralie second stage engine being checked out at Woomera prior to stacking the Europa vehicle for launch

A launch attempt on 27 November was cancelled due to another fault, as was a fourth attempt on the 28th, which was caused by a faulty indication in a pressure switch system in the engines of the British Blue Streak first stage.

Finally, on the fifth attempt, Europa F7 lifted off on 30 November (Australian time; still 29 November in Europe), but this flight, too, was doomed to be short-lived. The second stage separated and functioned perfectly: this time it was the West German ‘Astris’ third stage that caused the failure.

The Astris stage separated and ignited as expected but burned for just seven seconds (instead of the planned 300 seconds) before it exploded. Investigations as to the cause of the failure are ongoing, but at present there are three possible causes under consideration: rigid pressurisation pipes that may have fractured; an explosive bolt, part of the WREBUS flight safety destruct system, that may have been inadvertently been triggered by a stray electrical current; or a rupture of the tank diaphragm in the third stage, which separates the fuel and oxidiser. The diaphragm may have been weakened during pre-flight preparations. At present we can only await the outcome of the investigations and hope that they do not delay the launch of Europa F8, currently scheduled for June or July this year.

…And a Satellite Lost
While it was not the main objective of the F7 flight, it is particularly disappointing that the Italian test satellite did not reach orbit, as it would have become the second satellite launched from Woomera, exactly one year after Australia’s own WRESAT.

The first flight-ready STV satellite being checked out following its arrival at Woomera

The octagonal prism-shaped STV satellites (successors will be flown on Europa F8 and F9) have been built for ELDO by Fiat Aviazione. The 472 pound satellite carries instruments to characterise the launch environment of the Europa vehicle, providing information on the conditions and stresses that future satellites launched on Europa vehicles will need to be capable of surviving.

Despite the loss of both the rocket and the satellite, ELDO has been referring to Europa F7 as a “successful trial”, as it has enabled its engineers to acquire data about the performance of the Coralie second stage in flight and came close to placing a satellite into orbit. ELDO representatives are saying that, the Europa vehicle has “emerged for the first time as a practical proposition.”

Turmoil: the State of European Space Policy
Last May, I asked whether Britain had lost its way in space, and whether European space plans would flourish or wither, due to changing views on the future direction of Europe’s space activities and reductions in funding. Since then, the outlook has become even more uncertain, with disagreements over juste retour project work allocations and the ELDO budget creating turmoil.

In November last year, Ministers, space organisation representatives and space experts from 16 European countries, as well as Australia and Canada, met for the third European Space Conference, held in Bonn, West Germany. At this meeting, a proposal was put forward to merge ELDO and ESRO to form a pan-European space authority by early 1970, which would be known as the European Space Agency.

This idea proved popular with many of the attending nations, but less so with Britain, which expressed the view that it was unlikely that Europe could launch satellites economically. As noted last year, Britain has already announced its intention to withdraw from ELDO, although it has committed to continue supplying Blue Streak first stages for the Europa II vehicle.

However, the British Government has offered to back a revised European space programme designed to yield “practical results”. Britain wants Europe to concentrate on developing applications satellites for weather forecasting, telecommunications, and scientific research, giving up the development of independent European launchers in favour of using American vehicles.

The British proposal includes an offer to contribute to a project for an “information transfer satellite” to be completed by 1975, providing a point-to-point television relay service between London and Paris for the European Broadcasting Union. In addition, Britain would participate in a long-term applied research programme to improve European industrial space capability, in conjunction with funding an immediate economic study of the market for applications satellites. The quid-pro-quo for British support for this ambitious “practical space programme” is that the UK must be released from its present financial commitment to ELDO. This is certainly ironic, given that Britain was the driving force behind the original creation of ELDO!

ELDO's Budget Crisis
After the failure of Europa F7, the ELDO Council met on 19-20 December to vote on the organisation’s 1969 budget, with Britain again the fly in the ointment, declaring that it would not support the new “austerity plan” compromise budget proposed by West Germany to cover the final two years of the Europa-1 development programme.

Using a loophole in the ELDO Convention to characterise the German proposal as a “further programme” (ie: it was not part of the original ELDO programme that it had signed up to), Britain declared that it had “no interest” in the plan and so was not obliged to contribute to it financially. It would only support the 1969 budget if its outstanding contribution to ELDO was reduced to £10 million for the years 1969, 1970 and 1971.

Italy took a similar line, supporting the British view and declaring itself “not interested”, and would not vote for the 1969 budget. In addition, Italy formally rejected as inadequate an offer to become the prime contractor of the apogee motor in the Symphonie communications satellite programme.

This recalcitrance on the part of Britain and Italy has plunged ELDO into a budget crisis, and the organisation has been operating on a contingency funding basis since 31 December. Practical considerations, and the terms of the ELDO Convention, indicate that the impasse needs to be resolved within three months, at which point a budget must be approved or the original treaty becomes invalid.

An excerpt from the journal Nature, reporting on ELDO's budget crisis

A meeting of the relevant Ministers from all seven ELDO member states is currently scheduled for 26 February to seek a political solution to the problem and find a way forward for Europe’s space ambitions before they fragment. What’s that Chinese proverb? “May you live in interesting times”!

An Australian Postscript: No WRESAT-2
In my article on the launch of Australia’s first satellite at the end of November 1967, I mentioned that the Weapons Research Establishment was planning to put a proposal to the Australian Government for the establishment of an Australian space programme, managed by the WRE. This proposal went to the Cabinet for consideration last year, but was rejected by the Government on the basis of cost, despite the modest budget it was proposing. This is not the first proposal for an Australian space programme that has been rejected by Cabinet, which seems to have little appetite for funding Australian civil space projects. To the frustration of all those involved, it looks like WRESAT-1 will not, after all, be followed by WRESAT-2.

Signing off
Well, in the vernacular of your beloved Walter Cronkite, "That's the way it is." I'm sorry I haven't happier news to report just yet, but you'll hear it here first when I have it!

(And my thanks to my Uncle Ernie, the philatelic collector, for providing the selection of space covers (envelopes) that I have used to illustrate this article.)


[January 22, 1969] NASA’s Christmas Gift to the World Part 2 (Apollo 8 continued)



by Kaye Dee

Last month, I began this article just hours after the crew of Apollo 8 returned safely to the Earth from their historic mission around the Moon. But even while the mission was in progress, I felt that it might be best to wait to tell the story of the lunar flight in detail, until it could be illustrated with the photographs taken by Col. Borman, Major Anders and Capt. Lovell during their epic journey – images whose breathtaking full-colour views were only hinted at in the low-resolution b/w television broadcasts and the astronauts’ excited descriptions of what they were seeing during the mission.

"Oh my God!" is what Astronaut William Anders said just before he took this awe-inspiring photograph of the Earth rising over the Moon, as seen from lunar orbit. That was my exact response – and yours, too, I expect – on first seeing this incredible sight. I confidently predict that this amazing view will become one of the defining images of the Space Age

Now that we can see for ourselves the awesome sights that the Apollo 8 crew witnessed, I think I made the right call.

On Course for the Moon
We left Apollo 8 on the way to the Moon, after a successful translunar injection. Just 30 minutes later, the CSM separated from the S-IVB stage, which was ordered to vent its remaining fuel to change the stage’s trajectory. The S-IVB gradually moved away from the CSM and is now in orbit around the Sun.

Fuel venting isn't visible in this image of the jettisoned S-IVB stage, but small debris from the separation can be seen floating around it. Although Apollo 8 carried no Lunar Module, this shot shows the LM test article contained in the S-IVB stage

As the crew rotated their spacecraft to view the jettisoned stage, they had their first views of the Earth as they moved away from it—the first time human eyes have been able to view the whole Earth at once. The perspectives of the two images below, taken less than 45 minutes apart, help us gain an impression of how fast the Apollo spacecraft was travelling (around 24,200 mph).

Taken just around the time of TLI, this view from high orbit shows the Florida peninsula, with Cape Kennedy just discernible, and several Caribbean islands

The view of Earth after S-IVB stage separation. From the Americas to west Africa, and from daylight to night, for the first time humans could see their entire planet at a glance!

Mission Commander Borman has said that he thought this must be how God sees the Earth, while Astronaut Lovell felt he was driving a car into a dark tunnel and was watching the entrance dwindle into a distant speck! But perhaps Major Anders best summed up the awesome view: “How finite the Earth looks. Unlike photographs people see there’s no frame around it. It’s hanging there, the only colour in the black vastness of space, like a dust mote in infinity.”

