Tag Archives: nasa

[July 29, 1962] What a Diff’rence a Month Made (July 1962 in spaceflight)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Sometimes, the future comes so fast, it bewilders.

This rushing feeling I’ve had all month must be similar to what my grandparents felt when the Wright Brothers first took off.  For millennia, people have dreamed of flight, envying the birds.  Yet flying was always the province of make-believe, of fanciful stories.  Then, on one day in 1903, airplanes became a reality, and the world was transformed.

Ditto space travel.  That dream has been alive since the Ancient Greeks, yet it was entirely a theoretical concern until the Soviets pierced the heavens with their first beeping Sputnik.  It is easy to forget, now that there have been well over one hundred successful orbital missions, that just five years ago, there had been none.

The advances made just this month are tremendous, each one as significant as the breakthroughs I’ve just detailed.  Let’s review:

Ma Bell, Orbital Division

Unless you’ve been living under a rock the last few weeks, you can’t have missed virtually non-stop coverage of the first civilian communications satellite, AT&T’s Telstar.  Launched July 10, it circles the Earth every 90 minutes; for 20 minutes of every orbit, North America and Europe are linked via the dappled spheroid.

Now, it’s not as if the two continents had been completely cut off before.  However, the only way to communicate was via undersea phone line (expensive, not useful for television), or shortwave radio (no pictures).  If the UK wants to watch reruns of The Twilight Zone, or if we wanted to see airings of Danger Man or Supercar, we have to wait for videotapes to be shipped/airmailed across the Pond.  News from abroad is often days out of date.

That’s about to change.  Starting with a fairly humdrum broadcast of a flag in France, Telstar’s programming has now included a host of shows including a Presidential address and a sports match.  And everyone can receive them (so long as the local stations rebroadcast the feed).  Over the next few years, expect satellite coverage to become continuous.  Arthur C. Clarke’s dream of comsats fixed in the sky, 22,500 miles overhead, will soon become a reality, and the world shall be connected as never before.

Jousting Space Shutterbugs

Since April, the Soviets have been orbiting a series of disparate probes under the unified designation, “Kosmos,” the latest being Kosmos 7, which launched yesterday.  Details on these flights have been sketchy, and while they are all billed as scientific missions, it is beyond doubt that some or all of them have been spy satellites.  I infer this based on the fact that at least one of them was deorbited and recovered a few days after launch – the same modus operandi as our Discoverer film-return satellites.

Speaking of which, yesterday we launched the 47th in the Discoverer series.  As usual, the Air Force did not announce the flight, but it was in the papers anyway.  It’s really hard to hide a rocket launch in the middle of California.

It is unlikely that the two satellites took pictures of each other, but wouldn’t that be a snapshot to develop?

Getting to Space the Old-Fashioned Way

Until this month, the only way into the deep black was at the tip of a rocket, as Messrs. Shepard, Grissom, Glenn, Carpenter, Gagarin, and Titov can attest.  But on July 17, Major Robert White flew his X-15 rocket plane to an altitude of 59 miles.  For NASA, that’s close enough to outer space to count, and they’re giving the Major a pair of astronaut wings to wear on his flight suit. 

White experienced three minutes of weightlessness during his flight, and the stars were brilliant and unwinking at the journey’s apex.  While this is close to the highest the X-15 can ever fly, it strongly suggests that, in the not too distant future, the next generation of spaceplanes will zoom into orbit from a conventional runway.

Just try not to live right under the take-off point.  That could get loud.

Bits and Pieces

The Apollo moonship design is moving right along.  One lingering question, however, was how the thing would get to the moon.  After all, it is the heaviest manned spacecraft yet developed.  The original concept involved building a giant version of the already giant Saturn booster.  This eight-engine monster is dubbed Nova, and it would take Apollo directly to the moon.  Appropriately, this mode is called “Direct Ascent.”

A cheaper idea involves using two Saturn C-5s (a simpler, 5-engine variant), one carrying the Apollo, and the other carrying the fuel.  The two would meet in Earth orbit before jetting off to the moon.  This mode is called “Earth Orbit Rendezvous.”

But it was the plucky underdog idea that was ultimately chosen this month.  Called Lunar Orbit Rendezvous, it requires just one Saturn C-5.  At its tip will be an Apollo, some fuel, and a teeny Lunar Excursion Module (or LEM).  The Apollo, itself, won’t land on the moon.  Instead, two astronauts of the three will cram into the LEM for the landing. 

