Category Archives: Science / Space Race

Space, Computers, and other technology

[January 22, 1969] NASA’s Christmas Gift to the World Part 2 (Apollo 8 continued)



by Kaye Dee

Last month, I began this article just hours after the crew of Apollo 8 returned safely to the Earth from their historic mission around the Moon. But even while the mission was in progress, I felt that it might be best to wait to tell the story of the lunar flight in detail, until it could be illustrated with the photographs taken by Col. Borman, Major Anders and Capt. Lovell during their epic journey – images whose breathtaking full-colour views were only hinted at in the low-resolution b/w television broadcasts and the astronauts’ excited descriptions of what they were seeing during the mission.

"Oh my God!" is what Astronaut William Anders said just before he took this awe-inspiring photograph of the Earth rising over the Moon, as seen from lunar orbit. That was my exact response – and yours, too, I expect – on first seeing this incredible sight. I confidently predict that this amazing view will become one of the defining images of the Space Age

Now that we can see for ourselves the awesome sights that the Apollo 8 crew witnessed, I think I made the right call.

On Course for the Moon
We left Apollo 8 on the way to the Moon, after a successful translunar injection. Just 30 minutes later, the CSM separated from the S-IVB stage, which was ordered to vent its remaining fuel to change the stage’s trajectory. The S-IVB gradually moved away from the CSM and is now in orbit around the Sun.

Fuel venting isn't visible in this image of the jettisoned S-IVB stage, but small debris from the separation can be seen floating around it. Although Apollo 8 carried no Lunar Module, this shot shows the LM test article contained in the S-IVB stage

As the crew rotated their spacecraft to view the jettisoned stage, they had their first views of the Earth as they moved away from it—the first time human eyes have been able to view the whole Earth at once. The perspectives of the two images below, taken less than 45 minutes apart, help us gain an impression of how fast the Apollo spacecraft was travelling (around 24,200 mph).

Taken just around the time of TLI, this view from high orbit shows the Florida peninsula, with Cape Kennedy just discernible, and several Caribbean islands

The view of Earth after S-IVB stage separation. From the Americas to west Africa, and from daylight to night, for the first time humans could see their entire planet at a glance!

Mission Commander Borman has said that he thought this must be how God sees the Earth, while Astronaut Lovell felt he was driving a car into a dark tunnel and was watching the entrance dwindle into a distant speck! But perhaps Major Anders best summed up the awesome view: “How finite the Earth looks. Unlike photographs people see there’s no frame around it. It’s hanging there, the only colour in the black vastness of space, like a dust mote in infinity.”

On the way to the Moon, the CSM adopted the PTC (Passive Thermal Control) or “barbecue” mode tested on Apollo 7, slowly rotating the spacecraft to keep temperatures evenly distributed over its surface. As the CSM turned, every so often the Earth would appear in one of the windows, making the astronauts aware that they were travelling away from their home planet: it became steadily smaller, until eventually they could cover the whole Earth with a thumb.

Where No Man Has Gone Before
I’m stealing that wonderful Star Trek catch phrase because soon after the S-IBV jettison, Apollo 8 surpassed the altitude record set by Gemini 11 in 1966 and was truly setting out into that “new ocean” of space only previously traversed by unmanned probes.

The coast to the Moon was relatively uneventful, with only a few issues arising, including some window fogging, like that experienced on Apollo 7, and a bout of space sickness that it was initially feared might lead to the cancellation of the orbits around the Moon.

Col. Borman reported diarrhoea, nausea and vomiting (none of which you want to have in weightlessness, given the unpleasant consequences!) and both Lovell and Anders also said they did not feel too well. Dr Charles Berry, the medical director at Cape Kennedy, at first feared a 24-hour viral gastro-enteritis that might “play ping-pong”, with the crew re-infecting each other and leaving themselves too weak to carry out their complex tasks correctly. Fortunately, with longer sleep periods, medication and additional rest, the complaint cleared up and did not prove a showstopper for the mission. 

The first mission status report for Apollo 8, sent to the NASA tracking stations around the world, for release to local media. Dated some 19 hours after launch, it outlines some of the activities of the early part of the coast to the Moon

A slight course correction saw the large SPS motor fired for the first time, providing a check that the spacecraft’s main propulsion system was working correctly. Had there been any problems, Apollo 8 would not have gone into lunar orbit, but looped around the Moon to return to Earth.

Out of this World Broadcasts
About halfway to the Moon, at 31 hours and 10 minutes after launch, the astronauts conducted the first of six television broadcasts during the mission. Like Mission Commander Schirra on Apollo 7, Borman was apparently not in favour of television broadcasts – holding that the weight of the camera was better used for other equipment and additional food supplies – but was overruled by NASA.

For this first deep space show, the approach was light-hearted, with the opening scenes from the spacecraft showing Capt. Lovell upside down in the lower equipment bay making jokes about preparing lunch. Bill Anders played with his weightless toothbrush, with quips from Frank Borman about his crewmate cleaning his teeth regularly. Jim Lovell sent birthday wishes to his mother. The crew tried to show us the Earth through the one of the CM windows, but without a viewing monitor, they couldn't quite capture it in their camera's field of view.

Astronaut Anders shows us his toothbrush (top) and Jim Lovell wishes his mother "Happy Birthday" (bottom) during Apollo 8's first deep space broadcast

The astronauts were disappointed to find their view of the approaching Moon was washed out by the Sun’s powerful glare. It should have been a spectacular sight to see its cratered surface increasing in size and detail as they closed in, but they were not able to get good views of the Moon until they were relatively close. However, during their second television broadcast, 55 hours into the mission, the crew of Apollo 8 were finally able to capture the Earth through one of their spacecraft's windows.

While the resolution of the image may not have been very high, this first ever live view of our planet from 180,000 miles out in space was yet another step in science fiction being made into reality! During the 25 minute broadcast, there was a delightful exchange between Lovell and Anders, with Capcom Michael Collins in Houston, wondering what a traveller from another planet would think of the view of Earth from that distance, and whether they would imagine it was inhabited.

The Apollo 8 second broadcast view of the Earth as we saw it on television (above) and how Capcom Collins saw it on his monitors in Mission Control (bottom). Would alien visitors to our solar system think anyone lived there?



Moving into the Moon's Sphere of Influence
Shortly after their second broadcast, Borman, Lovell and Anders became the first humans to leave the Earth’s sphere of gravitational influence: they were 202,825 miles from Earth and 38,897 miles from the Moon. This move into the lunar gravity field meant that soon a decision would need to be made as to whether or not Apollo 8 would go into lunar orbit, or loop around the Moon and return directly to the Earth. So concerned was Col. Borman about any trajectory perturbations that would preclude the spacecraft from achieving lunar orbit that he even checked with Houston before dumping urine overboard!

A view of the Moon, finally visible as Apollo 8 approached and prepared to go into orbit

Then came the moment to go behind the Moon – and the decision whether or not to orbit. “Apollo 8 this is Houston,” Capcom Jerry Carr called. “At 68 hours 4 minutes you are Go for LOI (Lunar Orbit Insertion).” But the necessary SPS engine burn to change the CSM's trajectory from "free return" to lunar orbit had to take place above the far side of the Moon, where Apollo 8 would be completely out of contact with the Earth.

On 24 December, just on 69 hours after lift-off, Apollo 8 slipped behind the Moon. Col. Borman was so impressed with the exact predicted timing of the loss of communication with the Earth that he joked about whether the Manned Space Flight Network had turned off its transmitters! But, in truth, the situation was very tense, as all the astronauts and Mission Control could do was wait and hope that all would go well with the burn to put Apollo 8 into lunar orbit. The Service Propulsion System engine had to work perfectly, or the astronauts would be in serious trouble.

The Manned Space Flight Network station at Honeysuckle Creek, near Canberra, was tracking Apollo 8 as it went behind the Moon and received the first signals as it re-emerged, safely in lunar orbit

Fortunately, Apollo 8 slowed in response to the 4 minute 6.9 second burn – “Longest four minutes I’ve ever spent,” according to Capt. Lovell. This put the spacecraft into a 194 x by 69 mile orbit around the Moon after a Trans-Lunar Coast of 66 hours 16 minutes and 22 seconds.

Round (and Round) the Moon
Safely in orbit, the plan was for Apollo 8 to make 10 orbits around the Moon over a twenty hour period. Even though the far side of the Moon was first seen as far back as 1959, by the USSR's Luna 3, the first order of business was for the crew to observe the far side surface for themselves. The three astronauts were stunned by the crater-pitted Moonscape sliding below them, revealing a tortured terrain so unlike the familiar face of the Moon. Out of contact with the Earth, totally isolated from home, Borman, Lovell and Anders forgot their mission for a few moments to press their faces against the CM windows and soak up the sights!



The astronauts were not exactly impressed with the gritty, grey, plaster-like surface they observed as they orbited the Moon. Col. Borman described it as as “[looking] like the burned-out ashes of a barbecue,” while Capt. Lovell said “It’s like a sand pile my kids have been playing in for a long time. It’s all beat up with no definition. Just a lot of bumps and holes.” Major Anders felt the surface looked "whitish-grey, like dirty beach sand with lots of footprints in it.”

Jim Lovell's "sand pile" on the Moon!

Back on Earth Mission Control held its breath, waiting for Apollo 8 to re-emerge from behind the Moon and confirm that the SPS engine had performed as planned. But once the crew were back in contact with Earth, a packed routine of surface observations was quickly established: these images comprise the bulk of the more than 800 70 mm still photographs and 700 feet of 16 mm movie film that the astronauts took during the mission. Among their tasks, the astronauts observed Earthshine (the light reflecting from Earth shining on the dark face of the Moon) – which they found provided enough light to see surface features clearly – and took detailed photographs of the area within the Sea of Tranquillity where, all going to plan in the next few months, the Apollo 11 mission will make the first manned lunar landing.

On the second orbit, Apollo 8's 12 minute long third television broadcast was almost entirely dedicated to allowing us back on Earth to see the astronauts' view of the Moon. Even when it was difficult to see much detail in the views of the lunar surface passing below the spacecraft, this broadcast made us, as it were, part of the mission.

View of the Moon's surface during the third Apollo 8 television broadcast

Earthrise
Busy with lunar surface observations, during their first three orbits the Apollo 8 crew failed to even notice an incredible sight. It was not until their fourth orbit that the astronauts experienced perhaps the most sublime view provided by space exploration to date – the vision of the Earth rising above the lunar horizon!

On this fourth orbit, a navigation sighting meant that the CSM was rolled to look outwards into space instead of down towards the Moon's surface. As the lunar horizon came into view, the astronauts witnessed a magnificent sight – the cloud-mottled blue orb of the Earth swimming into their view. Awestruck, they scrambled so quicky to capture the vision that no-one is quite sure now who took which picture, although it seems that Col. Borman may have snapped the first black and white photograph, and Bill Anders a number of breathtaking colour images of the Earthrise.

Apollo 8's Earthrise images are usually published oriented with the lunar horizon at the bottom, as that is how we are used to seeing the Moon rising over the horizon on Earth. But the orientation of astronauts' orbit meant that they actually saw the Earth appearing to rise 'sideways', as seen in this original version of Major Anders' photograph

While Apollo 8 isn't the first space mission to capture the vista of the Earth rising over the Moon – that honour goes to Lunar Orbiter 1 – the impact of the superior quality and colour of the astronaut's photographs is profoundly inspiring, and Major Anders' evocative Earthrise image is already well on its way to becoming the most reproduced image of the Space Age so far.

This spread from the 15 January issue of the Australian Women's Weekly is just one example of thousands of magazine and newspaper articles already featuring the Earthrise photograph and Apollo 8's other amazing pictures

I'm so moved by the Earthrise image that I find it hard to put all my feelings into words, but perhaps those I quoted above from Astronaut Anders go some way to expressing them, as do Captain Lovell's similar thoughts on the view: “The vastness up here of the Moon is awe inspiring. It makes you realize just what you have back there on Earth. The Earth from here is a grand oasis in the blackness of space.”

This view of the living Earth in the immensity of the Cosmos truly brings home to us the fragility and isolation of our home planet and its finite resources, providing the visual encapsulation of the expression "Spaceship Earth" popularised over the past few years by Buckminster Fuller among others. The environmental movement needs to utilise the power of this image to help encourage us all to be better stewards of the Earth and preserve our environment, so necessary for our survival, for future generations.

"Something Appropriate"
Acutely aware of the historic nature of the Apollo 8 mission, NASA wanted the astronauts to “do something appropriate” for their fourth television broadcast. Due to occur on the ninth lunar orbit, this finale to Apollo 8’s time at the Moon was scheduled for late evening on Christmas Eve in the United States (comfortably at lunchtime on Christmas day for us here in Australia). The program was to be transmitted via satellite to 64 countries (where it was seen or heard by an estimated one billion people!), so it was a major global event, comparable to 1967’s Our World broadcast.