On the way to the Moon, the CSM adopted the PTC (Passive Thermal Control) or “barbecue” mode tested on Apollo 7, slowly rotating the spacecraft to keep temperatures evenly distributed over its surface. As the CSM turned, every so often the Earth would appear in one of the windows, making the astronauts aware that they were travelling away from their home planet: it became steadily smaller, until eventually they could cover the whole Earth with a thumb.

Where No Man Has Gone Before
I’m stealing that wonderful Star Trek catch phrase because soon after the S-IBV jettison, Apollo 8 surpassed the altitude record set by Gemini 11 in 1966 and was truly setting out into that “new ocean” of space only previously traversed by unmanned probes.

The coast to the Moon was relatively uneventful, with only a few issues arising, including some window fogging, like that experienced on Apollo 7, and a bout of space sickness that it was initially feared might lead to the cancellation of the orbits around the Moon.

Col. Borman reported diarrhoea, nausea and vomiting (none of which you want to have in weightlessness, given the unpleasant consequences!) and both Lovell and Anders also said they did not feel too well. Dr Charles Berry, the medical director at Cape Kennedy, at first feared a 24-hour viral gastro-enteritis that might “play ping-pong”, with the crew re-infecting each other and leaving themselves too weak to carry out their complex tasks correctly. Fortunately, with longer sleep periods, medication and additional rest, the complaint cleared up and did not prove a showstopper for the mission. 

The first mission status report for Apollo 8, sent to the NASA tracking stations around the world, for release to local media. Dated some 19 hours after launch, it outlines some of the activities of the early part of the coast to the Moon

A slight course correction saw the large SPS motor fired for the first time, providing a check that the spacecraft’s main propulsion system was working correctly. Had there been any problems, Apollo 8 would not have gone into lunar orbit, but looped around the Moon to return to Earth.

Out of this World Broadcasts
About halfway to the Moon, at 31 hours and 10 minutes after launch, the astronauts conducted the first of six television broadcasts during the mission. Like Mission Commander Schirra on Apollo 7, Borman was apparently not in favour of television broadcasts – holding that the weight of the camera was better used for other equipment and additional food supplies – but was overruled by NASA.

For this first deep space show, the approach was light-hearted, with the opening scenes from the spacecraft showing Capt. Lovell upside down in the lower equipment bay making jokes about preparing lunch. Bill Anders played with his weightless toothbrush, with quips from Frank Borman about his crewmate cleaning his teeth regularly. Jim Lovell sent birthday wishes to his mother. The crew tried to show us the Earth through the one of the CM windows, but without a viewing monitor, they couldn't quite capture it in their camera's field of view.

Astronaut Anders shows us his toothbrush (top) and Jim Lovell wishes his mother "Happy Birthday" (bottom) during Apollo 8's first deep space broadcast

The astronauts were disappointed to find their view of the approaching Moon was washed out by the Sun’s powerful glare. It should have been a spectacular sight to see its cratered surface increasing in size and detail as they closed in, but they were not able to get good views of the Moon until they were relatively close. However, during their second television broadcast, 55 hours into the mission, the crew of Apollo 8 were finally able to capture the Earth through one of their spacecraft's windows.

While the resolution of the image may not have been very high, this first ever live view of our planet from 180,000 miles out in space was yet another step in science fiction being made into reality! During the 25 minute broadcast, there was a delightful exchange between Lovell and Anders, with Capcom Michael Collins in Houston, wondering what a traveller from another planet would think of the view of Earth from that distance, and whether they would imagine it was inhabited.

The Apollo 8 second broadcast view of the Earth as we saw it on television (above) and how Capcom Collins saw it on his monitors in Mission Control (bottom). Would alien visitors to our solar system think anyone lived there?



Moving into the Moon's Sphere of Influence
Shortly after their second broadcast, Borman, Lovell and Anders became the first humans to leave the Earth’s sphere of gravitational influence: they were 202,825 miles from Earth and 38,897 miles from the Moon. This move into the lunar gravity field meant that soon a decision would need to be made as to whether or not Apollo 8 would go into lunar orbit, or loop around the Moon and return directly to the Earth. So concerned was Col. Borman about any trajectory perturbations that would preclude the spacecraft from achieving lunar orbit that he even checked with Houston before dumping urine overboard!

A view of the Moon, finally visible as Apollo 8 approached and prepared to go into orbit

Then came the moment to go behind the Moon – and the decision whether or not to orbit. “Apollo 8 this is Houston,” Capcom Jerry Carr called. “At 68 hours 4 minutes you are Go for LOI (Lunar Orbit Insertion).” But the necessary SPS engine burn to change the CSM's trajectory from "free return" to lunar orbit had to take place above the far side of the Moon, where Apollo 8 would be completely out of contact with the Earth.

On 24 December, just on 69 hours after lift-off, Apollo 8 slipped behind the Moon. Col. Borman was so impressed with the exact predicted timing of the loss of communication with the Earth that he joked about whether the Manned Space Flight Network had turned off its transmitters! But, in truth, the situation was very tense, as all the astronauts and Mission Control could do was wait and hope that all would go well with the burn to put Apollo 8 into lunar orbit. The Service Propulsion System engine had to work perfectly, or the astronauts would be in serious trouble.

The Manned Space Flight Network station at Honeysuckle Creek, near Canberra, was tracking Apollo 8 as it went behind the Moon and received the first signals as it re-emerged, safely in lunar orbit

Fortunately, Apollo 8 slowed in response to the 4 minute 6.9 second burn – “Longest four minutes I’ve ever spent,” according to Capt. Lovell. This put the spacecraft into a 194 x by 69 mile orbit around the Moon after a Trans-Lunar Coast of 66 hours 16 minutes and 22 seconds.

Round (and Round) the Moon
Safely in orbit, the plan was for Apollo 8 to make 10 orbits around the Moon over a twenty hour period. Even though the far side of the Moon was first seen as far back as 1959, by the USSR's Luna 3, the first order of business was for the crew to observe the far side surface for themselves. The three astronauts were stunned by the crater-pitted Moonscape sliding below them, revealing a tortured terrain so unlike the familiar face of the Moon. Out of contact with the Earth, totally isolated from home, Borman, Lovell and Anders forgot their mission for a few moments to press their faces against the CM windows and soak up the sights!



The astronauts were not exactly impressed with the gritty, grey, plaster-like surface they observed as they orbited the Moon. Col. Borman described it as as “[looking] like the burned-out ashes of a barbecue,” while Capt. Lovell said “It’s like a sand pile my kids have been playing in for a long time. It’s all beat up with no definition. Just a lot of bumps and holes.” Major Anders felt the surface looked "whitish-grey, like dirty beach sand with lots of footprints in it.”

Jim Lovell's "sand pile" on the Moon!

Back on Earth Mission Control held its breath, waiting for Apollo 8 to re-emerge from behind the Moon and confirm that the SPS engine had performed as planned. But once the crew were back in contact with Earth, a packed routine of surface observations was quickly established: these images comprise the bulk of the more than 800 70 mm still photographs and 700 feet of 16 mm movie film that the astronauts took during the mission. Among their tasks, the astronauts observed Earthshine (the light reflecting from Earth shining on the dark face of the Moon) – which they found provided enough light to see surface features clearly – and took detailed photographs of the area within the Sea of Tranquillity where, all going to plan in the next few months, the Apollo 11 mission will make the first manned lunar landing.

On the second orbit, Apollo 8's 12 minute long third television broadcast was almost entirely dedicated to allowing us back on Earth to see the astronauts' view of the Moon. Even when it was difficult to see much detail in the views of the lunar surface passing below the spacecraft, this broadcast made us, as it were, part of the mission.

View of the Moon's surface during the third Apollo 8 television broadcast

Earthrise
Busy with lunar surface observations, during their first three orbits the Apollo 8 crew failed to even notice an incredible sight. It was not until their fourth orbit that the astronauts experienced perhaps the most sublime view provided by space exploration to date – the vision of the Earth rising above the lunar horizon!

On this fourth orbit, a navigation sighting meant that the CSM was rolled to look outwards into space instead of down towards the Moon's surface. As the lunar horizon came into view, the astronauts witnessed a magnificent sight – the cloud-mottled blue orb of the Earth swimming into their view. Awestruck, they scrambled so quicky to capture the vision that no-one is quite sure now who took which picture, although it seems that Col. Borman may have snapped the first black and white photograph, and Bill Anders a number of breathtaking colour images of the Earthrise.

