Tag Archives: apollo 12

[December 6, 1969] Here comes the Sun (and Moon) — Orbiting Solar Observatory, Apollo, ESRO, and Explorer 41!

[New to the Journey?  Read this for a brief introduction!]

photo of a man with glasses and curly, long, brown hair, and a beard and mustache
by Gideon Marcus

With the Apollo missions taking so much of our attention (there were four flights this year), it is understandable that unmanned missions and science have gotten short shrift.  I'm going to try to address this oversight now.

Far out!

Do you remember Pioneer 6 (launched Dec. 16, 1965) and Pioneer 7 (launched Aug. 17, 1966)?  They are deep space probes designed to observe the Sun from widely different vantage points.  In fact, we've been a bit remiss: since '66, two more identical Pioneers have gone up: Pioneer 8 (December 13, 1967) and Pioneer 9 (November 8, 1968).  A fifth and final Pioneer was launched August 27, 1969, but its carrier rocket exploded.  The loss of that one is pretty bad; whereas the others are all spread out fairly equidistantly around the Sun, more or less as far away from it as the Earth, Pioneer "E" was going to be put in an orbit that kept it close to Earth, where it would be used to give as much as a two-week warning of dangerous flare activity.

Nevertheless, NASA is blazing along with four satellites.  Indeed, thanks to the longevity and spread-out positions of Pioneers 6 and 7, they were able to perform an unique experiment.  On Nov. 6, the two satellites were 175 million miles apart on a common line with the Sun, and scientists observed the difference in behavior of solar wind particles due to their passage through space in opposite directions.  In a similar vein, on Dec. 2, when the spacecraft reached points on a common spiral line leading out from the Sun (the star rotates, so it flings out particles in a spiral rather than linear fashion), scientists measured different kinds of solar particles coming from the same events on the Sun.

We'll have to wait for the journals to publish any papers, but this is the kind of large-scale, long-term science made possible by the Pioneer probes!


Another cool example of Pioneer science

Far in!

While the Pioneers study the Sun far from Earth, there are a host of spacecraft monitoring our home star from Earth orbit.  For instance, we haven't talked about the Orbiting Solar Observatories (OSOs) for a while, but there have been six so far.  They were the first heavy satellite series to be launched by NASA, providing nearly continuous coverage of the Sun since 1962, in wavelengths we can't observe from Earth because they are blocked by the Earth's atmosphere: ultraviolet, X-Ray, and gamma ray.

Why was the Sun such an early focus?  Three major reasons: 1) understanding the dangers posed by flares and their relation to the high energy particles trapped by Earth's magnetic field is critical to ensuring astronaut safety, 2) surveying the Sun and comparing changes on the solar surface with fluctuations of space weather near Earth tell us both about the interactions of the two as well as the nature of both, and 3) the Sun is the closest star at hand, and what we learn about the Sun as a star can be applied to the millions of other stars we can observe.

The revelations OSO have given us are not easily conveyed.  It's not like Explorer 1, which discovered the Van Allen Belts—a hitherto unexpected phenomenon—or the TIROS weather satellite, which discovered storms we hadn't even known about.  Rather, they give us a huge body of data with which we can refine our understanding of how the Sun works, and also so that we can better predict space weather.  What's called "basic research."

OSO 1 operated continuously from March-May 1962, and intermittently on to August 1963, returning data on 75 solar flares—most importantly, what events preceded, succeeded, and coincided with them in many different wavelengths, a fingerprint of an eruption, so to speak.


(ground-taken picture of the Sun flaring)

OSO 2 expanded its coverage to the corona, that bright bit of the Sun you can only see during a lunar eclipse.  Its launch was delayed until February 3, 1965 because the original OSO B was damaged in a launch explosion, April 14, 1964, that killed three technicians!  Though OSO 2 returned data for nine months, I can't find a single article on the Sun that stemmed from it.  There's one on about 20 other stars observed by the satellite, though, and the difficulties of seeing through the Sun's glare to them.

OSO 3, the one that launched March 8, 1967, and not the one that failed to orbit in August 1965, was more successful.  It returned interesting solar data, for instance finding solar X-ray sources that weren't flares, determining that the chromosophere (visible surface) didn't necessarily heat up before a flare, and monitoring the change in the solar spectrum over the course of its 28-day rotation.