What would be appropriate for such an international audience? The astronauts wanted to present something spiritually significant and memorable, but not overtly religious, that would be relevant at Christmas to both Christians and the millions of non-Christians who would be tuning into the broadcast. It seems that the wife of a journalist (I’m sorry, I don’t know her name) suggested that they read from the opening of the Book of Genesis, which has meaning for many of the world’s religions and expresses concepts relevant to many other faiths. The crew liked this idea and planned to incorporate it into their broadcast. A view of the Moon seen by the audience on Earth while the crew of Apollo 8 read from the Book of Genesis

The fourth telecast from Apollo 8 began with the astronauts talking about their impressions of the Moon and the experience of being in lunar orbit. Following some views of the lunar terrain, described by the astronauts as they passed over, Major Anders said that the crew had a message for everyone on Earth. In turn, Anders, then Capt. Lovell and finally Col. Borman read the first 10 verses of Genesis, as we watched the Moon’s surface pass by, with a view through one of the CM windows. Borman then ended the broadcast with “And from the crew of Apollo 8, we close with good night, good luck, a Merry Christmas and God bless all of you – all of you on the good Earth.” I watched this transmission at lunch with my sister’s family: it left us all profoundly moved.

Families around the world gathered on Christmas Eve/Christmas Day (depending on where you were!) to watch Apollo 8's broadcast

Set Course for Earth
Two and a half hours after the end of the fourth television broadcast, on Apollo 8’s tenth lunar orbit, it was time to perform the trans-Earth injection (TEI). This manoeuvre was even more critical than the one which had brought the CSM into orbit around the Moon: if the SPS engine failed to ignite, the crew would be stranded in lunar orbit. Like the previous SPS burn, this critical firing had to occur above the far side of the Moon, once again out of contact with the Earth. Despite all the telemetry indicating that the SPS was in good shape, tension was high while the spacecraft was behind the Moon, but the burn was perfect and Apollo 8 re-emerged exactly on schedule 89 hours, 28 minutes, and 39 seconds after launch.

It was Christmas Day, and when voice contact was restored with Houston, Lovell announced to the world, “Please be informed, there is a Santa Claus” – apparently for the benefit of one his sons, who had asked before the flight if his father would see Santa while visiting the Moon.

A view inside the Command Module, during the fifth Apollo 8 television broadcast

At about 100 hours and 48 minutes after launch, Apollo 8 crossed back into the Earth’s sphere of influence and began gradually speeding up. After the astronauts carried out the only required midcourse correction at 104 hours into the mission, the crew had some time to relax before their fifth television broadcast. During this 10 minute transmission, they gave viewers a tour of the spacecraft, showing how they lived in the weightless environment. An image from the fifth broadcast taken directly from a monitor at the Honeysuckle Creek tracking station. It shows Bill Anders demostrating how to prepare a meal

A Christmas Dinner to Remember
After the broadcast, the crew were finally free to tuck into their Christmas dinner – and found a surprise in their food locker. It was a specially packed Christmas dinner wrapped in foil and decorated with red and green ribbons! A gift from Director of Flight Crew Operations Deke Slayton, the special meal included dehydrated grape drink, cranberry-applesauce, and coffee, as well as a new “wetpack” containing turkey and gravy. Also hidden with the surprise dinner, the astronauts found small presents from their wives.

Slayton also included three miniature bottles of brandy with the meal, although Borman decided that they should be saved until after splashdown!

The astronauts thought the food was delicious, more like a TV dinner, and much more appetising than the food they had been eating on the mission. In fact, the crew had found their meals so unappealing that they had been under-eating throughout the mission, so their turkey dinner was a real morale booster.

The new “wetpack” container is breakthrough in space food development: a thermostabilized package that retains the normal water content of the food, which can be eaten with a spoon. I’ll have to write more soon about space food, as the new meals and menus that are being developed for Apollo lunar missions are a real breakthrough in astronaut nutrition.

The Final Leg
The return cruise to Earth was the quietest part of the mission for the crew, giving them time to rest after an eventful historic mission. Around 124 hours into the flight, the astronauts broadcast their sixth and final telecast, showing the approaching Earth during a four-minute broadcast.



The crew also had time to take more spectacular photographs of the Earth, such as this image of Australia as they homed in towards their eventual splashdown in the Pacific Ocean.

Re-entry is the most dangerous phase of any spaceflight, and Apollo 8 marked the first time that a manned spacecraft had returned from the Moon, re-entering the atmosphere at 24,695 miles per hour! The spacecraft had to enter the Earth’s atmosphere at an angle of 6.5 degrees, with a safe corridor only 26 miles wide – there was very little margin for error! 

After jettisoning the Service module and turning the CM around so its heat shield was facing in the direction of flight, Apollo 8 entered the atmosphere, deceleration hitting the astronauts with forces up to 7 Gs, and temperatures outside the spacecraft reaching 5,000 degrees.

Apollo 8's re-entry, captured by one of NASA's Apollo Range Instrumented Aircraft that operate as airborne tracking stations

Ionized gases around the spacecraft caused a three-minute communications blackout period. But Apollo 8 came through and safely deployed its three main parachutes, splashing down in the dead of night local time, in the North Pacific Ocean, southwest of Hawaii, home safe after a momentous mission which even the crew had rated themselves as only having a 50% chance of a successful return!

Map of Apollo 8's splashdown area

Recovered by the USS Yorktown, Borman, Lovell, and Anders were in excellent health after a flight of 147 hours. They returned to Houston for several weeks of debriefing, but he success of their flight means it is now clear that the likelihood of meeting President Kennedy’s goal of a Moon landing before the end of the decade is much higher: Lt.-General Phillips, head of the Apollo programme, has already said there is a slim chance Americans could land on the Moon with Apollo 10 in May or June – one flight earlier than presently planned

After their recovery, the Apollo 8 astronauts addressed the USS Yorktown's crew, very glad to be home!

“You Saved 1968”
As I noted at the beginning of the first part of this article, 1968 was a year that saw much upheaval around the world. Yet Apollo 8 allowed the year to end on a hopeful note, with its technical triumph of the first manned mission to the Moon, its awe-inspiring views of the Earth from space, and the deeply moving “Genesis broadcast”. Its impact has been beautifully summed up in a telegram from an anonymous well-wisher to Col. Borman which simply said, “Thank you Apollo 8. You saved 1968.”

< For the influence and impact of their mission, Time magazine has chosen the crew of Apollo 8 as its Men of the Year for 1968, while Life has selected the post-TLI image of the Earth for the cover its 1968 retrospective issue.

The Apollo 8 astronauts have been honoured for their successful mission with ticker tape parades in New York, Chicago and Washington, D.C; they have spoken before a joint session of Congress, and been awarded the NASA Distinguished Service Medal by President Johnson. Has Apollo 8 won the Space Race for the United States? I think it's too early to say, especially in light of the recent Soyuz 4 and 5 missions. But NASA is certainly giving the Soviet Union a run for its money!

[December 28, 1968] A Christmas Gift to the World – Part 1 (Apollo 8)



by Kaye Dee

Commentators are already referring to 1968 as the most turbulent year of the 1960s. We’ve seen civil unrest and sectarian violence; uprisings and brutal repression; new wars and intensification of old ones; political turmoil and assassinations; drought, famine and natural disasters, just to note some of the tragedies and strife dominating the headlines.

 
Yet this “worst of times” has still ended on a high note, thanks to NASA’s Christmas gift to the world – the Apollo-8 mission to the Moon.

 
As I write, the first daring spaceflight to the Earth’s nearest neighbour was completed only a few hours ago, splashing down in the early hours of the morning here in Australia. I’m tired but elated at the successful conclusion of the mission and the safe return of the crew. This historic mission has taken another crucial step in turning the ancient dream of reaching for the stars into reality, vindicating the inspiration that readers of the Journey draw from science fiction.

Taking the World on the Journey
Thanks to the growing number of communications satellites now linking the world, almost three quarters of humanity has been able to participate vicariously in Mankind’s greatest space adventure to date. Apollo-8’s voyage has been vividly described to us through pictures, voice and the printed word by the world's journalists, and live from space by the astronauts themselves in their broadcasts during the mission.

The Earth seen through a window of the Apollo-8 Command Module during the second television broadcast en route to the Moon. I can't wait to see the much higher resolution, full colour pictures!

While we here in Australia may have missed out on some of the live broadcasts from space for technical reasons, people in Europe, the Americas, Asia and, it seems, even the nations of the Warsaw Pact have seen the view of the Earth from greater distances than ever before, live from the inside of the Apollo-8 Command Module. Around the world, spirits have been lifted and the public inspired by the courage of the Apollo-8 crew and the successful completion of their mission. I expect that, like me, many of you reading this will have been moved by the solemn reading from the Book of Genesis, a sacred text to three great religions, from lunar orbit on Christmas Day. It was a moment truly evoking “peace on earth and goodwill to men” – the spirit of Christmas – at the end of a fraught year for the world.

The Moon seen through a window of the Apollo-8 Command Module while the crew read the opening words of the Book of Genesis

I think that the full impact of Apollo-8’s mission will take some time to emerge, especially once the photographs of the sights that the astronauts described to us during their flight become available to the public in the coming weeks. For this reason, I have decided to break my coverage of Apollo-8 into two parts. The first, today, will describe the background to the mission. Once NASA begins to process and release the photographs and films taken during the flight, the second part of my mission coverage will explore the lunar flight itself in more detail, illustrated by what I’m sure will be the magnificent images captured by the crew.

From Earth Orbit to Lunar Orbit
Originally planned as an Earth orbiting mission to check out the Lunar Module (LM) necessary to land astronauts on the Moon, delays in that vehicle’s development resulted in a radical change to the Apollo-8 mission profile.

As early as August, Apollo Programme manager Mr. George Low, suggested the idea of converting the first crew-carrying flight of the mighty Saturn 5 rocket into a flight to the Moon without a LM. His initial circumlunar flight concept soon became transformed into an even bolder proposal for a lunar orbit mission, as a counter to a possible lunar flight by Soviet cosmonauts, for which the Zond-5 and 6 missions are thought to be a precursor.

  A telex sent to NASA's Manned Space Flight Network at the conclusion of the Apollo-7 mission, which refers to the future lunar mission

With the successful test flight of Apollo-7, the daring plan for Apollo-8 to orbit the Moon was publicly announced on 12 November. A successful flight around the Moon would demonstrate that a manned lunar landing was achievable, and hopefully beat the USSR to placing the first humans into orbit around the Moon. 

Swapping Crews
Director of Flight Crew Operations, Mr. Deke Slayton, planned early for the proposed change in the mission profile, bumping the original Apollo-8 crew to Apollo-9, since that crew had been training hard for the mission to check out the Lunar Module. Instead, the original Apollo-9 crew – Colonel Frank Borman, Captain James Lovell and Major William Anders, who had been training to test the Lunar Module in cislunar space, became the astronauts destined to fly the first manned mission to the Moon. While the new crew for Apollo-8 was announced on 19 August, the potential lunar flight plan was initially kept secret.

The Apollo-8 crew in front of the Command Module simulator. L-R Col. Borman, Major Anders, Capt. Lovell

40-year-old Col. Borman, the mission commander, and Command Module (CM) Pilot Capt. Lovell (only 11 days younger than Borman), had previously flown together on the Gemini-7 mission, during which they set a long-duration record of 14 days in space. Lovell went on to command Gemini-12, while Borman served as the astronaut representative on the Apollo-1 Fire Investigation Board. The combined space experience of these two seasoned mission commanders undoubtedly played an important role in the success of this critical NASA mission.

Rookie astronaut Major Anders, the third member of the crew, is a former US Air Force fighter pilot. He holds an advanced degree in nuclear engineering and was selected as part of NASA’s third astronaut group, with responsibilities for dosimetry, radiation effects and environmental controls. Despite its lack on this flight, Anders was designated as Lunar Module Pilot and assigned the role of flight engineer, responsible for monitoring all spacecraft systems.

Uniquely Symbolic
The unique design of the Apollo-8 mission patch has a simple elegance that perfectly symbolises the flight. The shape of the patch recalls the gumdrop shape of the Apollo CM, while the red figure 8 circling the Earth and Moon represents both the number of the mission and the free-return flight trajectory for a lunar mission.

Captain Lovell claims credit for the basic design of the patch, developing it during a flight from the Apollo spacecraft manufacturing facility in California back to Houston, after learning about the change in mission assignment.

However, he may have been inspired by earlier patch designs by Allen Stevens, who has previously been responsible for the Apollo-1 and Apollo-7 patches. Mr. Stevens used the CM shape on some of his early designs for Apollo-7. His design for the original Apollo-9 patch – that Col. Borman and his crew had apparently approved – also included a CM-shaped frame and was repurposed as an alternative Apollo-8 lunar mission design.