Apollo 8's Earthrise images are usually published oriented with the lunar horizon at the bottom, as that is how we are used to seeing the Moon rising over the horizon on Earth. But the orientation of astronauts' orbit meant that they actually saw the Earth appearing to rise 'sideways', as seen in this original version of Major Anders' photograph

While Apollo 8 isn't the first space mission to capture the vista of the Earth rising over the Moon – that honour goes to Lunar Orbiter 1 – the impact of the superior quality and colour of the astronaut's photographs is profoundly inspiring, and Major Anders' evocative Earthrise image is already well on its way to becoming the most reproduced image of the Space Age so far.

This spread from the 15 January issue of the Australian Women's Weekly is just one example of thousands of magazine and newspaper articles already featuring the Earthrise photograph and Apollo 8's other amazing pictures

I'm so moved by the Earthrise image that I find it hard to put all my feelings into words, but perhaps those I quoted above from Astronaut Anders go some way to expressing them, as do Captain Lovell's similar thoughts on the view: “The vastness up here of the Moon is awe inspiring. It makes you realize just what you have back there on Earth. The Earth from here is a grand oasis in the blackness of space.”

This view of the living Earth in the immensity of the Cosmos truly brings home to us the fragility and isolation of our home planet and its finite resources, providing the visual encapsulation of the expression "Spaceship Earth" popularised over the past few years by Buckminster Fuller among others. The environmental movement needs to utilise the power of this image to help encourage us all to be better stewards of the Earth and preserve our environment, so necessary for our survival, for future generations.

"Something Appropriate"
Acutely aware of the historic nature of the Apollo 8 mission, NASA wanted the astronauts to “do something appropriate” for their fourth television broadcast. Due to occur on the ninth lunar orbit, this finale to Apollo 8’s time at the Moon was scheduled for late evening on Christmas Eve in the United States (comfortably at lunchtime on Christmas day for us here in Australia). The program was to be transmitted via satellite to 64 countries (where it was seen or heard by an estimated one billion people!), so it was a major global event, comparable to 1967’s Our World broadcast.

What would be appropriate for such an international audience? The astronauts wanted to present something spiritually significant and memorable, but not overtly religious, that would be relevant at Christmas to both Christians and the millions of non-Christians who would be tuning into the broadcast. It seems that the wife of a journalist (I’m sorry, I don’t know her name) suggested that they read from the opening of the Book of Genesis, which has meaning for many of the world’s religions and expresses concepts relevant to many other faiths. The crew liked this idea and planned to incorporate it into their broadcast. A view of the Moon seen by the audience on Earth while the crew of Apollo 8 read from the Book of Genesis

The fourth telecast from Apollo 8 began with the astronauts talking about their impressions of the Moon and the experience of being in lunar orbit. Following some views of the lunar terrain, described by the astronauts as they passed over, Major Anders said that the crew had a message for everyone on Earth. In turn, Anders, then Capt. Lovell and finally Col. Borman read the first 10 verses of Genesis, as we watched the Moon’s surface pass by, with a view through one of the CM windows. Borman then ended the broadcast with “And from the crew of Apollo 8, we close with good night, good luck, a Merry Christmas and God bless all of you – all of you on the good Earth.” I watched this transmission at lunch with my sister’s family: it left us all profoundly moved.

Families around the world gathered on Christmas Eve/Christmas Day (depending on where you were!) to watch Apollo 8's broadcast

Set Course for Earth
Two and a half hours after the end of the fourth television broadcast, on Apollo 8’s tenth lunar orbit, it was time to perform the trans-Earth injection (TEI). This manoeuvre was even more critical than the one which had brought the CSM into orbit around the Moon: if the SPS engine failed to ignite, the crew would be stranded in lunar orbit. Like the previous SPS burn, this critical firing had to occur above the far side of the Moon, once again out of contact with the Earth. Despite all the telemetry indicating that the SPS was in good shape, tension was high while the spacecraft was behind the Moon, but the burn was perfect and Apollo 8 re-emerged exactly on schedule 89 hours, 28 minutes, and 39 seconds after launch.

It was Christmas Day, and when voice contact was restored with Houston, Lovell announced to the world, “Please be informed, there is a Santa Claus” – apparently for the benefit of one his sons, who had asked before the flight if his father would see Santa while visiting the Moon.

A view inside the Command Module, during the fifth Apollo 8 television broadcast

At about 100 hours and 48 minutes after launch, Apollo 8 crossed back into the Earth’s sphere of influence and began gradually speeding up. After the astronauts carried out the only required midcourse correction at 104 hours into the mission, the crew had some time to relax before their fifth television broadcast. During this 10 minute transmission, they gave viewers a tour of the spacecraft, showing how they lived in the weightless environment. An image from the fifth broadcast taken directly from a monitor at the Honeysuckle Creek tracking station. It shows Bill Anders demostrating how to prepare a meal

A Christmas Dinner to Remember
After the broadcast, the crew were finally free to tuck into their Christmas dinner – and found a surprise in their food locker. It was a specially packed Christmas dinner wrapped in foil and decorated with red and green ribbons! A gift from Director of Flight Crew Operations Deke Slayton, the special meal included dehydrated grape drink, cranberry-applesauce, and coffee, as well as a new “wetpack” containing turkey and gravy. Also hidden with the surprise dinner, the astronauts found small presents from their wives.

Slayton also included three miniature bottles of brandy with the meal, although Borman decided that they should be saved until after splashdown!

The astronauts thought the food was delicious, more like a TV dinner, and much more appetising than the food they had been eating on the mission. In fact, the crew had found their meals so unappealing that they had been under-eating throughout the mission, so their turkey dinner was a real morale booster.

The new “wetpack” container is breakthrough in space food development: a thermostabilized package that retains the normal water content of the food, which can be eaten with a spoon. I’ll have to write more soon about space food, as the new meals and menus that are being developed for Apollo lunar missions are a real breakthrough in astronaut nutrition.

The Final Leg
The return cruise to Earth was the quietest part of the mission for the crew, giving them time to rest after an eventful historic mission. Around 124 hours into the flight, the astronauts broadcast their sixth and final telecast, showing the approaching Earth during a four-minute broadcast.



The crew also had time to take more spectacular photographs of the Earth, such as this image of Australia as they homed in towards their eventual splashdown in the Pacific Ocean.

Re-entry is the most dangerous phase of any spaceflight, and Apollo 8 marked the first time that a manned spacecraft had returned from the Moon, re-entering the atmosphere at 24,695 miles per hour! The spacecraft had to enter the Earth’s atmosphere at an angle of 6.5 degrees, with a safe corridor only 26 miles wide – there was very little margin for error! 

After jettisoning the Service module and turning the CM around so its heat shield was facing in the direction of flight, Apollo 8 entered the atmosphere, deceleration hitting the astronauts with forces up to 7 Gs, and temperatures outside the spacecraft reaching 5,000 degrees.

Apollo 8's re-entry, captured by one of NASA's Apollo Range Instrumented Aircraft that operate as airborne tracking stations

Ionized gases around the spacecraft caused a three-minute communications blackout period. But Apollo 8 came through and safely deployed its three main parachutes, splashing down in the dead of night local time, in the North Pacific Ocean, southwest of Hawaii, home safe after a momentous mission which even the crew had rated themselves as only having a 50% chance of a successful return!

Map of Apollo 8's splashdown area

Recovered by the USS Yorktown, Borman, Lovell, and Anders were in excellent health after a flight of 147 hours. They returned to Houston for several weeks of debriefing, but he success of their flight means it is now clear that the likelihood of meeting President Kennedy’s goal of a Moon landing before the end of the decade is much higher: Lt.-General Phillips, head of the Apollo programme, has already said there is a slim chance Americans could land on the Moon with Apollo 10 in May or June – one flight earlier than presently planned

After their recovery, the Apollo 8 astronauts addressed the USS Yorktown's crew, very glad to be home!

“You Saved 1968”
As I noted at the beginning of the first part of this article, 1968 was a year that saw much upheaval around the world. Yet Apollo 8 allowed the year to end on a hopeful note, with its technical triumph of the first manned mission to the Moon, its awe-inspiring views of the Earth from space, and the deeply moving “Genesis broadcast”. Its impact has been beautifully summed up in a telegram from an anonymous well-wisher to Col. Borman which simply said, “Thank you Apollo 8. You saved 1968.”