And the onboard gamma ray experiments told us a lot about the universe.  For instance, the torrent of gamma rays streaming in from the universe is highly confined to the galactic plane, and particularly toward the Milky Way's core, which means it must be galactic in origin.  OSO 3 also observed X-ray bursts from a star (maybe stars) that isn't the Sun: Scorpius X-1, later determined to be a neutron star, and Lupus XR-1 (which may or may not be the same source—the literature is unclear).  The satellite stopped working just last month.

OSO 4 went up October 18, 1967, and was the first OSO to carry an international experiment—a University of Paris device that measures the Sun in the ultraviolet frequency that best shows solar activity ("Lyman-alpha").  Indeed, it was the first OSO to scan the Sun in ultraviolet at all.  Also really cool is that its X-ray resolution is such that it could watch flares in X-ray wavelengths as sharply as we could see it on the ground in the visual spectrum, so scientists could make one to one comparisons.

You'll note the use of past tense—the satellite is still in orbit, but its tape storage failed in May 1968, and last month, OSO 4 was ordered into standby mode.

That brings us to the OSOs we haven't covered yet.  OSO 5 went up on January 22, 1969, and has the ability to scan the Sun in the X-ray range more quickly and thoroughly.  OSO 6 went up August 9.  I don't have too much to say about them because it's too early for papers.  NASA reports both did their jobs fine, and they're still operating.  Like OSO 3 did, they not only study the Sun but also galactic X-ray sources…so stay tuned.

Small satellites are doing their part, too.  For instance, Explorer 41, the latest in the Interplanetary Monitoring Platform series, launched June 21 into a high orbit that goes almost halfway to the Moon.  The Sun this satellite examined has been unusually quiet, an expected trait of the "solar maximum"—the time in the Sun's 11-year cycle of highest output.  On the other hand, low-energy galactic cosmic rays rates fluctuated more than usual, and interplanetary conditions appeared to be more disturbed.  The satellite is still operating.

Finally, and only tangentially related to the Sun, there are the missions of Aurorae and Boreas, launched October 3, 1968 and October 10, 1969, respectively under the auspices of the European Space Research Organization (ESRO).  They report on the brightness of Earth's aurorae, the composition and temperature of the ionosphere, and the charged particle environment in orbit.  The first satellite is still working just fine, but Boreas went into a lower than expected orbit, and it reentered on November 23rd.  Still, the mission was deemed successful.

Rocks to dig

Veering back into the manned space program, there was some exciting coverage during the Apollo 12 flight that I didn't have a chance to relate.  As Conrad, Bean, and Gordon finish their three weeks in quarantine (joined on Dec. 2 by 11 scientists and technicians who had accidentally been exposed to lunar samples), this is a good time to talk about what we've learned from Moon rocks brought back by the Apollo 11 astronauts.

Walter Cronkite had, as a guest on his programming, Dr. John O' Keefe—a geologist at NASA's Goddard Space Center.  The visibly excited O'Keefe stated that the most extraordinary aspect of the Moon rocks is that they are deficient in nickel and cobalt as compared to the Sun, that latter body presumably being representative of the nebula that originally coalesced and formed our solar system.

Why is that significant?  Well, the Earth's crust is similarly lacking in nickel and cobalt (and other "precious metals" that dissolve easily in iron, collectively called "siderophiles").  We know Earth has a dense iron core because nothing else would account for the planet's mass with respect to its volume, and also, it explains why the planet has a magnetic field.  While our planet was first cooling, it makes sense that the siderophiles melted and mostly sank to the center of the planet.

The Moon has no core—we know this because its density (volume divided by mass) is too low, and it has no appreciable magnetic field.  That the Moon's surface rocks correlate to Earth's surface rocks, and because its density appears to be constant from crust to center, that suggests that the Moon was somehow formed from Earth's crust.  It is, in fact, a piece of our planet's outer surface that somehow spun off into orbit and formed its own little, low-density world.

What causes this is still unknown.  Perhaps the Earth was spinning so fast when it was formed that its middle flew off.  Or maybe a rogue planet smashed into the Earth.  What we do know is that the composition of the Moon rocks puts paid the hypothesis that the Moon formed separately from and at the same time as Earth, since we'd then expect its crust's composition to either be more like that of the Sun, or for our moon to have a dense core.