This mode was, at first, deemed too complicated to be practicable.  Computers are getting better these days, however, and the cost savings are significant.  Moreover, there’s less to go wrong with one rocket than two.

I’m wholly in favor of this move.  After all, anything with the acronym LEM must be incredible.

Conquered by (the Planet of) Love

The one bit of sad news accompanies the loss of Mariner 1, our first planned mission to Venus.  Launched on July 22, its Atlas Agena rocket, the biggest one we’ve got right now (save for the still-in-testing Saturn 1), glitched during take-off and had to be destroyed five minutes into the flight.

Unlike Pioneer 5, which two years ago flew to Venus’ orbit and demonstrated the possibility of long-range telecommunications, Mariner 1 would have flown by the planet, itself.  It would not have been able to take pictures; the Atlas Agena combination isn’t powerful enough to lift a spacecraft with a big enough radio to send scans of photos.  We’ll have to wait for the beefier Atlas Centaur for that.

Instead, Mariner 1 is really a retool of the first generation of Ranger moon probes, carrying a slew of particle and electromagnetic wave detectors.  If an “R-type” Mariner makes it to Venus, we won’t get a look under the planet’s shroud of clouds, but we will, at least, finally know hot the world is and get some information on its magnetic field.

The good news?  Mariner 2 is scheduled for launch next month.  Let’s hope that one works – otherwise, we’ll have to wait another year and a half for Earth and Venus to be in favorable position for a mission.

Live via Visi-Phone!

Courtesy of Telstar and the miracle of Visi-phone(tm) technology, the Journey had a smashing second Tele-Conference on July 29, covering a wide range of topics: from news of the day, to discussion of the upcoming Hugo Awards, to talking about this Summer’s blockbusters.

If you missed the live broadcast, catch the rerun.  Check your local listings for details.

Congratulations go out to Mark Yon and Nathan “Rocky” Anderson for asking the best questions!  You can expect your prizes to arrive over the next few weeks.  And to the rest of our audience, warm thanks from the Galactic Journey staff.  We look forward to seeing you again when we do our third Tele-Conference in 2-3 months.

In the meantime, enjoy this revolutionary new era.  The future is only going to come more quickly, I predict…




[February 20, 1962] American Made (John Glen and the flight of Friendship 7)


by Gideon Marcus

And the Free World exhales.  At long last, an American has orbited the Earth.  This morning, Astronaut John Glenn ascended to the heavens on the back of an Atlas nuclear missile.  He circled the globe three times before splashing down in the Atlantic Ocean.

It is impossible to understate what this means for us.  The Soviets have been ahead of us in the Space Race since it started in 1957: First satellite, first lunar probe, first space traveler.  Last year, the best we could muster was a pair of 15 minute cannonball shots into the edges of space.  For two months, Glenn has gone again and again into his little capsule and lain on his back only to emerge some time later, disappointed by technical failure or bad weather.  Each time, the clock ticked; would the Soviets trump us with yet another spectacular display of technological prowess?

But this morning, everything was fine – the weather, the booster, the spacecraft, and the astronaut.  As I went to sleep last night, Glenn woke up.  He had the traditional low residue breakfast of orange juice, toast, eggs over-easy, fillet mignon, and Postum, before suiting up and entering the capsule.  That was at 5 AM his time (2 AM mine).  For five hours, the patient Colonel waited as his Atlas rocket, only recently tamed sufficiently for human use, was prepared and tested for flight.

At 9:47 AM his time, at last we saw the fire shoot out from beneath the missile, saw the Atlas and its black-painted cargo lift off, leaving its support gantry shrouded in white smoke.  For several minutes, the flight of mission Mercury-Atlas #6 was a strictly aural affair, the TV cameras’ only subject being the now-empty launchpad.  But we heard the confident communication between Alan Shepard on the ground and Glenn hurtling skyward, America’s first and American’s latest spacemen, and we knew everything was still going well.

The sky went quickly from blue to black as Glenn struggled against six times his normal weight.  First, the Atlas’ two side engines exhausted their fuel and detached.  A few minutes later, the central sustainer engine’s job was complete, and the Mercury capsule, dubbed Friendship 7 by Glenn, flung itself from its empty booster.  Glenn was now in orbit, weightless, and cleared for his full three-orbit, five-hour mission.

For the first time, an American flight was long enough for the public to contemplate, to be worthy of news flashes.  And even though the last Soviet flight had spanned a full day, it was shrouded in secrecy until after its completion.  Glenn’s mission was, on the other hand, entirely open.  Cockpit chatter was broadcast in the clear; each success and potential failure was presented for the world to hear.  Space travel had become a spectator sport.