< For the influence and impact of their mission, Time magazine has chosen the crew of Apollo 8 as its Men of the Year for 1968, while Life has selected the post-TLI image of the Earth for the cover its 1968 retrospective issue.

The Apollo 8 astronauts have been honoured for their successful mission with ticker tape parades in New York, Chicago and Washington, D.C; they have spoken before a joint session of Congress, and been awarded the NASA Distinguished Service Medal by President Johnson. Has Apollo 8 won the Space Race for the United States? I think it's too early to say, especially in light of the recent Soyuz 4 and 5 missions. But NASA is certainly giving the Soviet Union a run for its money!

[December 28, 1968] A Christmas Gift to the World – Part 1 (Apollo 8)



by Kaye Dee

Commentators are already referring to 1968 as the most turbulent year of the 1960s. We’ve seen civil unrest and sectarian violence; uprisings and brutal repression; new wars and intensification of old ones; political turmoil and assassinations; drought, famine and natural disasters, just to note some of the tragedies and strife dominating the headlines.

 
Yet this “worst of times” has still ended on a high note, thanks to NASA’s Christmas gift to the world – the Apollo-8 mission to the Moon.

 
As I write, the first daring spaceflight to the Earth’s nearest neighbour was completed only a few hours ago, splashing down in the early hours of the morning here in Australia. I’m tired but elated at the successful conclusion of the mission and the safe return of the crew. This historic mission has taken another crucial step in turning the ancient dream of reaching for the stars into reality, vindicating the inspiration that readers of the Journey draw from science fiction.

Taking the World on the Journey
Thanks to the growing number of communications satellites now linking the world, almost three quarters of humanity has been able to participate vicariously in Mankind’s greatest space adventure to date. Apollo-8’s voyage has been vividly described to us through pictures, voice and the printed word by the world's journalists, and live from space by the astronauts themselves in their broadcasts during the mission.

The Earth seen through a window of the Apollo-8 Command Module during the second television broadcast en route to the Moon. I can't wait to see the much higher resolution, full colour pictures!

While we here in Australia may have missed out on some of the live broadcasts from space for technical reasons, people in Europe, the Americas, Asia and, it seems, even the nations of the Warsaw Pact have seen the view of the Earth from greater distances than ever before, live from the inside of the Apollo-8 Command Module. Around the world, spirits have been lifted and the public inspired by the courage of the Apollo-8 crew and the successful completion of their mission. I expect that, like me, many of you reading this will have been moved by the solemn reading from the Book of Genesis, a sacred text to three great religions, from lunar orbit on Christmas Day. It was a moment truly evoking “peace on earth and goodwill to men” – the spirit of Christmas – at the end of a fraught year for the world.

The Moon seen through a window of the Apollo-8 Command Module while the crew read the opening words of the Book of Genesis

I think that the full impact of Apollo-8’s mission will take some time to emerge, especially once the photographs of the sights that the astronauts described to us during their flight become available to the public in the coming weeks. For this reason, I have decided to break my coverage of Apollo-8 into two parts. The first, today, will describe the background to the mission. Once NASA begins to process and release the photographs and films taken during the flight, the second part of my mission coverage will explore the lunar flight itself in more detail, illustrated by what I’m sure will be the magnificent images captured by the crew.

From Earth Orbit to Lunar Orbit
Originally planned as an Earth orbiting mission to check out the Lunar Module (LM) necessary to land astronauts on the Moon, delays in that vehicle’s development resulted in a radical change to the Apollo-8 mission profile.

As early as August, Apollo Programme manager Mr. George Low, suggested the idea of converting the first crew-carrying flight of the mighty Saturn 5 rocket into a flight to the Moon without a LM. His initial circumlunar flight concept soon became transformed into an even bolder proposal for a lunar orbit mission, as a counter to a possible lunar flight by Soviet cosmonauts, for which the Zond-5 and 6 missions are thought to be a precursor.

  A telex sent to NASA's Manned Space Flight Network at the conclusion of the Apollo-7 mission, which refers to the future lunar mission

With the successful test flight of Apollo-7, the daring plan for Apollo-8 to orbit the Moon was publicly announced on 12 November. A successful flight around the Moon would demonstrate that a manned lunar landing was achievable, and hopefully beat the USSR to placing the first humans into orbit around the Moon. 

Swapping Crews
Director of Flight Crew Operations, Mr. Deke Slayton, planned early for the proposed change in the mission profile, bumping the original Apollo-8 crew to Apollo-9, since that crew had been training hard for the mission to check out the Lunar Module. Instead, the original Apollo-9 crew – Colonel Frank Borman, Captain James Lovell and Major William Anders, who had been training to test the Lunar Module in cislunar space, became the astronauts destined to fly the first manned mission to the Moon. While the new crew for Apollo-8 was announced on 19 August, the potential lunar flight plan was initially kept secret.

The Apollo-8 crew in front of the Command Module simulator. L-R Col. Borman, Major Anders, Capt. Lovell

40-year-old Col. Borman, the mission commander, and Command Module (CM) Pilot Capt. Lovell (only 11 days younger than Borman), had previously flown together on the Gemini-7 mission, during which they set a long-duration record of 14 days in space. Lovell went on to command Gemini-12, while Borman served as the astronaut representative on the Apollo-1 Fire Investigation Board. The combined space experience of these two seasoned mission commanders undoubtedly played an important role in the success of this critical NASA mission.

Rookie astronaut Major Anders, the third member of the crew, is a former US Air Force fighter pilot. He holds an advanced degree in nuclear engineering and was selected as part of NASA’s third astronaut group, with responsibilities for dosimetry, radiation effects and environmental controls. Despite its lack on this flight, Anders was designated as Lunar Module Pilot and assigned the role of flight engineer, responsible for monitoring all spacecraft systems.

Uniquely Symbolic
The unique design of the Apollo-8 mission patch has a simple elegance that perfectly symbolises the flight. The shape of the patch recalls the gumdrop shape of the Apollo CM, while the red figure 8 circling the Earth and Moon represents both the number of the mission and the free-return flight trajectory for a lunar mission.

Captain Lovell claims credit for the basic design of the patch, developing it during a flight from the Apollo spacecraft manufacturing facility in California back to Houston, after learning about the change in mission assignment.

However, he may have been inspired by earlier patch designs by Allen Stevens, who has previously been responsible for the Apollo-1 and Apollo-7 patches. Mr. Stevens used the CM shape on some of his early designs for Apollo-7. His design for the original Apollo-9 patch – that Col. Borman and his crew had apparently approved – also included a CM-shaped frame and was repurposed as an alternative Apollo-8 lunar mission design.

I’ve heard it suggested that the figure-8 design element, representing mission number and lunar trajectory, may also have been influenced by the similar use of an 8 symbol to indicate a circumlunar trajectory on documents from the Mission Planning and Analysis Division (MPAD) at the Manned Spaceflight Centre. 

This logo from NASA's MPAD may have inluenced the Apollo-8 patch design. What do you think?

Rumour has it that the Apollo-8 crew wanted to name their spacecraft, but –maintaining its long-held ban on such names – NASA would not allow it. Had they been given permission to do so, Columbiad (after the massive cannon that fires a projectile spacecraft to the Moon in Jules Verne's 1865 novel From the Earth to the Moon) might have been the name the crew selected.

Countdown to a Historic Flight
The un-manned Apollo-6 Saturn 5 test flight in April experienced major problems, including severe pogo oscillation while the first stage was firing, two second-stage engine failures, and the failure of the third stage to re-ignite in orbit. Resolving these issues was a priority before Apollo-8’s Saturn-5 launcher, AS-503, could leave the ground carrying human passengers.

Pogo oscillation was a serious concern: it could not only hamper engine performance, but the g-forces it created might even injure a crew. NASA’s Marshall Space Flight Centre (MSFC) investigated the problems and determined the cause to be the similar vibration frequencies of the engines and the spacecraft, creating a resonance effect. AS-503 was therefore fitted with a helium gas system to absorb some of the vibration.

Similarly, MSFC engineers determined that fuel lines rupturing when exposed to vacuum and a mis-wired connection were the cause of the engine shutdowns. The use of suitably modified fuel lines on Apollo-8’s launch vehicle prevented these issues recurring.