We also know that whatever created the Moon happened quite early in Earth's history.  The lunar rocks have been dated as 4.6 billion years old.  That's very close to the estimated age of the Earth.  What I found particularly exciting is that the Moon rocks must be the very oldest rocks we've ever encountered, except maybe for meteorites.  That's because erosion and vulcanism are constantly erasing the Earth's surface, and the oldest rocks I know of down here are somewhere around 3 billion years old.

As we continue to explore the cosmos, we shall find more data points with which to create an holistic view of the universe, something that would be impossible were we to stay Earthbound.  I am happy that I live in the Space Age, when our scientific knowledge is expanding exponentially.  Who knows what new discoveries 1970 will bring!



[New to the Journey?  Read this for a brief introduction!]


Follow on BlueSky

[November 26, 1969] From the Earth to the Moon…and back (Apollo 12)

photo of Gideon Marcus, a man with glasses and curly, long, brown hair, and a beard and mustache
by Gideon Marcus

Just four months ago, men first set foot on the Moon, fulfilling a millennia-long dream of humanity as well as culminating a decade-long Space Race between the superpowers. And the question on everyone's lips: how do you top that?

It's important to remember that the flight of Apollo 11 was not the end, but only a beginning—just as John Glenn's orbital flight, Gus Grissom's mission in Gemini 3, Wally Schirra's in Apollo 7 were all beginnings. The Moon Port is open, and it is time to start the exploration of the cosmos in earnest.

Appropriately, the flight of Apollo 12 was planned to mark an incremental expansion upon the prior mission's success. Scheduled for a November 14 launch at 11:22AM Eastern time months in advance, the second lunar mission would include the following improvements:

  • Time spent on the Moon would be 32 hours, half again more than the 21 hours spent by Apollo 11.
  • There would be two Extravehicular Activities (EVAs) rather than one.
  • The astronauts would set up a series of experiments designed to operate for one year from the lunar surface.
  • The Lunar Module (LM) would execute a pinpoint landing at Site 7 in the Sea of Storms, as opposed to the less precise touchdown made by Eagle in July
  • As a result, the astronauts would be able to recover the TV camera from Surveyor 3, which had soft-landed on the Moon two years prior.
  • The Moonwalks would be televised in color this time.
  • After lunar exploration, Apollo 12 would spend an extra day in lunar orbit photographing future landing sites.

In all, Apollo 12 promised to be only slightly more ambitious than its predecessor, but how much more ambitious than a flight to the Moon do you need?

Crew and Capsule

The astronauts selected for this mission included two veterans and a rookie, the first time since Apollo 9 that an Apollo crew has included a newcomer. The mission commander was Charles "Pete" Conrad Jr., an irrepressibly cheerful and talented fellow who almost made the Mercury 7. He was pilot on the Gemini 5 endurance mission and commander on Gemini 11, which conducted docking and microgravity experiments. Richard "Dick" Gordon served as Command Module Pilot, and since he had been Conrad's pilot on Gemini 11, it must have seemed like old times. The newcomer was Alan Bean, who, like Gordon, had been part of the third group of NASA astronauts. His job was to pilot the Lunar Module down to the Moon's surface.

A promotional color photograph of astronauts Conrad, Gordon and Bean, in their spacesuits minus gloves and helmets, in front of the Apollo 12 Lunar Module.
Left to right: Conrad, Gordon, and Bean

The timing for this crew's mission was determined by quirks of fate, only becoming set in stone in December. NASA has a protocol of assigning back-up crews (stand-ins who will replace mission crews in an emergency) to live missions three flights later. Originally, Conrad and Gordon had been the back-up crew for Apollo 8, along with third group astronaut Clifton Williams. Apollo 8 was supposed to test the LM in Earth orbit. But after the successful flight of Apollo 7, which tested the Command and Service Modules, and with the threat of an impending Soviet circumlunar flight, Apollo 8 was bumped to the 9th slot, and the December 1968 flight was reprogrammed for a mission around the Moon.

Conrad and Gordon backed up the delayed Apollo 9 flight, along with Alan Bean, who replaced Clifton Williams, who had died in a test flight October 5, 1967. Nine plus three is twelve, and so those three were put on the second lunar lander mission. But if Williams had not died, and had Apollo's missions gone as schedule, then it would have been Conrad and Bean to set the first steps on the Moon.