The world participated.  Indeed, it had to.  An orbital mission requires global tracking.  Glenn’s flight was monitored as he passed over exotic locales like Zanzibar, Woomera, Hawaii.  The citizens of the west Australian city of Perth turned their lights on for the astronaut’s passage, providing a virtual streetlamp as he whizzed overhead at 18,000 miles per hour. 

Three sunsets and three sunrises greeted Colonel Glenn, though he was given precious little time to appreciate them, so crowded was his schedule with experiments and ship operations.  As the Mercury spacecraft’s functions began to degrade in its third orbit, the value of an experienced human pilot became evident.  Glenn manually configured and trimmed the vessel to make the most of the journey and ensure the mission could be completed. 

Glenn’s biggest challenge came at the end of the mission.  Sailing backwards over the Earth, the astronaut prepared to fire the ship’s retrorockets, a blast of fire that would slow the craft such that it could break out of orbit and back toward ground.  But an indicator suggested that the Mercury’s heat shield was loose.  If that were true, then there could be no returning for the astronaut – he would burn up on reentry. 

Was there anything the astronaut could do about the situation?  Well, the retrorocket package was held tight against the bottom of the bell-shaped craft (and thus, its heat shield) by a series of straps.  Normally, the retrorockets would be discarded before reentry.  This time, on the advisement of ground control, Glenn left the retrorockets strapped in.  The hope was that the straps would keep the shield attached, if it was indeed loose.

What a terrifying display that must have been for the pilot, watching flaming chunks of the retrorockets fly past his window as he tore through the white-hot outer layers of the atmosphere.  Glenn had plenty of other things to worry about.  The “G” forces spiked as the craft decelerated, and the ionization of the air cut off radio contact.  We all waited, white-knuckled, for some sign that the astronaut had survived the journey…or had been vaporized.

Then his voice crackled over the air again, the Mercury’s striped parachutes were deployed, and we began breathing again.  A ship of the recovery fleet, the little destroyer called the U.S.S. Noa, was already close at hand when Friendship 7 touched down in the waves.  Once the capsule was hoisted aboard, the astronaut popped the side hatch, the one that had exploded prematurely for second astronaut Grissom.  An overheated but grinning Glenn stepped out of the Mercury, and into history.

Mercury’s primary mission, to orbit and safely return a human, has been completed.  Nevertheless, there is obviously much life left in the bird.  Three more three-orbit flights are planned to shake out the bugs that plagued the latter portion of Glenn’s flight.  Then 12, 24 hour, and perhaps multi-day flights are slated. 

Of course, the Soviets may soon respond with a flight that trumps ours, perhaps even a two-person mission.  But for now, the hour rightfully belongs to the West.  The democracies of the world at last have their emissary to the stars. 

Godspeed, John Glenn!

[February 1, 1962] Silver Lining (January Space Race round-up!)


by Gideon Marcus

January has been a frustrating month in the Space Race.  We are no closer to matching the Soviets in the manned competition, much less beating them, and our unmanned shots have been a disappointment, too.  That said, it’s not all bad news in January’s round-up: stick to it through the end, and you’ll see cause for cheer!

Quintuplets fail to deliver

The Air Force has been playing around with combined launches for a while now.  After all, if you’re going to spend millions of dollars to throw a booster away, you might as well get multiple bangs for your buck.  Sadly, the latest attempt, a Thor Ablestar launch on January 24 dubbed “Composite 1,” failed when the top stage tumbled in orbit and failed to separate from its payloads.

What we lost: SolRad 4, for measuring solar X-rays (only visible above the curtain of the atmosphere); Lofti 2, which would have examined the effects of Earth’s ionosphere on Very Low Frequency radio transmissions; Surcal, a strictly military probe designed to calibrate the navy’s communications net in orbit; the wholly civilian Injun 2, which would help map the Van Allen belts (see below); and Secor, a big balloon that would have helped the Army with their ranging equipment.

Copies of these probes will end up at some point, either launched together on a big rocket or separately on little ones.

Moon Miss-ion

It’s been a bad run of luck for NASA’s latest moon program, Project Ranger.  After the failure of the first two Ranger missions, designed to test the probe’s engineering and return sky science, there were high hopes for the lunar flight, launched January 26. 

Things went badly from the beginning.  Ranger 3 was pushed into a bad trajectory by a faulty guidance system.  Not only did it rush past the moon, failing both to hit the target or end up in orbit, but it was pointed the wrong way the entire length of the journey.  No useful data or pictures were obtained.  That nifty seismometer that makes up Ranger’s Rudolph nose went completely unused. 