The fact that the Saturn-5 thundered off Pad 39A at Kennedy Space Centre exactly as scheduled months earlier is a tribute to the 5,500 technicians and other personnel working behind the scenes to ready the launch vehicle and spacecraft for flight. Preparations for the launch were considered among the smoothest in recent years, although two equipment issues arising during the dress rehearsal countdown threatened to delay the commencement of the formal launch countdown on 16 December.

The historic first mission to the Moon was scheduled to launch at 12.51 GMT 21 December. This specific date and time would allow the crew to observe the site in the Sea of Tranquillity, where the first Apollo landing was planned to touch down, at the ideal Sun elevation of 6.7°, with shadows throwing the cratered lunar terrain into sharp relief.

As a precaution, the 103-hour countdown commenced a day early to allow time for the correction of any unseen snags and keep the lift-off on schedule. Computerised systems, now a feature of the need to support the incredible complexity of the Saturn 5 launcher, provided comprehensive data to the launch controllers giving the “go”/”no go” calls prior to launch.

The computerised Launch Control Room at Kennedy Space Centre, about three hours before launch

Avoiding the Flu – and Radiation Poisoning
With the so-called Hong Kong Flu epidemic sweeping the United States, NASA was taking no chances with the crew’s pre-launch health (especially following the issues created by astronaut Schirra’s head cold during Apollo-7). The astronauts were kept in isolation in quarters at the Kennedy Space Centre for more than a week before the flight and were immunised against the influenza virus – along with anyone likely to come into contact with them.

Emerging from pre-flight isolation into history, the Apollo-8 crew walk out to the astronaut transfer van, ready for their spaceflight

The astronaut’s pre-flight medical examination collected data for comparison with their post-flight examination. Since the Apollo-8 crew has been the first to pass through and beyond the protection of the Van Allen radiation belts, this comparison of pre- and post-flight medical data will reveal any physical changes or health effects resulting from the first human flight beyond Earth orbit.

Basic cross section of the radiation belts around Earth (not drawn to scale). The outer belt is composed of electrons, the inner belt comprises both electrons and protons.

Major Anders’ expertise in dosimetry and radiation effects has undoubtedly been relevant to this aspect of the mission, as each astronaut wore a personal radiation dosimeter which could return data back to NASA’s flight surgeons. The spacecraft also carried three passive film dosimeters recording the cumulative radiation to which the crew were subjected. Initial indications are that the radiation dosage received by the astronauts was at an acceptable level and should not preclude future missions to the Moon.

Apollo’s “Sun Screen”
Beyond the Van Allen Belts, the Apollo-8 crew was travelling in the realms of the intense and deadly radiations of deep space, particularly the streams of charged particles spewed out into the Solar System from solar flares. The astronauts would have been seriously at risk from radiation poisoning if a major solar event occurred during their spaceflight.

To ensure astronaut safety during lunar missions, NASA has established the world-wide Solar Particle Alert Network (SPAN). Stations in Houston, Texas, the Canary Islands, and Carnarvon, Western Australia, provide a 24-hour watch on the Sun, to spot dangerous solar activity. SPAN stations are operated by the US Environmental Science Services Administration (ESSA), which also collects data from twelve satellites that monitor for deadly solar flares. This space-based early-warning system is comprised of four sun-orbiting Pioneer spacecraft (including Pioneers 6, 7 and 8 carrying cosmic ray detectors developed by Australian physicist Dr. Ken McCracken) and eight Earth-orbiting Vela nuclear test detection satellites.

The ESSA SPAN facility in Carnarvon, Western Australia, equipped with both optical and radio telescopes to observe the Sun

ESSA aims to give NASA at least 24 hours’ warning of major solar eruptions, providing enough time enough to delay a launch or alter an orbit to protect the astronauts. Fortunately for Apollo-8’s important flight, the Sun smiled kindly and there was no dangerous solar activity, but future Apollo missions may be grateful for the early warning provided by NASA’s “Sun screen”.

The Whole World was Watching
Television coverage of Apollo-8’s launch was the most extensive to date. The BBC, going “live” for the first time from Cape Kennedy, provided coverage to 54 countries, across Europe and beyond in 15 languages, in a broadcast whose complexity must have rivalled its role in the Our World satellite project. Seven television networks in Britain, the United States, Japan, Canada and Mexico, provided live coverage of the launch, with NASA’s ATS-3 satellite over the Atlantic providing transmissions to Europe and ATS-1 over the Pacific, serving Japan and the Philippines. Even the Communist nations of Eastern Europe were apparently able to watch the launch, although we in Australia could not.

All eyes were trained on the sky at the crowded press site at Kennedy Space Centre as Apollo-8 lifted off

To the Moon, Alice!
When Apollo-8 launched on 21 December, Gemini veterans Borman and Lovell found the ride “less demanding than Gemini from a ‘g’ standpoint, because it didn’t reach the high ‘gs’”, they had experienced on their earlier missions. However, the ride to orbit was still “powerful and noisy… and the stagings were really kind of violent.”

Apollo-8 entered Earth orbit with the third stage still attached, its engine needed for the Trans-Lunar Injection (TLI) burn to put the spacecraft on course to the Moon. For a little over two and a half hours every system of the Command Service Module (CSM) was thoroughly checked out in orbit, to ensure it was fully operational.

Staff at the Honeysuckle Creek tracking station in Australia mark the first time humans have ventured beyond Earth orbit. The fine print of their sign reads:“In space: Borman, Lovell, Anders. On the ground: Hicks, Cross, Holland.”

Then Mission Control gave Apollo-8 the crucial permission call “You are Go for TLI”. The S-IVB stage’s engine sent the first human mission to the Moon on its way out of Earth orbit, with the spacecraft reaching escape velocity (25,000 mph) in just five minutes! As it left the Earth, Apollo-8 was placed on a “free return” trajectory, that would ensure that lunar gravity would slingshot the spacecraft around the Moon and back to Earth in the event of a failure of the CCSM’s powerful onboard engine. An amazing voyage was underway!

I am going to pause my recap of Apollo-8 at this point, and will take it up again in January, when what I anticipate will be amazing photographic imagery from the flight to the Moon and back becomes available. Please join me then. In the meantime, let me wish everyone on the Journey a Happy New Year' looking forward to an exciting 1969 – knowing that the Moon is now within our grasp!


[December 22, 1968] What wonders await? (January 1969 Fantasy and Science Fiction)


by Gideon Marcus

Where'd you get those peepers?

Few things excite the imagination more than adventures in space.  In particular, we love to hear about doings in the cosmos that can't be done on Earth.  And one of the main things we can't do on Earth is see the sky.

Oh sure, when you look out at the starry night, you think you're witnessing infinity.  In fact, your eyes barely apprehend a tiny fraction of the electro-magnetic spectrum.  We are blind to radio waves, to ultra violet, to X-rays, to infrared.  Our sophisticated telescopes are similarly handicapped.  Even the mighty 200 inch telescope on Mount Palomar can't see in most of light's wavelengths, for they are blocked by the Earth's atmosphere.  In the X-ray, ultraviolet, infrared, and cosmic ray bands, the glass seeing-eye tubes are as sightless as we are.

Which is why the launch of the Orbiting Astronomy Observatory (OAO) on December 7, 1968, was such an exciting event.  Dubbed "Stargazer", it is the very first space telescope.

Well, technically, it's the second.  The first one went up on April 8, 1966, but its power supply short circuited shortly after launch, and it never returned any data.  This is a shame, as there were some nifty experiments on board, including a gamma ray experiment similar to the one carried on Explorer 11, another gamma ray counter supplied by NASA's Goddard center, and a Lockheed-made X-ray counter.  But, the main experiment, a set of seven telescopes designed to look in the ultraviolet spectrum, provided by the University of Wisconsin, was duplicated for OAO-2.

This telescope cluster will be used for long-term observation of individual stars, something that only recently became possible with the perfection of star tracking technology.  In addition, the Smithsonian has provided an additional package of four telescopes for the investigation of large masses of stars, up to 700 per day, to get an overall UV map of the sky.

Think of how revolutionary it was when the first radio observatories began mapping the heavens.  We learned about the existence of quasars and weird storms on Jupiter and also a lot more about the stars we had been observing visually for centuries.  Stargazer is about to give us a whole new view of the universe.