As with the prior Columbia and Eagle, NASA wanted proud names for the Apollo 12 vessels. Thousands of NASA employees and contractors sent in their suggestions, and the all-Navy crew decided on Yankee Clipper for the Command Module and Intrepid for the Lunar Module. This marks the first time that a NASA ship has shared a name with one that appeared on Star Trek—namely, the Vulcan-crewed starship in "The Immunity Syndrome". Of course, Intrepid has also been used for American naval vessels since the country's founding, but one has to wonder if Trek's outsize impact on popular culture wasn't a factor. I guess we'll see if we ever get a spaceship called Enterprise

Official crew insignia for the mission. It is circular with concentric thin blue, thin white then thick yellow edges, the latter sporting the text Apollo 12, Conrad, Gordon, Bean. The center of the insignia consists of a drawn picture of a clipper ship in space in front of the Ocean of Storms area of the Moon, where the Lunar Module was to, and did eventually land. The clipper ship was chosen because the all crew comes from the Navy.

The crew were intimately involved in the creation of the Apollo 12 patch. The blue and gold motif was chosen to honor the U.S. Navy. The Eagle was featured on the last patch; this time, Yankee Clipper got to star. Al Bean went to the library to round up suitable ship references for the clipper and worked closely with the artist to ensure it had a truly "American" look, nixing the first draft as looking too much like the Argo from Greek myth.

Stormy weather

In 1949, President Truman chose Cape Canaveral in Florida to be the nation's spaceport as it allowed launches over the Atlantic rather than over populated regions; it is also as close to the equator as you can get in the continental United States, which means space launches get the most boost from the Earth's rotation.

But it also rains a lot in Florida, and an approaching storm front threatened to delay the Nov. 14th launch date. There was a four and a half hour window that day; if rain grounded the launch beyond that point, the back-up date was Nov. 16th, with a different landing site.

An internal problem reared its head, too: one of the fuel cells (a kind of refillable battery) on Yankee Clipper was leaking hydrogen and had to be replaced.

A color photograph of Apollo 12's Saturn V lift-off from Kennedy Space Center. The sky is completely overcast. The fuel burning at the back of the launcher makes a bright spot in the center of the photograph, with fumes and steam on the sides of the launchpad. Two birds are passing in the frame, near the photographer.

Nevetherless, at 22 minutes past the 8:00 (Pacific time) hour, Apollo 12's Saturn V spurted flame and began its ascent, President Nixon in attendance with his family. The rocket was almost immediately lost in the clouds. Moments later, ABC anchor Frank Reynold's voice went tremulous. He reported that an electrical shock, perhaps caused by a lightning strike, had shot through Apollo 12, taking the fuel cells off-line. Worse, the inertial navigation platform "eight-ball", common to air and spacecraft alike, went haywire. Without these, the mission would probably have to be scrubbed.

A picture of the Flight Director Attitude Indicator. It serves to know at any given moment the relative position and direction of a spacecraft in space.
Flight Director Attitude Indicator: the "platform" or "Eight-ball"

Apollo Commander Conrad, to his credit, retained his cool. "I always like to start out behind the eight-ball and get ahead," he joked as the spacecraft slid into its first orbit around the Earth.

Moonward, Ho!

Once in orbit, a reset brought most of the affected systems back on line, and bright stars were used to realign the platform once Yankee Clipper had passed into night time. Conrad and Bean thoroughly checked their lunar module, entering it ahead of schedule, to ensure there was no lightning damage. That survey complete, they blasted out of orbit into a "free-return" trajectory that would take them around the Moon. On the way, they snapped this picture of the Earth:

A photograph of a crescent Earth taken by Apollo 12 crew on their way to the moon.

They also conducted two color broadcasts, Dick Gordon donning shades to deal with the solar glare. Although we've seen it before, I always marvel at the spaciousness of the Apollo/LM complex compared to prior spacecraft. That one can travel fifteen feet now without hitting anything seems like incomparable luxury compared to the cramped Gemini and Mercury capsules.

After three days, Yankee Clipper decelerated, entering lunar orbit. Apollo 12 was now at that scary juncture, out of radio contact for 45 minutes every hour and a half as the spacecraft ducked behind the Moon. And, as CBS anchor Walter Cronkite never failed to remind us, if the Service Module's engine did not fire, the astronauts would be stranded a quarter million miles from home.