I’ve heard it suggested that the figure-8 design element, representing mission number and lunar trajectory, may also have been influenced by the similar use of an 8 symbol to indicate a circumlunar trajectory on documents from the Mission Planning and Analysis Division (MPAD) at the Manned Spaceflight Centre. 

This logo from NASA's MPAD may have inluenced the Apollo-8 patch design. What do you think?

Rumour has it that the Apollo-8 crew wanted to name their spacecraft, but –maintaining its long-held ban on such names – NASA would not allow it. Had they been given permission to do so, Columbiad (after the massive cannon that fires a projectile spacecraft to the Moon in Jules Verne's 1865 novel From the Earth to the Moon) might have been the name the crew selected.

Countdown to a Historic Flight
The un-manned Apollo-6 Saturn 5 test flight in April experienced major problems, including severe pogo oscillation while the first stage was firing, two second-stage engine failures, and the failure of the third stage to re-ignite in orbit. Resolving these issues was a priority before Apollo-8’s Saturn-5 launcher, AS-503, could leave the ground carrying human passengers.

Pogo oscillation was a serious concern: it could not only hamper engine performance, but the g-forces it created might even injure a crew. NASA’s Marshall Space Flight Centre (MSFC) investigated the problems and determined the cause to be the similar vibration frequencies of the engines and the spacecraft, creating a resonance effect. AS-503 was therefore fitted with a helium gas system to absorb some of the vibration.

Similarly, MSFC engineers determined that fuel lines rupturing when exposed to vacuum and a mis-wired connection were the cause of the engine shutdowns. The use of suitably modified fuel lines on Apollo-8’s launch vehicle prevented these issues recurring.

The fact that the Saturn-5 thundered off Pad 39A at Kennedy Space Centre exactly as scheduled months earlier is a tribute to the 5,500 technicians and other personnel working behind the scenes to ready the launch vehicle and spacecraft for flight. Preparations for the launch were considered among the smoothest in recent years, although two equipment issues arising during the dress rehearsal countdown threatened to delay the commencement of the formal launch countdown on 16 December.

The historic first mission to the Moon was scheduled to launch at 12.51 GMT 21 December. This specific date and time would allow the crew to observe the site in the Sea of Tranquillity, where the first Apollo landing was planned to touch down, at the ideal Sun elevation of 6.7°, with shadows throwing the cratered lunar terrain into sharp relief.

As a precaution, the 103-hour countdown commenced a day early to allow time for the correction of any unseen snags and keep the lift-off on schedule. Computerised systems, now a feature of the need to support the incredible complexity of the Saturn 5 launcher, provided comprehensive data to the launch controllers giving the “go”/”no go” calls prior to launch.

The computerised Launch Control Room at Kennedy Space Centre, about three hours before launch

Avoiding the Flu – and Radiation Poisoning
With the so-called Hong Kong Flu epidemic sweeping the United States, NASA was taking no chances with the crew’s pre-launch health (especially following the issues created by astronaut Schirra’s head cold during Apollo-7). The astronauts were kept in isolation in quarters at the Kennedy Space Centre for more than a week before the flight and were immunised against the influenza virus – along with anyone likely to come into contact with them.

Emerging from pre-flight isolation into history, the Apollo-8 crew walk out to the astronaut transfer van, ready for their spaceflight

The astronaut’s pre-flight medical examination collected data for comparison with their post-flight examination. Since the Apollo-8 crew has been the first to pass through and beyond the protection of the Van Allen radiation belts, this comparison of pre- and post-flight medical data will reveal any physical changes or health effects resulting from the first human flight beyond Earth orbit.

Basic cross section of the radiation belts around Earth (not drawn to scale). The outer belt is composed of electrons, the inner belt comprises both electrons and protons.

Major Anders’ expertise in dosimetry and radiation effects has undoubtedly been relevant to this aspect of the mission, as each astronaut wore a personal radiation dosimeter which could return data back to NASA’s flight surgeons. The spacecraft also carried three passive film dosimeters recording the cumulative radiation to which the crew were subjected. Initial indications are that the radiation dosage received by the astronauts was at an acceptable level and should not preclude future missions to the Moon.

Apollo’s “Sun Screen”
Beyond the Van Allen Belts, the Apollo-8 crew was travelling in the realms of the intense and deadly radiations of deep space, particularly the streams of charged particles spewed out into the Solar System from solar flares. The astronauts would have been seriously at risk from radiation poisoning if a major solar event occurred during their spaceflight.

To ensure astronaut safety during lunar missions, NASA has established the world-wide Solar Particle Alert Network (SPAN). Stations in Houston, Texas, the Canary Islands, and Carnarvon, Western Australia, provide a 24-hour watch on the Sun, to spot dangerous solar activity. SPAN stations are operated by the US Environmental Science Services Administration (ESSA), which also collects data from twelve satellites that monitor for deadly solar flares. This space-based early-warning system is comprised of four sun-orbiting Pioneer spacecraft (including Pioneers 6, 7 and 8 carrying cosmic ray detectors developed by Australian physicist Dr. Ken McCracken) and eight Earth-orbiting Vela nuclear test detection satellites.

The ESSA SPAN facility in Carnarvon, Western Australia, equipped with both optical and radio telescopes to observe the Sun

ESSA aims to give NASA at least 24 hours’ warning of major solar eruptions, providing enough time enough to delay a launch or alter an orbit to protect the astronauts. Fortunately for Apollo-8’s important flight, the Sun smiled kindly and there was no dangerous solar activity, but future Apollo missions may be grateful for the early warning provided by NASA’s “Sun screen”.

The Whole World was Watching
Television coverage of Apollo-8’s launch was the most extensive to date. The BBC, going “live” for the first time from Cape Kennedy, provided coverage to 54 countries, across Europe and beyond in 15 languages, in a broadcast whose complexity must have rivalled its role in the Our World satellite project. Seven television networks in Britain, the United States, Japan, Canada and Mexico, provided live coverage of the launch, with NASA’s ATS-3 satellite over the Atlantic providing transmissions to Europe and ATS-1 over the Pacific, serving Japan and the Philippines. Even the Communist nations of Eastern Europe were apparently able to watch the launch, although we in Australia could not.

All eyes were trained on the sky at the crowded press site at Kennedy Space Centre as Apollo-8 lifted off

To the Moon, Alice!
When Apollo-8 launched on 21 December, Gemini veterans Borman and Lovell found the ride “less demanding than Gemini from a ‘g’ standpoint, because it didn’t reach the high ‘gs’”, they had experienced on their earlier missions. However, the ride to orbit was still “powerful and noisy… and the stagings were really kind of violent.”

Apollo-8 entered Earth orbit with the third stage still attached, its engine needed for the Trans-Lunar Injection (TLI) burn to put the spacecraft on course to the Moon. For a little over two and a half hours every system of the Command Service Module (CSM) was thoroughly checked out in orbit, to ensure it was fully operational.

Staff at the Honeysuckle Creek tracking station in Australia mark the first time humans have ventured beyond Earth orbit. The fine print of their sign reads:“In space: Borman, Lovell, Anders. On the ground: Hicks, Cross, Holland.”

Then Mission Control gave Apollo-8 the crucial permission call “You are Go for TLI”. The S-IVB stage’s engine sent the first human mission to the Moon on its way out of Earth orbit, with the spacecraft reaching escape velocity (25,000 mph) in just five minutes! As it left the Earth, Apollo-8 was placed on a “free return” trajectory, that would ensure that lunar gravity would slingshot the spacecraft around the Moon and back to Earth in the event of a failure of the CCSM’s powerful onboard engine. An amazing voyage was underway!

I am going to pause my recap of Apollo-8 at this point, and will take it up again in January, when what I anticipate will be amazing photographic imagery from the flight to the Moon and back becomes available. Please join me then. In the meantime, let me wish everyone on the Journey a Happy New Year' looking forward to an exciting 1969 – knowing that the Moon is now within our grasp!


[December 22, 1968] What wonders await? (January 1969 Fantasy and Science Fiction)


by Gideon Marcus

Where'd you get those peepers?

Few things excite the imagination more than adventures in space.  In particular, we love to hear about doings in the cosmos that can't be done on Earth.  And one of the main things we can't do on Earth is see the sky.

Oh sure, when you look out at the starry night, you think you're witnessing infinity.  In fact, your eyes barely apprehend a tiny fraction of the electro-magnetic spectrum.  We are blind to radio waves, to ultra violet, to X-rays, to infrared.  Our sophisticated telescopes are similarly handicapped.  Even the mighty 200 inch telescope on Mount Palomar can't see in most of light's wavelengths, for they are blocked by the Earth's atmosphere.  In the X-ray, ultraviolet, infrared, and cosmic ray bands, the glass seeing-eye tubes are as sightless as we are.

Which is why the launch of the Orbiting Astronomy Observatory (OAO) on December 7, 1968, was such an exciting event.  Dubbed "Stargazer", it is the very first space telescope.

Well, technically, it's the second.  The first one went up on April 8, 1966, but its power supply short circuited shortly after launch, and it never returned any data.  This is a shame, as there were some nifty experiments on board, including a gamma ray experiment similar to the one carried on Explorer 11, another gamma ray counter supplied by NASA's Goddard center, and a Lockheed-made X-ray counter.  But, the main experiment, a set of seven telescopes designed to look in the ultraviolet spectrum, provided by the University of Wisconsin, was duplicated for OAO-2.

This telescope cluster will be used for long-term observation of individual stars, something that only recently became possible with the perfection of star tracking technology.  In addition, the Smithsonian has provided an additional package of four telescopes for the investigation of large masses of stars, up to 700 per day, to get an overall UV map of the sky.

Think of how revolutionary it was when the first radio observatories began mapping the heavens.  We learned about the existence of quasars and weird storms on Jupiter and also a lot more about the stars we had been observing visually for centuries.  Stargazer is about to give us a whole new view of the universe.

That's exciting—truly science fiction made fact!

Jeepers Creepers

While we wait to see what excitement OAO 2 returns from the heavens, let's turn to the latest F&SF to see what terrestrial treasures await us this month.


by Gahan Wilson

A Meeting of Minds, by Anne McCaffrey

We return to the world of "The Lady in the Tower", one of my favorite McCaffrey stories, for the lead story this issue.

Damia, the daughter of that first story's protagonist, is 20 and humanity's strongest telepath.  As tempestuous as she is beautiful and brilliant, she has refused the attentions of men, holding out for something…better.

That's when she meets Sodan, an alien inexorably approaching the Terran sphere from far, intragalactic space. Thus ensues a completely mental courtship, and Damia becomes infatuated with the foreign entity.  But Afra, an experienced mentalist, who has been secretly in love with Damia for ages, is suspicious.  What if the being is simply manipulating Damia so that Earth's greatest defense will be neutralized?

The stage is set for a cosmic battle, and a realignment of Damia's priorities.

I really wanted to like this story.  I was anticipating an "Is There in Truth no Beauty?" romance where two beings find love despite fundamental physical differences.  Instead, the viewpoint shifts from Damia's to Afra's early on, and all we get is his certainty that Sodan is up to no good, which is vindicated.  Then, after the battle, Damia realizes the worthy that's been under her nose this entire time and, of course, gives him her love.

Of late, there has been a shallowness to the emotion displayed in McCaffrey's writing that just puts me off.  Also, a sort of petty volatility.  All of her characters snipe at each other constantly.  But the real nadir of the story comes at the end:

Shyly, her fingers plucking nervously at her blanket, Damia was unable to look away from an Afra who had altered disturbingly. Damia tried to contemplate the startling change. Unable to resort to a mental touch, she saw Afra for the first time with only physical sight. And he was suddenly a very different man. A man! That was it. He was so excessively masculine.

How could she have blundered around so, looking for a mind that was superior to hers, completely overlooking the fact that a woman's primary function in life begins with physical submission?

I feel like if Piers Anthony had written that, we'd have given him the Queen Bee.  Two stars.

A Brook in Vermont, by L. Sprague de Camp

De Camp muses poetically on the Carboniferous, and what future beings, millions of years hence, will burn the coal being formed today.

I think the author missed a real opportunity to imply that we would be the anthracite mined in the far future, suggesting that we run the very real risk of leaving nothing to the ages but our combustibility.

Three stars as is.


by Gahan Wilson

Black Snowstorm, by D. F. Jones

This is nothing more, nothing less, than an extremely well-told story of a plague of locusts. There's no satire, no metaphor, no literary experiments. Both shoes drop simultaneously, though slowly, gradually, rivetingly.

Five stars.