That's exciting—truly science fiction made fact!

Jeepers Creepers

While we wait to see what excitement OAO 2 returns from the heavens, let's turn to the latest F&SF to see what terrestrial treasures await us this month.


by Gahan Wilson

A Meeting of Minds, by Anne McCaffrey

We return to the world of "The Lady in the Tower", one of my favorite McCaffrey stories, for the lead story this issue.

Damia, the daughter of that first story's protagonist, is 20 and humanity's strongest telepath.  As tempestuous as she is beautiful and brilliant, she has refused the attentions of men, holding out for something…better.

That's when she meets Sodan, an alien inexorably approaching the Terran sphere from far, intragalactic space. Thus ensues a completely mental courtship, and Damia becomes infatuated with the foreign entity.  But Afra, an experienced mentalist, who has been secretly in love with Damia for ages, is suspicious.  What if the being is simply manipulating Damia so that Earth's greatest defense will be neutralized?

The stage is set for a cosmic battle, and a realignment of Damia's priorities.

I really wanted to like this story.  I was anticipating an "Is There in Truth no Beauty?" romance where two beings find love despite fundamental physical differences.  Instead, the viewpoint shifts from Damia's to Afra's early on, and all we get is his certainty that Sodan is up to no good, which is vindicated.  Then, after the battle, Damia realizes the worthy that's been under her nose this entire time and, of course, gives him her love.

Of late, there has been a shallowness to the emotion displayed in McCaffrey's writing that just puts me off.  Also, a sort of petty volatility.  All of her characters snipe at each other constantly.  But the real nadir of the story comes at the end:

Shyly, her fingers plucking nervously at her blanket, Damia was unable to look away from an Afra who had altered disturbingly. Damia tried to contemplate the startling change. Unable to resort to a mental touch, she saw Afra for the first time with only physical sight. And he was suddenly a very different man. A man! That was it. He was so excessively masculine.

How could she have blundered around so, looking for a mind that was superior to hers, completely overlooking the fact that a woman's primary function in life begins with physical submission?

I feel like if Piers Anthony had written that, we'd have given him the Queen Bee.  Two stars.

A Brook in Vermont, by L. Sprague de Camp

De Camp muses poetically on the Carboniferous, and what future beings, millions of years hence, will burn the coal being formed today.

I think the author missed a real opportunity to imply that we would be the anthracite mined in the far future, suggesting that we run the very real risk of leaving nothing to the ages but our combustibility.

Three stars as is.


by Gahan Wilson

Black Snowstorm, by D. F. Jones

This is nothing more, nothing less, than an extremely well-told story of a plague of locusts. There's no satire, no metaphor, no literary experiments. Both shoes drop simultaneously, though slowly, gradually, rivetingly.

Five stars.

Unidentified Fallen Object, by Sydney Van Scyoc

One day, a small UFO falls with the snow, and a precocious teen boy picks it up to examine.  As he handles the small craft, flakes of it come off, perhaps sliding into his very pores.  Soon, he begins to radiate a frightful miasma, inciting hatred in all approach him.

Including his teacher, who has also touched the fell ship…

"Object" is a chilling, effectively written little horror.  It's not particularly to my taste, and it's a bit one-note, so it's just a three-star story for me.  Others may find more to like (for those who enjoy a sense of dread).

How I Take Their Measure , by K. M. O'Donnell

In the future, everybody's on relief…or administering it.  This is a little slice-of-life story about a sadistic relief worker, who gets off on the tenterhooks he hangs his relief applicants on.  No Brock, George C. Scott's kindhearted social worker from East-Side, West-Side; this guy is a real bastard.

This is my favorite story about terminal unemployment that I've read since one in IF a decade ago (the one about the guy who gets a job tightening all the screws on the buildings in the cities—which have been systematically unscrewed by some other schnook the night before…).

Four stars.

Santa Claus vs. S. P. I. D. E. R., by Harlan Ellison

Here's St. Nick like you've never seen him before.  In the style of Ian Fleming's James Bond series (though not Edward S. Aaron's Sam Durrell, Harlan offers up Agent Kris Kringle, a hard-stomached, oversexed, lean killer whose red suit is filled with every lethal device known to Elfkind.  His nemesis is S.P.I.D.E.R., an international organization devoted to evil.  This time, their nefarious scheme involves mind control: they have brainwashed LBJ, HHH, Nixon, Daley, Reagan, and Wallace into doing the most horrid deeds, and only the jolly agent from the North Pole can defeat them.

Okay, it's a bunch of silly fluff, probably written between bonafide adventure yarns Ellison probably writes under another name like "Rod Richards" or "Length Peters".  I did appreciate how every cruddy thing in the world is ultimately attributable to S.P.I.D.E.R.—humanity is basically good and cuddly.  Only the nefarious "them" subvert our goodness.

I've often noted that comic books and spy novels offer an easy way out for readers.  It's tough to deal with everyday problems, with economic malaise, with systemic issues that cause crime and misery.  How much easier to topple the goon of the week to get our cathartic kicks.  Ellison lets us know he understands the flavor of his own cheek with the subtlety within the broadness.

That said, it's a one-note joke, and once you've gotten the punchline, I don't think the story bears much rereading, especially since it is so very much of a very specific moment in our history (as Judith Merril notes in her book column, August 1968 already feels like an age ago).

Three stars.

The Dance of the Satellites, by Isaac Asimov

The Good Doctor continues his examination (see last month's piece) of what the Galilean moons of Jupiter might look like from the innermost moon, Amalthea.  This time, he focuses on eclipses, the appearance of the moons in Jupiter-shine, and more.

Interesting cosmic data, of use to writers and laymen alike.  Four stars.

The Legend and the Chemistry, by Arthur Sellings

The 3607th (or was it 3608th) interstellar exploration mission from Earth seems like it will be yet another humdrum operation.  In all the expeditions, though many aliens have been found (most humanoid), all have been planetbound, none of them having reached our space traveling level of technology.

This latest planet is no exception, its humaniform denizens possessing a primitive tribal culture.  But they have no less pride than any other race.  What happens when the very existence of far superior beings constitutes an unpardonable affront?  And who is responsible for the catastrophe that ensues?

A decent, moralistic yarn from the late, great Arthur Sellers.  This may well be his last work published (unless he has a posthumous career like Richard McKenna) as he died recently.  While Legend is not the best thing he's ever written, it has its own kind of power.

Three stars.

Wild ride

There are a lot of vicissitudes in this first F&SF of the year.  The strong points cancel the weak points, and the magazine ends in positive territory, but because the lack of consistency makes things a bit sloggish.

Well, that's why I do this, right?  To be your guide to ensure you only get the highlights!






[December 12, 1968] Playing your fish right (The Alvin Submersible, New Job, Book Review)


by Victoria Lucas

The Aquarium


Do you think the fish can hear us?

Today’s title is a result of having two reports and a book review to present to you, dear readers. There is no common theme except for me as narrator. I am inviting you to assist in performing a silent(?) version of a musical piece, “Tropical Fish Opera,” by Ramon Sender. I first experienced it at the Tape Music Center in San Francisco a few years ago. Picture three musicians sitting with their instruments around an aquarium, with another person standing at a microphone. The score is simple, and they have easily memorized it. The person at the microphone has a list of apparently random words that he or she recites as the musicians play. Each musician has been assigned a particular fish that must be followed as a guide for how to improvise in collaboration with the other musicians. The fish in this aquarium are swimming below, and I will act as a narrator who is trying to string words together in an understandable way, so that your silent(?) experience can have some meaning. Think of your voice as your instrument, although if you improvise drums or other means of making sound you can of course add to my silent voice.


The DSV Alvin

The Sinking of the Alvin submersible (Fish No. 1)

If you have never heard of the Alvin, you haven’t been keeping an eye on your fish. The Alvin is the most recent and innovative submersible paid for by the US Navy, assigned to the Woods Hole Oceanographic Institution. Commissioned in 1964, it was named after the mover and shaker who pushed for its creation, Allyn Vine. The Alvin is essentially a large steel sphere (holds 3 people) with plexiglass windows, using syntactic foam for flotation, with weights, hung with cameras, sample containers, and a mechanical arm, and certified for dives of 6,000 feet.