While looping the Moon, the Apollo 12 crew returned live TV shots, gawking at the stark beauty of the horizon, whose peaks looked like distant clouds to them, and at the pebbled landscape, which Conrad described as cotton candy someone had shot BBs at.


The big crater, Copernicus, ejecta of which ridged the Apollo 12 landing site


Fra Mauro, potential future landing site of Apollo 13

Stormy approach

As Intrepid undocked from its mother ship and began its hour-long descent to the lunar surface, two concerns sprung up: firstly, a solar flare had erupted, threatening radio communications, if not the lives of the astronauts; secondly, Alan Bean got a congested nose—but a decongestant pill kept trouble at bay.

Then the LM was on its way, the two Navy aviators, Conrad and Bean, as jovial as any two spacefarers have ever been. Cronkite noted to former astronaut Wally Schirra that the spacemen seemed particularly jocular this flight, to which the Navy Captain replied that that's the way it should be; astronauts shouldn't have to be stuffy.

At first, the spaceship flew almost perpendicular to the lunar surface, not so much landing as orbiting. In fact, until a final burn at about 50,000 feet, Intrepid was in an orbit just nine miles high, such a feat being possible because the Moon has no atmospheric drag.


See how the ship is sideways for most of it?

Once the landing burn commenced, the Intrepid began slowly arcing toward vertical, its engine spewing close to its maximum thrust: some 9000 pounds of force. As the lunar horizon came into view, the astronauts burst into excited exclamations. The target crater was right where it was supposed to be, and they were bang on course. Pete Conrad maneuvered the LM closer and closer to the lunar surface, Bean calling out altitude checks and attaboys in a constant stream. As the module descended, a huge cloud of black dust billowed up—a feature of that site, as Surveyor 3 had found previously. At last, Intrepid landed in "Pete's Parking Lot" just 600 feet from Surveyor 3 with 7% of its fuel left in the tanks, a healthy margin. The pinpoint landing had worked out perfectly.

Going for a walk

Unlike Apollo 11, no post-landing rest period was planned for the astronauts. Who could restrain them anyway, at this point? Just four hours after touchdown, Pete Conrad was out the hatch and making his descent down the ladder. This happened around 3:30 in the morning for me. I have to wonder what viewership was like for this flight given that coverage started at 10 PM. Luckily, Amber works third shift, so we kept each other company on the phone, and when I fell asleep around 11:30 PM, she kindly gave me a wake-up call when the Moonwalk began.

True to style, Pete's first words as he lit on the lunar surface were, "Whoopie! Man, that may have been a small one for Neil, but that's a long one for me!" I watched the astronaut toodle around, in color and at 30 frames per second, for a while, but then fell back into unconsciousness around 4 AM. No worries, I thought. The exciting stuff wouldn't happen until the second EVA…


Hard to tell, but that's Conrad jumping down to the surface

Except when I woke up and watched the news, it turned out Alan Bean had accidentally set up the camera on a tripod pointed directly at the Sun. In short order, the picture tube had burned out. So much for color TV from the Moon.

I'd actually missed the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), which included a seismometer, a magnetometer, and a spectrometer for measuring the solar wind. The last instrument, in particular, would return data that would be compared with that being returned from Explorer 35, which has been in lunar orbit since 1967. This will tell us if the Moon, itself, generates or conducts any electric fields that can't be detected from space. All are powered by a SNAP-27 nuclear reactor that creates electricity from radioactive decay. The solar wind experiment was, in part, built by Marcia Neugebauer, whom you may recall was responsible for similar devices on the Venus probe, Mariner 2.


Diagram of ALSEP components laid out on the Moon

I did not miss, however, the astronauts walking into Surveyor 3's crater. As they bounced around, Bean noted that they looked like they were in one of those overcranked silent films of the '20s. They collected samples, uttering profound statements like, "That's a good rock!" The landing site is particularly good for selenology (the lunar equivalent of geology, natch), because the terrain is rather varied; ejecta from Copernicus crater when it was formed fell over the site, creating a mixed set of soil.

Then they found Surveyor and, as planned, began taking a hacksaw to it to bring some pieces home with them. Interestingly, they noted that it was no longer white, but a kind of tan. A trick of the light or erosion? We don't know yet. The metal also seemed to have crystallized, becoming more brittle than it had been on Earth.