Ranger 4, a carbon copy of #3, should launch in the next few months.  Hopefully, they’ll have the kinks worked out by then.  This is one of those clear places where the Communists are ahead in the space race, having pioneered both lunar orbit and the moon’s surface several years ago.

A rain check for Mercury

The third time turned out also not to be the charm for Major John Glenn.  His orbital Mercury mission has now been postponed three times.  It’s a good thing the Marine is so good-natured; I know I’d be frustrated.

The first delay happened on January 22 when there was a failure in the spacecraft’s oxygen system.  Definitely something I’d like working on a five hour flight!  On the 27th, cloud cover prevented the launch, and just today, there was a problem with the temperamental Atlas booster.  The next opportunity to launch won’t come until February 13.

So much is riding on this flight.  The Soviets have already launched two of theirs into orbit while we flutter futilely on the ground.  Newspapers and talking heads are already opining that we’ll have a Red-staffed space station and a Red-dominated moon before long if we don’t hurry to catch up. 

Explorer 12: Reaping the harvest

Here’s the good news: I’ve said before that the most exciting thing about a satellite is not its fiery launch but the heap of data it returns.  That’s where the taxpayer gets one’s money’s worth and where the scientist sees the payoff.  Explorer 12 was the latest in the series of probes (starting with America’s first, Explorer 1) sent into orbit to probe the hellish fields of charged particles that circle the Earth.  The spacecraft is still up there, though it went silent in December.  However, in its four months of life, it learned a great deal about the furthest reaches of our planet’s influence.

For one, Explorer 12 found that the outer of the two “Van Allen” belts around our planet is made mostly of protons rather than electrons (though there are still plenty of the latter — enough to make hanging around a dangerous proposition for astronauts).  Those protons, particularly the less energetic ones, have been linked to solar magnetic storms, which result in spectacular auroras on Earth.

Perhaps even more interesting is that the probe found the edge of the Earth’s magnetosphere.  “What’s that?” you ask.  Well, our planet is a giant magnet, probably the result of a dense iron core that spins deep inside the Earth.  These magnetic lines of force extend far beyond the Earth’s crust and 70,000 kilometers into space where they trap the wind of high energy particles from our sun.  This keeps them from scouring away our atmosphere. 

Where our magnetic field meets the field carried on the solar wind, called the magnetopause, there is an area of turbulence and disorganized magnetism. It is now believed that the sun’s wind smashes against the Earth’s field, creating a bow shock – the kind you’d see when a blunt body is smacked by a supersonic gas.  Moreover, the Outer Van Belt “breathes” inward and outward, responding to waves in the solar wind.

And speaking of magnetic fields, NASA scientists just released findings from the intentionally short-lived Explorer 10 found a magnetic “shadow” behind the Earth.  Specifically, the solar wind seems to hit our planet’s magnetosphere and deflect around the Earth, but the magnetic field acts as kind of an umbrella, shielding a large portion of near-Earth space. 

The general contours of Earth’s magnetic environment have thus been mapped.  Neat stuff, eh?

[November 30, 1961] Man vs. Machine (November 1961 Space Round-up)


by Gideon Marcus

November 1961 been an exciting month for space buffs with several sequels to exciting missions as well as one brand new satellite. 

For instance, the fourth Transit navigational satellite went up on November 15.  Not only did it carry a little nuclear reactor for power, but it also had a piggyback pal.  Called Transit Research and Attitude Control (TRAAC), it’s a little research probe designed to try a new method of stabilization.  You see, an object launched into orbit will have a tendency to tumble.  There are active methods to right a satellite, like engines or gyroscopes.  TRAAC uses a passive method, employing just its shape and the tidal force of the Earth.  It’s an exciting experiment.

The Air Force was two for three this month with their reconnaissance programs.  Discoverer 34, on November 5, and Discoverer 35, on November 15, were sent into space to spy on the Soviet Union.  Each had a little camera on board and a capsule for sending film back to Earth.  Both craft made it into orbit, and at least the latter mission’s payload was recovered in a daring (but now routine) mid-air catch by a plane.  Only the boys in blue know whether the targets were a Soviet base or skinny dippers on the Black Sea.  Samos 4, launched November 22, failed to orbit.

By the way, it’s going to get harder for me to give you the skinny on military missions.  While Eisenhower was rather cavalier about letting the Soviets know what we’re up to, probably to show off, President Kennedy has put a lid on spy flights.  Newspapers aren’t covering them much anymore, and the details we do get are sketchy.  Just be aware that, at any given time, there are robot shutterbugs in orbit, taking snapshots of Nikita.  And maybe of you.