Unidentified Fallen Object, by Sydney Van Scyoc

One day, a small UFO falls with the snow, and a precocious teen boy picks it up to examine.  As he handles the small craft, flakes of it come off, perhaps sliding into his very pores.  Soon, he begins to radiate a frightful miasma, inciting hatred in all approach him.

Including his teacher, who has also touched the fell ship…

"Object" is a chilling, effectively written little horror.  It's not particularly to my taste, and it's a bit one-note, so it's just a three-star story for me.  Others may find more to like (for those who enjoy a sense of dread).

How I Take Their Measure , by K. M. O'Donnell

In the future, everybody's on relief…or administering it.  This is a little slice-of-life story about a sadistic relief worker, who gets off on the tenterhooks he hangs his relief applicants on.  No Brock, George C. Scott's kindhearted social worker from East-Side, West-Side; this guy is a real bastard.

This is my favorite story about terminal unemployment that I've read since one in IF a decade ago (the one about the guy who gets a job tightening all the screws on the buildings in the cities—which have been systematically unscrewed by some other schnook the night before…).

Four stars.

Santa Claus vs. S. P. I. D. E. R., by Harlan Ellison

Here's St. Nick like you've never seen him before.  In the style of Ian Fleming's James Bond series (though not Edward S. Aaron's Sam Durrell, Harlan offers up Agent Kris Kringle, a hard-stomached, oversexed, lean killer whose red suit is filled with every lethal device known to Elfkind.  His nemesis is S.P.I.D.E.R., an international organization devoted to evil.  This time, their nefarious scheme involves mind control: they have brainwashed LBJ, HHH, Nixon, Daley, Reagan, and Wallace into doing the most horrid deeds, and only the jolly agent from the North Pole can defeat them.

Okay, it's a bunch of silly fluff, probably written between bonafide adventure yarns Ellison probably writes under another name like "Rod Richards" or "Length Peters".  I did appreciate how every cruddy thing in the world is ultimately attributable to S.P.I.D.E.R.—humanity is basically good and cuddly.  Only the nefarious "them" subvert our goodness.

I've often noted that comic books and spy novels offer an easy way out for readers.  It's tough to deal with everyday problems, with economic malaise, with systemic issues that cause crime and misery.  How much easier to topple the goon of the week to get our cathartic kicks.  Ellison lets us know he understands the flavor of his own cheek with the subtlety within the broadness.

That said, it's a one-note joke, and once you've gotten the punchline, I don't think the story bears much rereading, especially since it is so very much of a very specific moment in our history (as Judith Merril notes in her book column, August 1968 already feels like an age ago).

Three stars.

The Dance of the Satellites, by Isaac Asimov

The Good Doctor continues his examination (see last month's piece) of what the Galilean moons of Jupiter might look like from the innermost moon, Amalthea.  This time, he focuses on eclipses, the appearance of the moons in Jupiter-shine, and more.

Interesting cosmic data, of use to writers and laymen alike.  Four stars.

The Legend and the Chemistry, by Arthur Sellings

The 3607th (or was it 3608th) interstellar exploration mission from Earth seems like it will be yet another humdrum operation.  In all the expeditions, though many aliens have been found (most humanoid), all have been planetbound, none of them having reached our space traveling level of technology.

This latest planet is no exception, its humaniform denizens possessing a primitive tribal culture.  But they have no less pride than any other race.  What happens when the very existence of far superior beings constitutes an unpardonable affront?  And who is responsible for the catastrophe that ensues?

A decent, moralistic yarn from the late, great Arthur Sellers.  This may well be his last work published (unless he has a posthumous career like Richard McKenna) as he died recently.  While Legend is not the best thing he's ever written, it has its own kind of power.

Three stars.

Wild ride

There are a lot of vicissitudes in this first F&SF of the year.  The strong points cancel the weak points, and the magazine ends in positive territory, but because the lack of consistency makes things a bit sloggish.

Well, that's why I do this, right?  To be your guide to ensure you only get the highlights!






[December 12, 1968] Playing your fish right (The Alvin Submersible, New Job, Book Review)


by Victoria Lucas

The Aquarium


Do you think the fish can hear us?

Today’s title is a result of having two reports and a book review to present to you, dear readers. There is no common theme except for me as narrator. I am inviting you to assist in performing a silent(?) version of a musical piece, “Tropical Fish Opera,” by Ramon Sender. I first experienced it at the Tape Music Center in San Francisco a few years ago. Picture three musicians sitting with their instruments around an aquarium, with another person standing at a microphone. The score is simple, and they have easily memorized it. The person at the microphone has a list of apparently random words that he or she recites as the musicians play. Each musician has been assigned a particular fish that must be followed as a guide for how to improvise in collaboration with the other musicians. The fish in this aquarium are swimming below, and I will act as a narrator who is trying to string words together in an understandable way, so that your silent(?) experience can have some meaning. Think of your voice as your instrument, although if you improvise drums or other means of making sound you can of course add to my silent voice.


The DSV Alvin

The Sinking of the Alvin submersible (Fish No. 1)

If you have never heard of the Alvin, you haven’t been keeping an eye on your fish. The Alvin is the most recent and innovative submersible paid for by the US Navy, assigned to the Woods Hole Oceanographic Institution. Commissioned in 1964, it was named after the mover and shaker who pushed for its creation, Allyn Vine. The Alvin is essentially a large steel sphere (holds 3 people) with plexiglass windows, using syntactic foam for flotation, with weights, hung with cameras, sample containers, and a mechanical arm, and certified for dives of 6,000 feet.

On October 16 the Alvin made an unscheduled dive to almost 5,000 feet, from which it has not been recovered. Yet.  It seems the hatch was still open when the chains holding its cradle snapped, and the submersible slid down its usual course into the ocean, with the pilot and two observers leaving their workday lunch behind in the sphere as they scrambled to safety. Water poured into the hatch, and the Alvin quickly sank to almost 5,000 feet as the crew of its tender, Lulu, threw everything that would float overboard to try to mark the spot. Although the Navy bought the argument that Woods Hole (WHOI) made that no recovery had yet been made from that depth, and backed the experiment of finding and raising the submersible, storms have so far prevented the consummation of the plan. Stay tuned to this story. I think they will succeed.

New Digs, New Job (Fish No. 2)


Ah, a California winter!

I’m also the performer keeping my eye on this fish. My husband Mel and I moved from Fortuna, California, where we had rented a house, to the non-metropolis of Rio Dell nearby, pooling our money to buy a piece of land. We have fruit trees, a walnut tree, and a small garden, and interesting phenomena like different weather visible from windows on every side of the house except one. I’m happy there are no windows on the 4th side, because I only know 3 general kinds of weather: rain (including fog, drizzle, etc.), snow (including sleet), and sun. I don’t want to know about that 4th side. We also have a neighbor, a teenager, who received our permission to hunt deer in our backyard with a bow and arrow. We can sometimes see him up in the walnut tree, waiting patiently. He lets us know when he will be hunting. Just in case he mistakes one of us for a deer. In the meantime, both of us are temporary workers for the County of Humboldt, Mel at the airport, and me in different office gigs. Sometimes we wave to each other as he drives home in the morning in the Jeep from his shift at the airport, at the same time I’m leaving in our car to start my day wherever the County sends me. Wish us luck. We’ll need it as we head into winter weather and knee-deep mud.

Book Review: The Unholy City (and) The Magician Out of Manchuria (Fish no. 3)


Great book!

This is your fabulous fish. I think you will find it delish. I do. Charles Finney (author of The Circus of Dr. Lao) saw the first publication of The Unholy City, in 1937 but this paperback edition (Pyramid Books) published last January combines that irreverent and self-referential story with the delightful Magician Out of Manchuria, which is my favorite of the writings of this Arizona Daily Star editor. Finney is not as prolific as some authors, although he has written many short stories and a couple of articles published in magazines aside from the occasional book. However, when away from his desk at the Tucson newspaper, he has the opportunity to take as few words as possible and place them carefully to weave weird tales, and he seizes that opportunity with both hands. These two yarns are very different from one another, and The Unholy City is not to everyone’s taste, dealing cynically not just with excesses of the consumer society, but (as the “plot demands”) with poor impulse control involving large “zellums of szelack” that seem to have an intoxicating influence. Nevertheless, I find the “Magician” with his manipulative ways, along with the woman he discovers and enhances, and his poor young servant who keeps (literally) losing his head, to be utterly irresistible. Only one of the two has a happy ending. (Guess which one.) I award this fish 5 stars out of 5.

Applause?

I once heard one musician say to another during a lecture and demonstration of the original Opera, “You’re not playing your fish right.” So if you and I were playing our fish right (right for you, that is), perhaps you enjoyed our little experiment. I hope you did.

There will be further adventures of Mel and Vicki. Where will they keep their Jeep while they wade through the mud to their home in the mountains? Will Vicki be able to work in an office where the regular secretary (on vacation) has locked up all her work? Will Mel be able to get along with his temporary boss as the airport enters a study of how it copes with the fog that envelops it every morning?

Stay tuned for the next episode!






</small

[November 30, 1968] Up, Up, and Around! (December 1968 Analog)


by Gideon Marcus

Once more with feeling

Less than two months ago, the Soviets sent Zond 5 on a trip around the Moon in a precursor to a manned flight.  And on November 18, Zond 6 repeated the feat with, apparently, even more success.  There was some suggestion that Zond 5's reentry and descent was fraught with issues.  No such trouble (reported) on Zond 6.


A photo of the Earth from the vicinity of the Moon returned by Zond 6.

The USSR now says (or say, if you're British) that they might well have a manned flight to lunar orbit by early December.  This is even as NASA prepares to send Apollo 8 on a circumlunar course on December 21.  Yes, it sure seems like the breakneck Space Race is on again.  May it claim no more lives in the process.

Once more with mild enthusiasm


by Kelly Freas

The Custodians, by James H. Schmitz

In the far future, Earth's one-world government has collapsed, leaving a plethora of princely states to war with indifferent ferocity.  Further out, the settled asteroids, turned into giant space ships, placidly orbit the Sun, maintaining civilized culture as well as they can.  And beyond lie the alien-settled "out planets".

After an unprofitable eight-year cruise, Jake Hiskey, commander of the Prideful Sue, has a jackpot plan.  He is smuggling in a ship of Rilfs—humanoids with a deadly, natural weapon that kills all animals within a twenty-mile radiius—to serve as mercenaries on Earth.  But to get them to Terra, he must first stage on an asteroid.  The obvious choice is the one that the sister of Harold, the Sue's navigator, calls home.

The catch: the Rilf who goes by the name McNulty insists that no one know that the Rilfs are on the asteroid.  That means all potential witnesses must be eliminated.  This includes all of the asteroid's residents and, by extension, Harold, since he is afflicted with a conscience.

Well, Harold is no fool, and he susses out the plan just at its moment of murderous implementation.  Can one unarmed man thwart his captain's evil scheme before the asteroid's population is slaughtered?  And are the people on the giant rock as effete and defenseless as they seem?


by Kelly Freas

This is a riproaring piece, filled with well-executed action and interesting concepts.  If anything, it's a bit too short, reading like two sections of a more fleshed-out novel.  The concepts revealed at the end, when we learn the true purpose of the asteroid, are explained too quickly, and in retrospect.

I have to wonder if Schmitz needed to sell this before it was quite ready; I hope an expanded version makes its way to, say, an Ace Double.

Four stars.

A Learning Experience, by Theodore Litwell


by Leo Summers

A fellow signs up for a correspondence course and gets a Type III tutor robot trained at the Treblinka Institute for the sadistically inclined.  While the mechanical's browbeatings do get the student to buckle down, he ultimately decides he will get more satisfaction from tearing the robot bolt from bolt.

Just as he is expected to…

Do you have a child who has trouble focusing?  This may be just what the tyke needs.  Just be ready to sweep the floor afterwards.

Three stars.

The Form Master, by Jack Wodhams


by Kelly Freas

The more complicated a bureaucracy, the better chance someone will find a way to take advantage of it.  But he who lives by the forged form may ultimately die by the forged form.

At first, I thought this piece was going to be a celebration of the "rugged individualist" who comes up with a clever justification for stealing from his neighbors.  It's not, but it's still kind of tedious.

Two stars.

The Reluctant Ambassadors, by Stanley Schmidt


by Kelly Freas

Humanity's first colony is on a marginal planet of Alpha Centauri.  It has been failing for decades.  Only one of the two sublight colony ships made it, and there just aren't enough people to make a go of things, especially since the planet's weird orbit takes it between the two bright stars of the trinary, resulting in massive swings of temperatures over the decades.