The astronauts blasted off from the Moon and, with almost blasé affect, docked with Yankee Clipper. Bean and Conrad rejoined the more laconic Gordon, and they jettisoned Intrepid's top half. Shortly thereafter, they activated the half-LM's engines and plowed the vehicle into the Moon in a test of the ALSEP's seismometer. So much for that ten million bucks. The result was a Moonquake that lasted a good hour, so long that NASA scientists believe the impact may have triggered a landslide. Either that, or the material of the Moon is unique such that, instead of dampening shock waves, as on Earth, it actually amplifies them.


Intrepid as seen from Yankee Clipper; sorry for the monochrome—I snapped this shot off my black and white TV

After a day of photographing the Moon from orbit, Yankee Clipper fired its main engine, broke lunar orbit, and began the three day trip to Earth. On the way, the space trio gave us one final broadcast and also snapped a shot of the Earth as it eclipsed the Sun. All the while, the astronauts suffered from runny noses and wheezy breath, the consequence of lunar dust ending up in the capsule.

On the morning of the 24th, Yankee Clipper sailed into the Earth's atmosphere and the typical radio blackout. Three minutes before splashdown at 12:58 Pacific time, cameras from the U.S.S. Hornet recovery carrier, 1200 miles south of Hawaii, spotted the three orange and white parachutes, just two and a half miles away. This ties Apollo 8 for the closest recovery. The command module touched the roughest waves ever encountered on an Apollo recovery, immediately inverting. Recovery was swift and efficient, the Hornet's helicopter #66 making its fourth Apollo astronaut pick-up (previous ones included 8, 10, and 11).

Once the spacemen were on the carrier, we got to see that they were not wrapped up in suits, but merely wearing respirators. They jauntily waved to the cameras as they entered their quarantine trailer, where they will stay for five days, before transferring to a larger facility for thirteen more days. Missing were the folks in protective suits immediately washing away their bootprints. One has to wonder if they'll even bother with quarantine after this mission. They don't seem to be taking it very seriously this time.

President Nixon called the astronauts to congratulate them. He capped the conference with an on-the-spot promotion. This is customary for spacemen after each flight, but I think this is the first time the President has done it. Conrad, Bean, and Gordon are all now Navy Captains.

There was some concern that Apollo 12's systems might have been permanently damaged by the lightning that struck on take-off. Nothing seems to have been hurt at all, but there is still a clamor to launch the next missions in clearer weather to avoid another strike.


The lightning strike was caught on camera after launch but not discovered by NASA until later

It is an amazing and saddening thing that the public seems already somewhat tired of the Apollo missions. NBC's David Brinkley and CBS' Harry Reasoner could barely keep the disdain out of their voices as they described the astronauts gallivanting on the Moon, as if they were personally wasting taxpayer money. Conrad and Bean's casual mien, rather than charming the public, seems to have belittled the enterprise in the public's esteem.

Beyond that, NASA itself is in turmoil. They are demoralized at what they see as the end of an era, rather than the beginning of a new one. Vice President Agnew may be gung ho on going to Mars, but President Nixon refuses to make any commitments. To quote Music Scene's David Steinberg, who said this about Nixon's Vietnamization speech, "We would like to go out of our way to salute President Nixon, who in his speech exactly one week ago had the courage and the confidence to believe that he actually said something."


After that comment, an FBI agent stepped up and snapped his picture. This became a running gag.

NASA scientists feel that they have not been listened to, and that the Apollo missions stress engineering and political issues over the acquisition of knowledge. Indeed, many prominent researchers have quit, and others have been laid off.

Nevertheless, the money has been paid and the Saturns have been built. Apollo 13 is scheduled to launch next March to some spot scouted by Apollo 12, and we'll have at least four more missions after that (Apollo 20 has been cancelled; Apollos 18 and 19 may be on the block). I, personally, am excited that travel to the Moon has become routine. We are very much at a similar juncture as when Schirra flew his textbook Sigma 7 flight, and he didn't even make the front page. You know what? I am okay with taking the spectacle out of things. Let's get down to the real business: exploration and utilization of space. It's not about the missiles anymore, but humanity.

The kind of humanity down-to-Earth heroes like Conrad, Bean, and Gordon represent. Hear, hear, folks.


The astronauts enter their quarantine trailer, one of them miming a pistol shot at the crew