On October 16 the Alvin made an unscheduled dive to almost 5,000 feet, from which it has not been recovered. Yet.  It seems the hatch was still open when the chains holding its cradle snapped, and the submersible slid down its usual course into the ocean, with the pilot and two observers leaving their workday lunch behind in the sphere as they scrambled to safety. Water poured into the hatch, and the Alvin quickly sank to almost 5,000 feet as the crew of its tender, Lulu, threw everything that would float overboard to try to mark the spot. Although the Navy bought the argument that Woods Hole (WHOI) made that no recovery had yet been made from that depth, and backed the experiment of finding and raising the submersible, storms have so far prevented the consummation of the plan. Stay tuned to this story. I think they will succeed.

New Digs, New Job (Fish No. 2)


Ah, a California winter!

I’m also the performer keeping my eye on this fish. My husband Mel and I moved from Fortuna, California, where we had rented a house, to the non-metropolis of Rio Dell nearby, pooling our money to buy a piece of land. We have fruit trees, a walnut tree, and a small garden, and interesting phenomena like different weather visible from windows on every side of the house except one. I’m happy there are no windows on the 4th side, because I only know 3 general kinds of weather: rain (including fog, drizzle, etc.), snow (including sleet), and sun. I don’t want to know about that 4th side. We also have a neighbor, a teenager, who received our permission to hunt deer in our backyard with a bow and arrow. We can sometimes see him up in the walnut tree, waiting patiently. He lets us know when he will be hunting. Just in case he mistakes one of us for a deer. In the meantime, both of us are temporary workers for the County of Humboldt, Mel at the airport, and me in different office gigs. Sometimes we wave to each other as he drives home in the morning in the Jeep from his shift at the airport, at the same time I’m leaving in our car to start my day wherever the County sends me. Wish us luck. We’ll need it as we head into winter weather and knee-deep mud.

Book Review: The Unholy City (and) The Magician Out of Manchuria (Fish no. 3)


Great book!

This is your fabulous fish. I think you will find it delish. I do. Charles Finney (author of The Circus of Dr. Lao) saw the first publication of The Unholy City, in 1937 but this paperback edition (Pyramid Books) published last January combines that irreverent and self-referential story with the delightful Magician Out of Manchuria, which is my favorite of the writings of this Arizona Daily Star editor. Finney is not as prolific as some authors, although he has written many short stories and a couple of articles published in magazines aside from the occasional book. However, when away from his desk at the Tucson newspaper, he has the opportunity to take as few words as possible and place them carefully to weave weird tales, and he seizes that opportunity with both hands. These two yarns are very different from one another, and The Unholy City is not to everyone’s taste, dealing cynically not just with excesses of the consumer society, but (as the “plot demands”) with poor impulse control involving large “zellums of szelack” that seem to have an intoxicating influence. Nevertheless, I find the “Magician” with his manipulative ways, along with the woman he discovers and enhances, and his poor young servant who keeps (literally) losing his head, to be utterly irresistible. Only one of the two has a happy ending. (Guess which one.) I award this fish 5 stars out of 5.

Applause?

I once heard one musician say to another during a lecture and demonstration of the original Opera, “You’re not playing your fish right.” So if you and I were playing our fish right (right for you, that is), perhaps you enjoyed our little experiment. I hope you did.

There will be further adventures of Mel and Vicki. Where will they keep their Jeep while they wade through the mud to their home in the mountains? Will Vicki be able to work in an office where the regular secretary (on vacation) has locked up all her work? Will Mel be able to get along with his temporary boss as the airport enters a study of how it copes with the fog that envelops it every morning?

Stay tuned for the next episode!






</small

[November 30, 1968] Up, Up, and Around! (December 1968 Analog)


by Gideon Marcus

Once more with feeling

Less than two months ago, the Soviets sent Zond 5 on a trip around the Moon in a precursor to a manned flight.  And on November 18, Zond 6 repeated the feat with, apparently, even more success.  There was some suggestion that Zond 5's reentry and descent was fraught with issues.  No such trouble (reported) on Zond 6.


A photo of the Earth from the vicinity of the Moon returned by Zond 6.

The USSR now says (or say, if you're British) that they might well have a manned flight to lunar orbit by early December.  This is even as NASA prepares to send Apollo 8 on a circumlunar course on December 21.  Yes, it sure seems like the breakneck Space Race is on again.  May it claim no more lives in the process.

Once more with mild enthusiasm


by Kelly Freas

The Custodians, by James H. Schmitz

In the far future, Earth's one-world government has collapsed, leaving a plethora of princely states to war with indifferent ferocity.  Further out, the settled asteroids, turned into giant space ships, placidly orbit the Sun, maintaining civilized culture as well as they can.  And beyond lie the alien-settled "out planets".

After an unprofitable eight-year cruise, Jake Hiskey, commander of the Prideful Sue, has a jackpot plan.  He is smuggling in a ship of Rilfs—humanoids with a deadly, natural weapon that kills all animals within a twenty-mile radiius—to serve as mercenaries on Earth.  But to get them to Terra, he must first stage on an asteroid.  The obvious choice is the one that the sister of Harold, the Sue's navigator, calls home.

The catch: the Rilf who goes by the name McNulty insists that no one know that the Rilfs are on the asteroid.  That means all potential witnesses must be eliminated.  This includes all of the asteroid's residents and, by extension, Harold, since he is afflicted with a conscience.

Well, Harold is no fool, and he susses out the plan just at its moment of murderous implementation.  Can one unarmed man thwart his captain's evil scheme before the asteroid's population is slaughtered?  And are the people on the giant rock as effete and defenseless as they seem?


by Kelly Freas

This is a riproaring piece, filled with well-executed action and interesting concepts.  If anything, it's a bit too short, reading like two sections of a more fleshed-out novel.  The concepts revealed at the end, when we learn the true purpose of the asteroid, are explained too quickly, and in retrospect.

I have to wonder if Schmitz needed to sell this before it was quite ready; I hope an expanded version makes its way to, say, an Ace Double.

Four stars.

A Learning Experience, by Theodore Litwell


by Leo Summers

A fellow signs up for a correspondence course and gets a Type III tutor robot trained at the Treblinka Institute for the sadistically inclined.  While the mechanical's browbeatings do get the student to buckle down, he ultimately decides he will get more satisfaction from tearing the robot bolt from bolt.

Just as he is expected to…

Do you have a child who has trouble focusing?  This may be just what the tyke needs.  Just be ready to sweep the floor afterwards.

Three stars.

The Form Master, by Jack Wodhams


by Kelly Freas

The more complicated a bureaucracy, the better chance someone will find a way to take advantage of it.  But he who lives by the forged form may ultimately die by the forged form.

At first, I thought this piece was going to be a celebration of the "rugged individualist" who comes up with a clever justification for stealing from his neighbors.  It's not, but it's still kind of tedious.

Two stars.

The Reluctant Ambassadors, by Stanley Schmidt


by Kelly Freas

Humanity's first colony is on a marginal planet of Alpha Centauri.  It has been failing for decades.  Only one of the two sublight colony ships made it, and there just aren't enough people to make a go of things, especially since the planet's weird orbit takes it between the two bright stars of the trinary, resulting in massive swings of temperatures over the decades.

When FTL drive is invented, a follow-up ship is dispatched from Earth to check on the settlement.  On the way, its crew note that hyperspace, which is supposed to be empty, appears to have inhabitants…or at least something is emitting a mysterious glow off the port bow.  Once at Centauri, apart from the much bedraggled but doughty Terrans, the relief crew also find evidence of alien visitation, which apparently has been going on since the start of the colony.  The colonists had been reluctant to investigate the aliens too deeply as the extraterrestrials had done their best not to be seen. Thus, the first faster-than-light reconnaissance turns into a kind of ambassadorial mission as the captain of the relief vessel heads off in search of the aliens not only to learn their secrets (and the reason for their secrecy) but also to find clues as to the disappearance of the other colony ship.

This is solid, SFnal entertainment, if a little dry and drawn out, and with aliens who are much too humanoid for anything but Star Trek.  I like the setting, though.

Three stars.

Situation of Some Gravity, by Joseph F. Goodavage

Analog had been doing so well with its nonfiction articles of late that the appearance of this one is highly disappointing.  It's a screed about how the magnetohydrodynamics of the planets affects physical phenomena and people as much as, if not more than, gravity, and that's why astrology works.

I think that's what Goodavage is trying to say.  It's certainly what editor Campbell says (in a two-page preface) what Goodavage is trying to say.  I found the thing incomprehensible and unreadable, not to mention offensive.