When FTL drive is invented, a follow-up ship is dispatched from Earth to check on the settlement.  On the way, its crew note that hyperspace, which is supposed to be empty, appears to have inhabitants…or at least something is emitting a mysterious glow off the port bow.  Once at Centauri, apart from the much bedraggled but doughty Terrans, the relief crew also find evidence of alien visitation, which apparently has been going on since the start of the colony.  The colonists had been reluctant to investigate the aliens too deeply as the extraterrestrials had done their best not to be seen. Thus, the first faster-than-light reconnaissance turns into a kind of ambassadorial mission as the captain of the relief vessel heads off in search of the aliens not only to learn their secrets (and the reason for their secrecy) but also to find clues as to the disappearance of the other colony ship.

This is solid, SFnal entertainment, if a little dry and drawn out, and with aliens who are much too humanoid for anything but Star Trek.  I like the setting, though.

Three stars.

Situation of Some Gravity, by Joseph F. Goodavage

Analog had been doing so well with its nonfiction articles of late that the appearance of this one is highly disappointing.  It's a screed about how the magnetohydrodynamics of the planets affects physical phenomena and people as much as, if not more than, gravity, and that's why astrology works.

I think that's what Goodavage is trying to say.  It's certainly what editor Campbell says (in a two-page preface) what Goodavage is trying to say.  I found the thing incomprehensible and unreadable, not to mention offensive.

One star.

Pipeline, by Joe Poyer


by Leo Summers

The year is 1985, and the Earth is entering the next Ice Age.  Its most immediate impact is a subtle shift in weather patterns, plunging America's industrial northeast into drought.  Luckily, engineering has a solution: a great Canadian aqueduct to ship water from the frozen North to the thirsty Eastern Seaboard.

But there are folks not too happy about the project, and just before the pipeline's inaugural activation, saboteurs break the conduit, threatening forty miles of tubing.  It is up to a small band of engineers to fix the breach and stop the terrorists before it's too late.

Poyer has written a competent "edge-of-tomorrow" thriller.  We never find out just who was behind the sabotage.  Strongly implicated is some combination of Japanese businessmen and right-wing Birch-alikes (my suspicions went with some left-wing group like a militant Sierra Club).  Anyway, I think this is the first time I've seen Japan as the bogeyman in an SF story.  It's a novel twist, and given how much is Made in Japan these days, perhaps a valid prognostication.

Three stars.

Once again with the computers

Here we are at the end of the year for magazines, and it's been a rather middle-of-the-road month.  Analog finishes at a mediocre 2.7 star rating, beating out Orbit 4 (2.7), Fantastic (2.6), and IF (2.6)

Scoring above Analog are Galaxy (3.5),
New Worlds (3.5), and Fantasy and Science Fiction (3.2).

Women wrote about 9% of the new fiction published this month, and you could fit all the 4/5 star stories in two magazines out of the seven publications (including one anthology).  Really, that sums up the state of magazine SF in general—some excellent stuff, a lot of mediocrity, and attention now focused on television and novels.

That said, it's still clear that magazines contribute a lot to the genre, particularly in the area of short fiction.  Certainly Michael Moorcock thinks so, as he is composing a book a week just to keep New Worlds afloat with his own money!  That he manages to turn out pretty good stuff in a single tea-fueled draft is a feat that makes him the British Silverbob…with fewer descriptions of underaged bosoms.

So, bid a fond adieu to 1968, at least in cover dates, and let's see what 1969 has in store!


William Shatner waves to the crowd at the Macy's Thanksgiving Parade in New York…but he might also be saying goodbye to 1968






[November 18, 1968] Pioneers and Protons (a space round-up)


by Gideon Marcus

The Interplanetary Pioneers

When you think "outer space", you don't usually think of weather.  In fact, weather in space is a bit like weather on Earth: there's wind, turbulence, a steady rain, and occasional storms.  Except that the wind and rain are the sun's ceaseless spray of charged particles along with their attendant magnetic fields.  The storms are the result of solar flares, those sudden unsettled periods when fiery prominences reach out from the sun's surface.

These phenomena can even be sensed by humans—as aurorae where the solar wind interacts with the Earth's magnetic field, and as the crackle of static on a shortwave radio.  For satellites and space travelers, the solar radiation, particularly during flares, can damage electronics and internal organs.  There are thus a lot of reasons it would be practical to have a space weather report, just as we have a daily weather report down here on Earth.


Northern Lights, 1921, by Sydney Laurence

This is why the Pioneer series of solar weather satellites, the first launched December 16, 1965 and the latest launched on November 8th of this year, was created: to serve as long-term weather sentinels in space, the interplanetary equivalent of our TIROS weather satellites.

Prior to the launch of Pioneer 6 (no relation to Pioneer 5 or its predecessors save for the name), the mapping of the solar wind had been a strictly local affair.  The Interplanetary Monitoring Platform satellites, Explorers 18, 21, 28, 33, 34, and 35, have all been launched in high Earth orbits to survey the solar wind between the Earth and the moon.  This is in service of the Apollo program.

The aforementioned Pioneer 5 and interplanetary probes like Mariner 2 have made preliminary forays into true interplanetary space beyond the Earth/moon region, but those missions only lasted a few months.  The interplanetary Pioneers will be on station for years.

Launched on Delta rockets (the direct descendants of the Thor-Able rockets that launched the first Pioneers toward the moon), Pioneers 6-9 (and eventually #10, next year), were hurled into orbits that parallel our own, but further out in the case of Pioneers 7, 8, and 9; a little closer to the sun in the case of Pioneer 6.  The outer ones orbit a little more slowly while P6 zooms a little faster.  As a result, they all spread out, making a necklace of stations around the sun.

Pioneer 6 was launched in 1965 during the lull in the sun's 11 year cycle called "the solar minimum".  The hope was that we would get continuous data as the sun increased in activity, flaring more and more often.  We have not been disappointed.  On July 7, 1966, a big shock front from a solar flare enveloped Explorer 33.  45 hours later, Pioneer 6 was hit.  Interestingly, because of the time delay, even though both probes were similar distances from the sun (but far apart in orbit, of course), it is believed those might have been the result of two different flares, or perhaps two disturbances from the same one.

When the Pioneers were launched, scientists had a basic idea of that the solar wind looked like the spiral spray of a sprinkler head, this caused by the 28-day rotation of the sun.  But the instruments onboard the sophisticated Pioneers afforded much more detailed analysis of these streams and fields.  The Pioneers have found that the local magnetic fields will suddenly flip every so often.  Their microstructure is like woven filaments, far more complicated than we had previously conceived.


High-level view of the "sprinkler" spray of the solar wind

Pioneers 7 and 8 sailed through the Earth's magnetosheath, that magnetic shadow formed as the sun's wind interacts and deflects around the Earth.  Comparing their results to the closer-in Explorer 33, they found that this shadow tail gets more diffuse, more like the background interplanetary wind at greater distances, which is what one would expect.


The Earth's magnetic field (you can see the figure 8 Van Allen Belts) and the long, trailing, magnetosheath.

The Pioneer satellites are well-placed for more than just solar science.  Pioneers 8 and 9 are equipped with cosmic-ray telescopes designed to measure the chemical composition and sprectra of the galactic wind—the higher-energy rain of particles from beyond our solar system.  But the coolest use of the Pioneers so far (to me) is when Pioneer 7 was used to measure the lunar ionosphere.  On January 20, 1967, the moon "occulted" (blocked) the space probe, as seen from Earth.  Radio waves were beamed from a 150-foot dish run by Stanford past the edge of the moon.  They found that the scattering that resulted can't be explained just by the physical rocks of the lunar surface.  There must be a tenuous "atmosphere" above the moon, at least on the sunlit side, created at high altitudes by interactions between the solar wind and the surface of the moon.

There's actually a lot more, esoteric stuff that's way above my head.  And there will be plenty more as the Pioneers will probably keep going for many more years.  Though they haven't gotten much press, I think these are some of the most exciting missions to date.  Stay tuned!

My, what big…rockets you have!

Three years ago, I made a brief announcement about the launch of a new Soviet probe, one so enormous that its size alone had ramifications for the future of the Communist space program.  Proton, launched July 16, 1965, massed a whopping twelve tons, making it the biggest single object put in orbit until the November 1967 launch of Apollo 4.  That means that the USSR has a Saturn-class rocket in its stable, which is why the concerns about an imminent moon mission have grounding.

Since Proton 1, three more Protons have been sent into orbit, the latest just two days ago on November 16th.  Proton 4 weighs seventeen tons, which will beat all records—at least until Apollo 8 goes up in December. 

Why are they so heavy?  Because they carry heavy instruments.  Protons 1 and 2 included a gamma-ray telescope, a scintillator telescope, and proportional counters.  These counters were able to determine the total energy of each super-high energy cosmic particle individually, a capability no prior satellite had possessed, measuring cosmic rays with energy levels up to 100 million electron volts.

In addition to the above equipment, the fourteen ton Proton 3 was also equipped with a two-ton gas-Cerenkov-scintillator telescope.  Its goal was to attempt to detect the "quark", a brand new theoretical sub-particle that, according to theory, makes up all atomic particles.  Presumably, Proton 4 mounts a similar device with refinements.

Unlike most Soviet satellites, whose missions are shrouded in secrecy, data from the experiements onboard the first two Protons have produced at least five scientific papers on cosmic rays.  I haven't seen anything on Proton 3, but astronauts on Gemini 11 managed to snap a picture of it in September 1966!

Will the advanced experiments on Proton 4 produce a scientific bonanza to rival that of the Pioneers?  Only time will tell.  For now, the papers are more obsessed with the rocket than the satellite.

Apparently, it's all about size.  Who knew?






[November 4, 1968] A Mysterious Mission (Soyuz-2 and 3)



by Kaye Dee

Just over a week ago I wrote about the Apollo-7 test flight – America’s successful return to space after the tragedy of the Apollo-1 fire. Just days after Apollo-7’s safe splashdown the Soviet Union also launched its own return-to-flight mission, Soyuz-3. As the Traveller noted in his recent commentary, like Apollo-7, Soyuz-3 represents the recommencement of the Russian manned spaceflight programme following its equally tragic loss of Soyuz-1 last year.

This is reported to be the official Soyuz-3 mission patch. It was apparently intended to be worn by Cosmonaut Beregovoi or at least flown during the mission, however it ia not clear if it was actually used

As readers know, the Soviet space programme is secretive about its activities. Soyuz-3, which was launched on 26 October, has been particularly mysterious for a crewed spaceflight. The mission was preceded by the launch of the un-manned Soyuz-2, although that launch was not announced until after Soyuz-3 was in orbit. What can we make of the little we know so far about this flight, which had a duration of just a little under four days?

New Cosmonaut, New Spacecraft
We know from information released or gleaned at the time of Soyuz-1 that this new Soviet spacecraft is large, capable of carrying at least three cosmonauts – although on this mission, just as with Soyuz-1, there appears to have been only one man aboard, Colonel Georgi Beregovoi.

Although not previously known to be a member of the Soviet cosmonaut team, Col. Beregovoi is a distinguished World War Two veteran, who was awarded the decoration of Hero of the Soviet Union in 1944. After the war he became a test pilot and is said to have joined the cosmonaut team in 1964. At 47, Beregovoi now becomes the oldest person to make a spaceflight, taking the record away from 45-year-old Apollo-7 commander Capt. Wally Schirra only weeks after he achieved it.

The few images of the Soyuz spacecraft available indicate that, unlike the Apollo Command Service Module, it has three sections: a ‘service module’ containing life-support and propulsion systems; and two other modules – one roughly bell-shaped and the other, attached to it, spherical – which both seem to be crew accommodation, given that press releases from the TASS newsagency have described the spacecraft as “two-roomed”.

The bell-shaped section seems to be the part of the spacecraft in which the crew return to Earth, protected by a heatshield. Interestingly, the service module supports a solar panel on either side, which must be folded within the launch shroud and extended once in orbit. The use of solar panels suggests that the USSR does not have the same fuel cell technology as NASA. However, it is also possible that the Soyuz is intended for missions in Earth orbit with an appreciably longer duration than a short trip to the Moon and back, as solar panels would be more efficient than fuel cells for that purpose.

NASA experts assume that, like Apollo-7, Soyuz-3 has been modified and/or re-designed over the past 18 months to address whatever issues have been identified as the cause of the loss of Soyuz-1. It is generally believed that Kosmos-238, which made a four-day flight in August, was an uncrewed Soyuz test flight in advance of the first mission with a crew on board.

How Many on Board?
Speculation and rumours abound as to how many cosmonauts were actually on board Soyuz-3. Official Soviet sources give the name of only one cosmonaut, the aforementioned Col. Beregovoi. However, a report in the armed forces newspaper, Red Star, has caused speculation that more than one cosmonaut may have been intended to be involved in the mission. In referring to the “crew” of Soyuz-3 the article used the plural when it spoke of cosmonauts who were planning to fly with Beregovoi.