One star.

Pipeline, by Joe Poyer


by Leo Summers

The year is 1985, and the Earth is entering the next Ice Age.  Its most immediate impact is a subtle shift in weather patterns, plunging America's industrial northeast into drought.  Luckily, engineering has a solution: a great Canadian aqueduct to ship water from the frozen North to the thirsty Eastern Seaboard.

But there are folks not too happy about the project, and just before the pipeline's inaugural activation, saboteurs break the conduit, threatening forty miles of tubing.  It is up to a small band of engineers to fix the breach and stop the terrorists before it's too late.

Poyer has written a competent "edge-of-tomorrow" thriller.  We never find out just who was behind the sabotage.  Strongly implicated is some combination of Japanese businessmen and right-wing Birch-alikes (my suspicions went with some left-wing group like a militant Sierra Club).  Anyway, I think this is the first time I've seen Japan as the bogeyman in an SF story.  It's a novel twist, and given how much is Made in Japan these days, perhaps a valid prognostication.

Three stars.

Once again with the computers

Here we are at the end of the year for magazines, and it's been a rather middle-of-the-road month.  Analog finishes at a mediocre 2.7 star rating, beating out Orbit 4 (2.7), Fantastic (2.6), and IF (2.6)

Scoring above Analog are Galaxy (3.5),
New Worlds (3.5), and Fantasy and Science Fiction (3.2).

Women wrote about 9% of the new fiction published this month, and you could fit all the 4/5 star stories in two magazines out of the seven publications (including one anthology).  Really, that sums up the state of magazine SF in general—some excellent stuff, a lot of mediocrity, and attention now focused on television and novels.

That said, it's still clear that magazines contribute a lot to the genre, particularly in the area of short fiction.  Certainly Michael Moorcock thinks so, as he is composing a book a week just to keep New Worlds afloat with his own money!  That he manages to turn out pretty good stuff in a single tea-fueled draft is a feat that makes him the British Silverbob…with fewer descriptions of underaged bosoms.

So, bid a fond adieu to 1968, at least in cover dates, and let's see what 1969 has in store!


William Shatner waves to the crowd at the Macy's Thanksgiving Parade in New York…but he might also be saying goodbye to 1968






[November 18, 1968] Pioneers and Protons (a space round-up)


by Gideon Marcus

The Interplanetary Pioneers

When you think "outer space", you don't usually think of weather.  In fact, weather in space is a bit like weather on Earth: there's wind, turbulence, a steady rain, and occasional storms.  Except that the wind and rain are the sun's ceaseless spray of charged particles along with their attendant magnetic fields.  The storms are the result of solar flares, those sudden unsettled periods when fiery prominences reach out from the sun's surface.

These phenomena can even be sensed by humans—as aurorae where the solar wind interacts with the Earth's magnetic field, and as the crackle of static on a shortwave radio.  For satellites and space travelers, the solar radiation, particularly during flares, can damage electronics and internal organs.  There are thus a lot of reasons it would be practical to have a space weather report, just as we have a daily weather report down here on Earth.


Northern Lights, 1921, by Sydney Laurence

This is why the Pioneer series of solar weather satellites, the first launched December 16, 1965 and the latest launched on November 8th of this year, was created: to serve as long-term weather sentinels in space, the interplanetary equivalent of our TIROS weather satellites.

Prior to the launch of Pioneer 6 (no relation to Pioneer 5 or its predecessors save for the name), the mapping of the solar wind had been a strictly local affair.  The Interplanetary Monitoring Platform satellites, Explorers 18, 21, 28, 33, 34, and 35, have all been launched in high Earth orbits to survey the solar wind between the Earth and the moon.  This is in service of the Apollo program.

The aforementioned Pioneer 5 and interplanetary probes like Mariner 2 have made preliminary forays into true interplanetary space beyond the Earth/moon region, but those missions only lasted a few months.  The interplanetary Pioneers will be on station for years.

Launched on Delta rockets (the direct descendants of the Thor-Able rockets that launched the first Pioneers toward the moon), Pioneers 6-9 (and eventually #10, next year), were hurled into orbits that parallel our own, but further out in the case of Pioneers 7, 8, and 9; a little closer to the sun in the case of Pioneer 6.  The outer ones orbit a little more slowly while P6 zooms a little faster.  As a result, they all spread out, making a necklace of stations around the sun.

Pioneer 6 was launched in 1965 during the lull in the sun's 11 year cycle called "the solar minimum".  The hope was that we would get continuous data as the sun increased in activity, flaring more and more often.  We have not been disappointed.  On July 7, 1966, a big shock front from a solar flare enveloped Explorer 33.  45 hours later, Pioneer 6 was hit.  Interestingly, because of the time delay, even though both probes were similar distances from the sun (but far apart in orbit, of course), it is believed those might have been the result of two different flares, or perhaps two disturbances from the same one.

When the Pioneers were launched, scientists had a basic idea of that the solar wind looked like the spiral spray of a sprinkler head, this caused by the 28-day rotation of the sun.  But the instruments onboard the sophisticated Pioneers afforded much more detailed analysis of these streams and fields.  The Pioneers have found that the local magnetic fields will suddenly flip every so often.  Their microstructure is like woven filaments, far more complicated than we had previously conceived.


High-level view of the "sprinkler" spray of the solar wind

Pioneers 7 and 8 sailed through the Earth's magnetosheath, that magnetic shadow formed as the sun's wind interacts and deflects around the Earth.  Comparing their results to the closer-in Explorer 33, they found that this shadow tail gets more diffuse, more like the background interplanetary wind at greater distances, which is what one would expect.


The Earth's magnetic field (you can see the figure 8 Van Allen Belts) and the long, trailing, magnetosheath.

The Pioneer satellites are well-placed for more than just solar science.  Pioneers 8 and 9 are equipped with cosmic-ray telescopes designed to measure the chemical composition and sprectra of the galactic wind—the higher-energy rain of particles from beyond our solar system.  But the coolest use of the Pioneers so far (to me) is when Pioneer 7 was used to measure the lunar ionosphere.  On January 20, 1967, the moon "occulted" (blocked) the space probe, as seen from Earth.  Radio waves were beamed from a 150-foot dish run by Stanford past the edge of the moon.  They found that the scattering that resulted can't be explained just by the physical rocks of the lunar surface.  There must be a tenuous "atmosphere" above the moon, at least on the sunlit side, created at high altitudes by interactions between the solar wind and the surface of the moon.

There's actually a lot more, esoteric stuff that's way above my head.  And there will be plenty more as the Pioneers will probably keep going for many more years.  Though they haven't gotten much press, I think these are some of the most exciting missions to date.  Stay tuned!

My, what big…rockets you have!

Three years ago, I made a brief announcement about the launch of a new Soviet probe, one so enormous that its size alone had ramifications for the future of the Communist space program.  Proton, launched July 16, 1965, massed a whopping twelve tons, making it the biggest single object put in orbit until the November 1967 launch of Apollo 4.  That means that the USSR has a Saturn-class rocket in its stable, which is why the concerns about an imminent moon mission have grounding.

Since Proton 1, three more Protons have been sent into orbit, the latest just two days ago on November 16th.  Proton 4 weighs seventeen tons, which will beat all records—at least until Apollo 8 goes up in December. 

Why are they so heavy?  Because they carry heavy instruments.  Protons 1 and 2 included a gamma-ray telescope, a scintillator telescope, and proportional counters.  These counters were able to determine the total energy of each super-high energy cosmic particle individually, a capability no prior satellite had possessed, measuring cosmic rays with energy levels up to 100 million electron volts.

In addition to the above equipment, the fourteen ton Proton 3 was also equipped with a two-ton gas-Cerenkov-scintillator telescope.  Its goal was to attempt to detect the "quark", a brand new theoretical sub-particle that, according to theory, makes up all atomic particles.  Presumably, Proton 4 mounts a similar device with refinements.

Unlike most Soviet satellites, whose missions are shrouded in secrecy, data from the experiements onboard the first two Protons have produced at least five scientific papers on cosmic rays.  I haven't seen anything on Proton 3, but astronauts on Gemini 11 managed to snap a picture of it in September 1966!

Will the advanced experiments on Proton 4 produce a scientific bonanza to rival that of the Pioneers?  Only time will tell.  For now, the papers are more obsessed with the rocket than the satellite.

Apparently, it's all about size.  Who knew?