Colonel Beregovoi during his training at Star City

Reporting about a meeting at the cosmonaut training centre “Star City” near Moscow, to mark the end of Soyuz-3’s training period, the Red Star article described a speech to the meeting by Colonel Beregovoi then said, “Others followed him. They spoke about the great work they had done and thanked their comrades. These in their turn wished them a happy flight, a good launching and a soft landing”. While this report could be taken to imply that more than one other person was expected to accompany Beregovoi on his flight, it may be that the “others” referred to were the mission’s back-up cosmonauts, since Soviet spaceflights apparently have two back-up crews.

Cosmonaut Beregovoi on the launchpad, apparently alone

An additional vague hint that there might be more than one cosmonaut aboard came Soyuz-3 came from a TASS news agency release referring to Beregovoi as the “commander” of the ship, a term that would seem unnecessary if he was the sole occupant of the spacecraft. Rumours with a more conspiracy-minded flavour have also suggested that one of Col. Beregovoi’s live broadcasts from space was filmed in such a manner that, while an empty seat could be seen on the cosmonaut’s left side, whatever was to his right was not visible, potentially concealing the presence of another crewmember. However, the angle may simply have been the result of a fixed camera, located to give whatever the Soviet mission controllers considered to be the best view of the spacecraft interior.

More than a Rendezvous?
The pre-occupation of Western observers with the possibility that there were other, unidentified cosmonauts on board Soyuz-3 stems from the comparatively basic activities reported as being carried out during the mission. True, the flight is assumed to have been a shakedown test along the same lines as Apollo-7, but the American craft nevertheless flew with a complete crew of three, including a designated Lunar Module pilot, even though a LM was not available for the mission. Yet the large Soyuz has officially flown with only a single crewmember. Does this mean that the Russians were still uncertain about the flightworthiness of the spacecraft and did not want to risk more than one life on the test flight? Or was a more ambitious mission planned that did not eventuate?

Apollo-7 carried out a range of complex manoeuvres and experiments during its test flight, while the only significant activities reported about Soyuz-3 were that it made two rendezvous with the automated Soyuz-2. Yet, an ambitious programme of spacecraft dockings and crew transfers had supposedly been planned for Soyuz-1 had that mission not struck trouble, and since October last year the USSR has apparently perfected the techniques of automated rendezvous and docking through the flights of Kosmos-186-188 and Kosmos-212-213.

Was an actual docking between Soyuz-2 and 3 planned, in addition to the rendezvous manoeuvres, with one or two additional crew members from Soyuz-3 transferring to the automated craft to return from orbit? Did the Soviets keep the presence of additional cosmonauts on Soyuz-3 secret to save face in the event that such a docking and crew transfer failed? Even if Beregovoi was alone in Soyuz-3, was it planned for him to dock with Soyuz-2 to demonstrate that a pilot could accomplish a manual docking, similar to the capabilities demonstrated by the crew of Apollo-7? TASS press releases about the mission were ambiguously worded and extremely light on detail, so – as usual with the Soviet space programme – it may be a very long time before we have answers to these questions.

The Mission as Reported
Although not announced until after the launch of Soyuz-3 (though my friends at the WRE report that it was detected by Western space tracking networks), the automated rendezvous target Soyuz-2 was launched on Friday 25 October, the day before the manned mission. Precision launch timing then placed Soyuz-3 into an orbit within seven and a half miles of its rendezvous target.

According to TASS, during its first orbit, Soyuz-3 “approached’’ to within 656 ft of Soyuz-2 using “an automatic system”, following which Cosmonaut Beregovoi manually effected a closer rendezvous. A second rendezvous was carried out on 27 October. This has puzzled Western space experts, who have said that they could see no immediate reason for such comparatively simple manoeuvres, which do not appear to represent any appreciable advance in Soviet space capabilities.

Soyuz-2 was remotely commanded to return to Earth after just three days. In what was presumably another demonstration of the Soyuz spacecraft’s redesigned landing system, TASS reported that the spacecraft’s re-entry was slowed by parachutes and cushioned “with the use of a soft-landing system at the last stage”.

It is unclear what activities Col. Beregovoi undertook during his final two days in orbit. Official TASS bulletins said only that the cosmonaut was “going ahead with his flight programme”, which apparently included conducting “scientific, technical, medical, and biological experiments and research”. The “research” may possibly have included observations of the Earth for meteorological and intelligence gathering purposes. The cosmonaut also made live television broadcasts from Soyuz-3, during one of which he provided a brief “tour” of the spacecraft interior. In a short, three-minute broadcast, Beregovoi was also shown thumbing through his log-book and adjusting his radio communications cap.

A still from the three-minute brodcast from Soyuz-3 showing Colonel Beregovoi

The flight was repeatedly said to be “proceeding normally”, with the Colonel “feeling fine” and the spaceship “functioning normally”. We did learn that Soyuz-3 moved to a new orbit after Soyuz-2’s de-orbit, and that the cosmonaut’s daily routine included 25 minutes of morning exercise before breakfast, but whatever else the mission may have actually accomplished remains a mystery.

Back to Earth
After almost exactly four days in space, Soyuz-3 returned to Earth, landing safely on the snowy steppes of Kazakhstan near the city of Karaganda. TASS reported that “After his landing, Georgi Beregovoi feels well. Friends and correspondents met him in the area of the landing”. The cosmonaut has since been reported as saying that his landing was so easy he hardly felt the impact at all.

Following his safe return, Col. Beregovoi was flown to Moscow, where he received a red-carpet welcome, an instant promotion to Major-General and the award of the Order of Lenin. At the ceremony, the Soviet party leader, Mr Brezhnev, devoted most of his 15-minute speech to praise of the Soviet manned space programme, describing Soyuz-3 as a “complete success”. He said that the mission had brought nearer the day when “Man will not be the guest but the host of space”. He also offered a word of praise to the Apollo-7 astronauts, referring to them as “courageous”. 

A Step on the Way to the Moon?
So, what was the purpose of the Soyuz-3 mission? Dr. Welsh’s recently-mentioned comment that Soyuz and Zond spacecraft are different vehicles and that the Russians are not yet ready to attempt a lunar mission, seems to be borne out by statements from Soviet academician and aerospace scientist, Prof. Leonid Sedov, during a visit to the University of Tennessee Space Institute on 31 October-1 November. Prof. Sedov has said that the USSR would reach Moon from a space station in Earth orbit but would not conduct manned lunar space operations within the next six months. He indicated that Zond-type satellites would circumnavigate other planets and return and told the university audience that Soyuz-3 was part of a “programme to develop operations around the Earth”.

Prof. Sedov on an earlier visit to the United States in 1961 at the time of the USSR's first manned spaceflight

Mastering the techniques of rendezvous and docking would certainly be necessary to establish the orbiting space station from which a Soviet Moon mission would be launched, but Sedov’s comments leave unanswered the question of why a docking between Soyuz-2 and 3 was not attempted during the mission – unless an attempted docking did fail.

Awards All Round
Despite their testiness during the flight, the overall success of the Apollo-7 mission has been recognised by the presentation of NASA’s second highest award, the Exceptional Service Medal, to the crew at a ceremony in Texas on 2 November, presided over by President Johnson. During the ceremony, the President said the United States was “ready to take that first great step out into the Solar System and on to the surface of the nearest of the many mysterious worlds that surround us in space.” He noted that Apollo-7 had logged more than 780 man-hours in space, which is more than has been logged “in all Soviet manned flights to date”.

Left: Former NASA Administrator James Webb speaking at the Apollo-7 awards event, at which he also received NASA's highest award. Right: After the formal ceremony, President Johnson (second from left) chats with Apollo 7 astronauts Schirra, Eisele and Cunningham.

At the same ceremony, President Johnson presented the NASA Distinguished Service Medal, the space agency’s highest award, to recently-retired NASA Administrator James E. Webb, for his outstanding leadership of NASA from 1961-1968. 

NASA has also recently indicated that it will make a decision on the plans for the Apollo-8 mission on 11 November. The space agency has listed the alternatives for the December mission as: an Earth orbital mission deeper into space; a circumlunar fly-by; or a lunar orbit mission. These are all exciting prospects, but I'm hoping that NASA will choose the boldest option and go for a lunar orbit mission. To have human eyes see the Earth from the Moon for the very first time would be a Christmas present indeed!


[November 2, 1968] Role Models (December 1968 IF)


by David Levinson

The passing of a great

As I sat down to write this article, I heard the news of the death of Lise Meitner. If that name isn’t familiar to you, it should be. Einstein once called her “the German Marie Curie,” which might be understating things. She is arguably the most important woman physicist of the 20th century and possibly one of the most important theoretical physicists, period.

Born in Vienna in 1878, she became only the second woman to earn a doctorate in physics from the University of Vienna in 1905. She later moved to Germany and worked at the University of Berlin. There, she and Otto Hahn discovered the most stable isotope of the element protactinium, which she dubbed protoactinium before dropping the second “o.” In 1939, she and Hahn, along with Otto Robert Frisch and Fritz Strassmann, discovered and explained nuclear fission. There are also at least two nuclear phenomena which bear her name.

Otto Hahn and Lise Meitner circa 1912.

Meitner was able to escape Nazi Germany in 1938 with the help of Niels Bohr. She settled in Sweden, where she spent the rest of her professional life. Her role in the discovery of nuclear fission garnered her a lot of celebrity after the end of the War; she was even interviewed by Eleanor Roosevelt on her radio show. She was a popular speaker and instructor and traveled extensively to the United States, the United Kingdom, and Germany.

She received numerous accolades throughout her career, and the institute that oversees Germany’s first research nuclear reactor bears her and Hahn’s names. But the Nobel eluded her. Otto Hahn was awarded the Nobel Prize for Chemistry in 1944 for the discovery of nuclear fission (ignoring not only Meitner, but also Frisch and Strassmann). The Nobel committee plays things pretty close to the vest, but word is that Lise Meitner was nominated many times in the fields of physicist and chemistry. In 1966, President Johnson honored her with the Enrico Fermi Award.

After retiring in 1960, she moved to the United Kingdom to be closer to family and continued giving lectures. She was in poor health in recent years, unable to attend the Fermi Award ceremony. She died in her sleep at the age of 89.

Lise Meitner in 1963.

Stereotypes

As Lise Meitner’s life shows, women play an active and important role in science, and ought to do so in science fiction as well. Unfortunately, there seem to be fewer women writing SF than there were a decade ago, and there don’t seem to be all that many as key characters in stories either. Two of the stories in this month’s IF don’t have any, two offer mothers, two more femmes fatale, and as far as the first story goes, the less said the better.

A previously unknown piece by the late Hannes Bok, probably the last new Bok cover ever.

The Holmes-Ginsbook Device, by Isaac Asimov

This absurd story is ostensibly about coming up with a better way than microfiche to present printed information (no one has ever heard of putting words on a page and stacking those pages into a book). The "message" is that staring into a microfiche reader keeps you from staring at women. It's patently offensive. And not in a way that challenges our acceptance of societal norms like something in Dangerous Visions. Women are here only the be ogled and groped.

He looks familiar. Art by Gaughan

One star and a guaranteed winner of the Queen Bee Award.

The Starman of Pritchard’s Creek, by Julian F. Grow

Young Widder Poplowski has set her cap for Dr. Hiram Pertwee. He might be inclined to encourage her, but her nine-year-old son is a hellion, and her motherly love is excessively fierce. While picnicking along Pritchard’s Creek, the three of them encounter a talking, self-propelled steam engine and a living trash heap. Getting kicked in the head by his horse may be the least of Pertwee’s problems.

Whatever it is, it ain’t natural. Art by Wood

This is our third encounter with Dr. Pertwee, and it’s a good bit better than the last. This one is well-suited to the western theme, and the doctor’s voice is very well done. I’d say the tone aims to imitate Twain, but doesn’t come close. Of course, not coming close in an attempted imitation of Twain leaves a lot of room to still be good.

Three stars.

If… and When, by Lester del Rey

This month, del Rey looks at couple of areas where science and science fiction keep overtaking each other: there’s too much free oxygen on Venus, the steady-state theory might not be dead yet, and quantum particles that move faster than light.

Three stars.

The Canals of Santa Claus, by Bram Hall

Three wildcat miners are forced to put down on an uncharted planet. They dub the planet Santa Claus for its black growths that resemble Christmas trees (Yule was taken), but can’t explain the regularity of their spacing or the canals of salty water that flow without any change in elevation.

Hall is this month’s new author, and it’s not bad for a freshman effort. There’s nothing really new or groundbreaking, but it’s well handled, and there’s a bit of a sting in the tail.

Three stars.

The Comsat Angels, by J.G. Ballard

Since 1948, the world has become aware of a boy genius roughly every other year. Invariably, they fade from public view after a year or two, never seeming to live up to the potential they showed. A television production team begins digging into the story, but are soon broken up and reassigned. What shadowy organization is pulling the strings?

I’ve never been a fan of Ballard’s work, which I generally find too avant-garde and over laden with allusion and symbolism. This story, however, has a beginning, a middle, and an end (in that order) and lacks the ennui and decadence of the Vermilion Sands stories. I enjoyed it, with two complaints. First, the boy genius discovered in 1965 is Robert Silverberg of Tampa, Florida. He would be a good deal younger than science fiction’s own Silverbob (who isn’t from Florida), and the name pulled me out of the story every time he’s mentioned. None of the others seem to have been given the name of someone else from the genre or elsewhere, so it struck me as odd. Secondly, the connection to comsats seems very strained. But otherwise an enjoyable story.

A high three stars from me; others might like it better.

The Tin Fishes, by A. Bertram Chandler

Continuing his tour of the planets he once opened and charted, Commodore John Grimes has arrived on the water world of Melisse. Giant, unkillable starfish are attacking the huge oysters the natives use to grow pearls, the planet’s only export. Since both of the major Rim officials are incompetents he had posted to a place he thought they could do no harm, he figures it’s his duty to investigate.

Chief Wunnaara may be the only reliable person on the planet. Art by Virgil Finlay

This is a fairly standard Grimes story, with a bit of mystery and spy thriller thrown in. Entertaining enough if you like this sort of thing. I was a bit put off by the ease with which Grimes went to bed with the prime suspect, considering he’s spent the last several stories missing his wife very much. I guess mores and morals are different out on the Rim.

Three stars.

The Pawob Division, by Harlan Ellison

I’m not even going to try to describe this story by Harlan Ellison. It’s full of silly, made-up words like phlenged and thrillip’d to describe the use of alien senses and whatnot. I suspect that if it had been sent in by an unknown, it would have been sent back, maybe with an encouraging letter to keep trying.

A low two stars.

The Computer Conspiracy (Part 2 of 2), by Mack Reynolds

Professor Paul Kosloff heads into Common Europe and Common Eur-Asia to try and find out who’s behind the plot to tamper with the computer records of the United States of the Americas. Somehow, the bad guys seem to know his every move.

More action exactly like the action in Part 1. Art by Gaughan

Part 1 of this serial was so heavy on (poorly delivered) exposition, I predicted this installment would have lots of story. I was wrong; there’s just as much exposition in this half. The action is also just as over detailed; I don’t know what an “Okinawa fist” is, nor does knowing what the protagonist shouts as he delivers a karate blow tell me anything. All in all, it winds up being a typical, if slightly subpar, Mack Reynolds adventure. But it might be worth revisiting in 50 years or so to see how well Mack did at prognosticating the effects of an increasingly interconnected world.

Three stars for this installment and the novel as a whole.

Summing up

Maybe the awful first story influenced my impression of the rest of the issue, and some of these stories deserve better ratings. On the other hand, this is the second issue in a row with a one-star story, and that’s a rating I very rarely give. With the two worst stories coming from the two biggest names in the issue, I’m starting to wonder at some of the editorial decisions being made. But Galaxy doesn’t seem to be doing quite this poorly. At least Fred has promised another Hugo winners issue next year, so we have something to look forward to.

There’s the Zelazny we were promised. This issue really needed it.






[October 28, 1968] Impressive at first glance… (November 1968 Analog)


by Gideon Marcus

Up and over

Just as America returned to space in a big way with this month's flight of Apollo 7, the Soviets have also recovered from their 1967 tragedy (Soyuz 1) with an impressive feat.  Georgy Beregovoi, a rookie cosmonaut (ironically also the oldest man in space thus far, surpassing 45 year-old Wally Schirra by two years) has taken Soyuz 3 into orbit for a series of rendezvous and perhaps dockings (TASS is being vague on the issue) with the unmanned Soyuz 2.


Comrade Beregovoi in training

We've seen flights like this before, but this is the first time there has been a person involved.  Many are calling this a harbinger of an impending lunar flight, though NASA is adamant that this particular flight won't go to the moon.  Indeed, Dr. Ed Welsh, Secretary of the National Aeronautics and Space Council says Soyuz and September's Zond 5, which went around the moon, are completely different craft and the Russians aren't even close to fielding a lunar mission.

We'll have more on this flight in a few days.  Stay tuned.

On the ground

Like the flights of Soyuz 2 and 3, this month's Analog is outwardly impressive, but once you dig in, it's not so great.


by Kelly Freas

The Infinity Sense, by Verge Foray


by Kelly Freas

Centuries from now, after the fall of the Age of Science, humanity is divided into two camps: the "Olsaparns", who dwell in isolated technological camps and retain a semblance of the original technology and society, and the Novos—psionically adept savages who live in conservative Packs.  One of the Pack members is Starn, who possesses a brand new ability that allows him to best even the telepathically and premonitionally blessed.  He runs afoul of Nagister Nont, a highly adept, highly disagreeable trader, who kidnaps his wife.

After a raid on the Olsaparns leaves Starn close to death, the technologists remake him into something more machine than man, like Ted White's Android Avenger.  The Olsaparns want Nont out of the picture, so they help Starn in his quest to defeat the mutant and get back his wife.

I have no fault with the writing, which is brisk and engaging.  I take some issue with the pages of discussion on whether or not psi powers be linked with primitiveness, or the concept that humanity could regress to Pithecanthropy in a scant few generations (or the idea that evolution must be a road that one goes forward and backward on; I thought we gave up teleology last century).  But I blazed through the novella in short order, so… four stars.

The Ultimate Danger, by W. Macfarlane


by Kelly Freas

In which Captain Lew Frizel takes a shipload of eggheads to a hallucinogenic planet.  He is the only one who, more or less, keeps his head.  The message appears to be that LSD can be employed by aliens to judge our character.  Or something.

Three stars?

The Shots Felt 'Round the World, by Edward C. Walterscheid

This piece, on atomic tests, was much easier reading than Walterscheid's last article.  Do you realize that we have detonated half a billion TNT tons worth of nuclear explosives since 1945?  It's a wonder there's anything left of Nevada.

Four stars.

The Rites of Man, by John T. Phillifent


by Rudolph Palais

A scientist is working on rationalizing the art of interpersonal relations (because in Phillifent's universe, no one has invented sociology).  About twenty pages into that effort, humanoid (really, human) aliens show up and ask to be allowed to compete in the Olympics.  They do, but they lose on purpose so we won't hate them.  Then we interbreed.

Possibly the dullest, most pointless story I've ever read in this magazine.  One star.

The Alien Enemy, by Michael Karageorge


by Leo Summers

Humanity is a resilient creature, tough enough to tame any world.  Except that planet Sibylla, with its poisonous soil, extreme axial tilt, thin atmosphere, temperature extremes, high gravity, and violent weather may actually be more than Terrans can handle.  What does one do when a world is too minimal to sustain a colony?  And what is the value of 10,000 settler lives against the teeming, impoverished billions of Earth?

This is a vividly written piece with some excellent astronomy.  If I didn't know better, I'd say Poul Anderson is writing under a pseudonym.  I felt the solution to the colonists' problem, though reasonable, was not sufficiently set up to be deduced.  Also, I felt Karageorge missed the opportunity to make a more profound statement at the end than "well, humanity can lick almost all comers."  I'd have preferred something on the point of colonization or the shifting of priorities on a racial scale.

Still, a high three stars.

Split Personality, by Jack Wodhams


by Kelly Freas

Mauger, a homicidal brute, agrees to be split in two for science instead of getting the chair.  Instead of this resulting in two new individuals, it turns out that the two halves remain connected, the gestalt whole.  Thus, Maugam can literally be in two places at once.

This is timely as the first interstellar drive has had teething troubles.  Two test ships have gotten lost, unable to communicate with Earth.  Now, half of Maugam can fly on the ship while the other stays home and reports, since telepathy, for some reason, is instant.

It's actually not a bad story, though it's really just a bunch of magic and coincidence.  It works because Wodhams has set it up to work a certain way, not because this is any kind of realistic scientific extrapolation.  Also, it's hard to work up any sympathy for a homicidal brute.

Three stars.

Doing the math

When everything is crunched together, we end up with Analog clocking in at exactly 3 stars—again, adequate, but vaguely disappointing.  On the other hand, it's been something of a banner month in SF (provided you're not looking for female writers; they wrote less than 7% of the new fiction pieces published).  Except for IF (2.6), every other outlet scored higher than 3.  To wit:

New Worlds (3.1), Amazing (3.2), New Writings 13 (3.3), Fantasy and Science Fiction (3.4), and Galaxy (3.9).

The stuff worth reading (4/5 stars) would fill a whopping three magazines.  Who says the science fiction magazine age is over?






[October 26, 1968] Phoenix from the Ashes (Apollo-7)



by Kaye Dee

In early October Wernher von Braun said that he was “beginning to doubt” America's ability to land an astronaut on the Moon before the Russians, following the Soviet success with its automated Zond-5 mission. But speaking just a few days ago, General Sam Phillips, the Apollo Programme Manager, has described the recently completed Apollo-7 flight as “a perfect mission. We accomplished 101 percent of our objectives”. With both the United States and the Soviet Union finally back in space following the tragedies that struck their respective space programmes in 1967 (an article on Soyuz-2 and 3 is coming soon), NASA has risen from the ashes of the Apollo-1 fire and is once again on track to achieve its manned lunar landing goals.


A Critical Test Flight
Possibly no NASA mission has been more critical to the future of US spaceflight than Apollo-7. The main purpose of the mission has been to prove that the new Block II Apollo spacecraft, extensively redesigned after the Apollo-1 fire, is capable of performing the 480,000-mile round trip to the Moon. If Apollo-7 did not establish the overall safety and performance of the new CM design, von Braun’s pessimism would probably be proved right!

The four critical mission objectives were:

  • test the spacecraft’s navigation and guidance systems in the performance of an orbital rendezvous;
  • prove the Service Propulsion System (SPS) engine’s performance and reliability;
  • demonstrate the safety of the redesigned Command Module (CM) and the performance of its life support systems over the duration of a lunar mission; and,
  • carry out a precise re-entry and splashdown.


The Apollo-7 crew. L – R: LM Pilot Walter Cunningham, CM Pilot Maj. Donn Eisele and mission commnader Capt. Wally Schirra. They were rarin' to go!

The First Team
With a lot riding on their shoulders, the crew of the first successful manned Apollo mission unusually combined a seasoned veteran astronaut with two rookies. Originally the back-up crew for Apollo-1, the three astronauts of Apollo-7 all have US Navy connections.

Mission commander Navy Captain Walter (Wally) Schirra, 45, is the oldest man to make a spaceflight so far. One of the original Mercury astronauts (MA-8 Sigma-7, 1962), he was also the Command Pilot for the Gemini-6 mission in 1965. Apollo-7 makes Schirra the first astronaut to fly all three types of US manned spacecraft. Rumour has it that Capt. Schirra was not particularly interested in making a third spaceflight prior to the loss of Apollo 1 but stepped up to the challenge of ensuring that Apollo-7 was a success in honour of his lost friend, Apollo-1 Commander Gus Grissom. This seems to be borne out by the fact that he announced his intention to resign from NASA two weeks before the launch of his flight.

Apollo-7’s two rookie astronauts both come from Group 3, selected in 1963. 38-year-old Major Donn Eisele (USAF), designated Command Module Pilot, graduated from the US Naval Academy but was commissioned in the Air Force. Originally slated as a member of the Apollo-1 crew, he was switched to the back-up team due to a shoulder injury. Major Eisele has specialised in the CM’s new digital guidance and navigation computer, which is vital for conducting rendezvous during lunar missions.

Mr. Walter Cunninham, 36, is a civilian scientist with a military background. Nominally the Lunar Module Pilot (even though Apollo 7 did not carry a LM), he assumed the role of the crew’s general systems expert on this flight. With a Master’s degree in physics, Mr. Cunnigham spent three years as a physicist at the RAND Corporation before becoming an astronaut, but he is also a former Marine pilot who saw service in Korea and currently a Major in the Marine Corps reserves.

Symbolising a Test Flight
Apollo-7’s mission patch was designed by North American Rockwell artist Allen Stevens, who also created the Apollo-1 patch. Its similar design to the earlier patch depicts an Apollo Command Service Module (CSM) circling the globe trailing a tail of orange flame – a reference to the test firings of the CSM’s SPS engine. The navy-blue background symbolises the depths of space: it’s also a nod to the Navy background of the crew. Centred in the design, North and South America are flanked by blue oceans, with a Roman numeral VII appearing in the Pacific Ocean region. The crew’s names appear around the patch’s lower rim. 

Although refused permission by NASA, Capt. Schirra apparently wanted to name his ship “Phoenix”. I can’t help wondering what mission patch design we would have seen had the name been allowed. We do know, however, what the patch would have looked like (as envisioned by the daughter of backup Commander Tom Stafford) if Eisele's whimsical name "Rub-a-dub-dub" had been adopted…

 

A Safer Spacecraft
Apollo-1’s CM was a Block I type, designed for Earth orbital missions, while Apollo-7 has been a shakedown test for the redeveloped Block II Command Module specifically designed for lunar voyages and able to dock with a Lunar Module (LM). Following the fire, the Block II CM was significantly redesigned to reduce or eliminate fire hazards (especially the use of flammable materials) and increase astronaut safety: many of these modifications, particularly a fully-redesigned quick-opening crew hatch for emergency escape from the spacecraft, were tested on the unmanned Apollo-4 and 6 flights. Emergency breathing masks and a fire extinguisher were also added to the cabin.

Experiments with starting fires in the redesigned cabin have also led to another crew safety enhancement: NASA now uses a 60/40 oxygen/nitrogen atmosphere in the CM during launch, before switching to a lower pressure pure oxygen inflight environment about four hours after lift-off. The astronauts’ spacesuits, and their new casual flight suits, have also been redeveloped using fire retardant materials. 

Luxury Accommodation
Compared to NASA’s previous Mercury and Gemini spacecraft, the Apollo CM is a luxury suite, its greater interior volume allowing the crew to move around freely in zero gravity. Beneath the flight couches, where the crew sit for launch and re-entry, there is room for “sleeping quarters”, where two astronauts can zip themselves into sleeping bags underneath their flight seats to keep from floating around.

With ample water provided by its fuel cells, and new food preparation and packaging techniques, the Block II spacecraft finally gives NASA’s astronauts the opportunity to enjoy hot meals! The CM provides both hot and cold water dispensers to rehydrate food packages. Capt. Schirra, a coffee lover, enjoyed his first pouch of inflight instant brew just five hours after launch!

The expanded Apollo flight menu now offers some 60 different food choices, not all of which are dehydrated. Thermostabilisng techniques allow some foods, like frankfurters, to be eaten in their natural state, while small slices of bread, covered in a coating to prevent them crumbling, can now be enjoyed – although judging by the Apollo-7 crew’s complaints about crumbly food, this may not have been entirely successful.

Some of the new bite-size, possibly crumbly, foods available to Apollo astronauts

Bending the Rules
On 11 October (US time), almost four years to the day after the launch of the three-man Voskhod-1 spacecraft, Apollo-7 lifted off from Cape Kennedy Air Force Station's Launch Complex 34 on its crucial test flight. Since the LM is still not ready for spaceflight, and so could not be tested during this mission, a Saturn 1B lofted the mission into orbit.

High-altitude winds threatened to scrub the lift-off, as a post-launch abort might have seen the CM blown back over land, instead of splashing down in the ocean, potentially exposing the crew to serious injury. Mission commander Schirra disagreed with the decision by NASA managers to waive the wind restriction, but finally yielded. However, his unhappiness over this issue may have contributed to his further disputes with Mission Control during the flight.

Despite Schirra reporting the ride to space as “a little bumpy” a few minutes into the flight, ten minutes and 27 seconds after liftoff Apollo-7 was smoothly inserted into its elliptical low Earth orbit.

Coming Together
Rendezvous and docking practice, demonstrating that the CM’s navigation and guidance systems could successfully handle this vital technique for lunar missions, was a major element of the Apollo-7 flight plan, and the first major exercise began within three hours after launch.

Although Apollo 7 was not carrying a Lunar Module, the Spacecraft-LM adapter (SLA) that would normally house one was mounted on top of the Saturn 1B’s S-IVB second stage, carried into orbit to be used as a rendezvous target.

With the S-IVB still attached to the CSM, the astronauts manoeuvred as if conducting the necessary engine burn for Trans Lunar Injection. After separation from the S-IVB, Schirra put his Gemini rendezvous experience to good use, manoeuvring Apollo-7 towards the rocket stage and closing in as if to dock. This simulated the manoeuvre needed to extract the LM from the SLA. He then flew in formation with the stage for 20 minutes, before moving about 76 miles away to prepare for the first practice rendezvous. 

Apollo-7's S-IVB stage, with the SLA petals open to reveal the docking target. The target was designed by Royal Australian Air Force opthalmologist, Dr. John Colvin. (note that one of the petals did not quite open all the way, restricting some of the possible maneuvers)

Power and Precision
The initial rendezvous exercise, occurring about 30 hours after launch, included the first inflight test of the Service Module’s powerful Service Propulsion System engine. Although tested on the ground, the SPS had never yet been fired in space, despite being vital to the success of a lunar mission: its 20,000 pounds of thrust is needed to slow the Apollo spacecraft into orbit around the Moon and propel it on its way back to the Earth. The SPS has to be totally reliable – it must work, every time.

The purpose of the rendezvous itself was to demonstrate the CSM’s ability to match orbits with a LM returning from the lunar surface, or an aborted landing attempt, even without an operating onboard radar (which Apollo-7 lacked, though later missions will have one). The SPS rendezvous burns were computed at Mission Control, but the final manoeuvres to close on the S-IVB saw Major Eisele making observations with the CM’s telescope and sextant to compute the final burns using the onboard guidance computer.

When the SPS engine ignited for the first time, Eisele was apparently startled by its violent jolt, while Schirra yelled excitedly “Yabba Dabba Do! – That was a ride and a half!” The inaugural nine-second burn went perfectly, and Schirra completed the rendezvous using the ship's reaction control system (RCS) thrusters, bringing Apollo-7 to within 70 feet of its tumbling target. The exercise successfully demonstrated that, even without radar data, an Apollo Command Module pilot could effect a rendezvous in lunar orbit.

A (Mostly) Smooth Mission
For the most part, Apollo -7 could be described as a “smooth” mission, with few real technical problems. The flight plan was “front-loaded”, with the most important experiments and activities scheduled for the early part of the mission, in case problems forced an early return to Earth. By day five of the mission, Flight Director Glynn Lunney estimated that the astronauts had already accomplished 70 to 75 percent of the planned test objectives.

The SPS engine was fired eight times in total, working perfectly every time and proving its reliability. The crew tested the fuel cells and battery chargers and checked out the cooling capacity of the thermal control system, putting the CSM into “barbecue mode,” rolling slowly around its long axis to distribute the heat load evenly over the spacecraft skin. Major Eisele thoroughly tested the sextant, telescope and guidance computer: even when vented, frozen urine crystals obscured his star targets, he proved that the optical instruments could provide sightings accurate enough to steer a spacecraft to and from the Moon.

It obviously wasn't easy for Maj. Eisele to take star sightings during the rendezvous exercise!

But the mission did experience a few technical issues. A power failure briefly struck Mission Control abut 80 minutes after launch. A mysterious “fuzz” or fog partially obscured the spacecraft’s windows, blurring the external view, although it gradually eased as the mission progressed, enabling photographic observations of the Earth (there are early indications that this may have been due to window seals outgassing). Perhaps the most annoying problem was the difficulty of using the crew’s “solid waste disposal system” – bags taped to an astronaut’s buttocks into which he excreted. The process proved to be very messy and rather smelly! 

Despite issues with window fogging, the Apollo-7 crew has returned impressive images like these, showing the Gulf of Mexico (top) and Hurricane Gladys (bottom)

Grumpy Astronauts
About 15 hours into the flight, Schirra reported that he was experiencing a head cold. Unfortunately for him, a cold in space quickly becomes a miserable experience, because congested sinuses don’t drain in weightlessness. Cunningham and Eisele also developed stuffy noses and dry nostrils, but as they experienced colds a few days before the flight, flight surgeons believe that their condition may have been due more to breathing pure oxygen for long periods.

An astronaut with a head cold is not a happy man!

Despite the use of aspirin and decongestant tablets, the cold made Schirra tired and irritable and prone to sharp exchanges with Mission Control. When Houston suggested early in the mission to add some new engineering tests into the already busy flight plan and power up the TV system ahead of schedule to check the circuits, the mission commander testily refused, citing scheduling pressures and the need for the crew to eat. Over the first few days, Schirra repeatedly delayed the scheduled public television broadcasts, considering them non-essential.

Throughout the flight, the crew had difficulty sleeping, particularly as NASA insisted that at least one astronaut was always on duty to monitor the new spacecraft’s systems during the crucial test flight. Lack of sleep and exhaustion from working long hours on a packed flight plan undoubtedly contributed to the crew’s irritability throughout the mission.

Are You a Turtle?
Capt. Schirra has a reputation for playing practical jokes and "gotchas" and decided at one point to take out his frustrations on fellow astronaut and Director of Flight Crew Operations Deke Slayton. Both men are members of a private club, which has a joking requirement that if one member asks another "Are you a turtle?" the person so asked must immediately respond with a specific vulgar reply, or else buy drinks for everyone who heard the question.

Slayton had tried to catch Schirra out during his Mercury flight by publicly asking on an open communication if Schirra was a turtle. The Apollo-7 commander decided to "return the favour" during this mission by mischievously holding up a card during the second television broadcast from the spacecraft that said "Deke Slayton, are you a turtle?" Slayton avoided giving the rude answer in a public broadcast by recording it to be played to the crew after the mission.

The Mission Commander is in Command!
Perhaps the most serious disagreement between Schirra and Mission Control arose over the issue of whether or not the astronauts would wear their space helmets during re-entry. During the descent from orbit, cabin pressure rises from 5.9 to 14.7 psi (sea level pressure). Still suffering from his head cold Capt. Schirra apparently feared a sealed helmet would prevent him from pinching his nostrils to equalise the pressure, possibly leading to a ruptured eardrum. Although helmets protect the astronauts from cabin depressurisation and landing impact forces, Schirra stood on his right to make a decision as the mission commander and insisted that the crew would not wear their helmets for re-entry.

The discussion between Apollo-7 and the ground became quite heated on this point. Although Mission Control finally acquiesced to Schirra’s decision, comments suggest that they were exasperated and surprised by the astronauts’ testiness throughout the mission, which was definitely a departure from the usual respectful communications between space and the ground. While Capt. Schirra may have been prepared to speak his mind and have his way because he has already decided to leave NASA and has nothing to lose, I wonder if the clashes between the crew and Mission Control will impact upon the careers of Major Eisele and Mr. Cunningham?

“From the Lovely Apollo Room”
Despite Schirra’s early refusal to conduct television tests, the crew became TV stars when the first live television broadcast from an American spacecraft finally occurred on 14 October. Technical limitations with the television system meant that the live broadcast was restricted to the United States, but the audience was reportedly treated to a lively piece of entertainment, with Cunningham as camera operator and Eisele as MC.

Drawing from an old radio tagline, the “Apollo-7 Show” opened with a card reading “From the lovely Apollo Room high atop everything”. The seven-minute broadcast treated viewers to a look inside the spacecraft and showed views of Lake Pontchartrain and New Orleans, before closing with Schirra holding up another sign reading “Keep those cards and letters coming in folks”, another radio tag line re-popularised by Dean Martin.

For the rest of the mission, daily television broadcasts of about 10 minutes each took place, with the crew holding up more fun signs and describing how the Apollo spacecraft worked. Since the broadcasts seem to have been very popular with audiences in America, I wonder if television’s newest stars might find themselves in line for an Emmy Award next year? 

Back to Earth
Without the crew wearing helmets, Apollo 7 made a successful re-entry on 22 October splashing down about 200 nautical miles SSW of Bermuda, with a mission duration of 10 days, 20 hours, 9 minutes and 3 seconds. The conical CM landed upside down in the water, although it was soon righted with the use of floatation bags. However, the inverted position apparently interfered with communications, giving Mission Control an agonising 10-minute wait for contact to be established by search helicopters and aircraft.

The astronauts’ arrival by helicopter on the recovery ship USS Essex was carried live to the world on television, relayed via satellite – although we here in Australia were not able to see most of the broadcast due to technical difficulties. Despite the issues with colds and stuffy noses, the crew experienced no trouble during re-entry and are said to be generally in good health. They are now back in Houston, facing three weeks of technical debriefings and medical tests.

While the disagreements between the crew and Mission Control may have cast a shadow, Apollo-7 is being hailed as a technical triumph, with the mission successfully verifying the flightworthiness of the redesigned Command Module and SPS engine.

What comes next?
Even before Apollo-7 launched, Apollo Spacecraft Manager George Low proposed that, with the delays in the construction of the LM, Apollo-8 should be a manned circumlunar flight, to build programme momentum and pre-empt a possible similar mission by the USSR. This mission prospect was being openly discussed while Apollo-7 was in orbit. With its safe and successful return, let’s hope a decision will be made very soon on this ambitious and exciting next step in space exploration: Apollo-8 is already on the pad!