On to the civilian world: the second Moon probe Ranger probe was a bust, just like the first.  It’s a shame because these two missions, comprising the first iteration of the probe known as “Block 1,” were designed to do some excellent sky science.  They weren’t aimed at our celestial neighbor.  Rather, they were to be flung into high orbits for engineering tests and cosmic investigation.  The next mission, a Block 2 lunar impactor, is planned for January 1962.

But the real NASA news this month involves a little primate named Enos.  Yesterday, for the second time, an Atlas booster roared into the orbit from Cape Canaveral with a Mercury capsule at its tip.  Unlike the last one, however, Mercury-Atlas #5 (the first three had been suborbital missions) carried a passenger.  The 37.5 pound chimpanzee circled the Earth twice before safely splashing down some 255 miles southeast of Bermuda.

Just as the launch of a chimp presaged Alan Shepard’s suborbital flight in May, so Enos’ jaunt paves the way for astronaut John Glenn to be the first American in orbit in just a few weeks (weather permitting).  Now, the flight was not entirely flawless.  A roll reaction jet failed, and one of the components of the electrical system overheated.  As a result, Enos’ capsule returned to Earth after just two of the planned three orbits.  But, had a human been on board, he could have compensated for these issues, easily. 

That’s the bigger story, to me.  I know some people wonder why we bother to send people up into space when electric implements have proven capable enough, and cheaper.  And there is certainly a segment of the flyboy population that snickers at the thought of test pilots relegated to following in the furry shoes of ape predecessors. 

Yet, in MA-5, we have the reason.  No monkey and, as yet, no machine can react with the speed and intellect of a human.  Moreover, no machine can think creatively, adapting to an evolving situation beyond a few set scenarios programmed into its core.  Imagine if an astronaut were flying the Discoverer missions.  He’d have the discretion of choosing the targets to photograph.  He’d be able to bring a film capsule home with him rather than relying on complicated automatic systems and aerial recovery planes. 

When John Glenn flies, he will return far more information about the universe than any experiment or animal could, not just scientific, but about the human condition.  For 270 minutes, he will be an outpost of the Free World in space.  What will it mean to him, to all of us, his three circuits of the globe? 

We can’t know until he gets there, but I’m betting it will be profound.

[October 28, 1961] Heavy Lifting (Saturn C-1 SA-1)


by Rosemary Benton

It’s a great leap forward for the United States.  This morning, October 28th 1961, one can open the newspaper and learn about yesterday’s launch of the Saturn C-1.  Some of us even saw the live coverage of the launch on television, watching as the giant rocket blasted off from Cape Canaveral in Florida and flew 95 miles into the air before plunging into the Atlantic Ocean.  A rocket this powerful has never been launched before, and I can only imagine that the scientific community must be trembling like the ground beneath Saturn C-1’s S-1 first-stage cluster of nine tanks and eight engines. 

It was, quite simply, the biggest rocket ever launched.  By far.

As the world reaches farther and farther past the stratosphere, I wanted to take a look into the recent past in order to better appreciate where we are today.  The development of this impressive rocket was a potent combination of money, ambition, and potential, beginning in December 1957 when renowned rocket scientist Dr.  Wernher von Braun and his team proposed the creation of a booster with one million five hundred thousand pounds of thrust – that’s five times that of the Atlas (the rocket that will take an American astronaut into orbit).  The Department of Defense listened, and by August 15, 1958 the Advanced Research Projects Agency (ARPA) began work at the Redstone Arsenal to create the vehicle that would culminate in the tower of flame that lifted slowly, inexorably, from its Florida launchpad yesterday.

The initial design of the booster was something of a lash-up, fusing the liquid oxygen and fuel tanks from the Redstone and Jupiter missiles with the tried and true S-3D engine from the Thor and Jupiter missiles.  After significant retooling, the upgraded S-3D engine was clearly a new beast.  So it got a new name: H-1.  As the development of the H-1 continued through 1958, ARPA began to take a more ambitious approach to the aims of the project.  It would not be enough to develop a booster capable of propelling enormous payloads.  Instead they set their sights on creating a multistage carrier vehicle for a long term manned expedition to space.  The result was the October 1958 project tentatively called Juno V, the name indicating the booster’s kinship with its predecessor Juno rockets) based on the Jupiter missile.  The project quickly outgrew any resemblance to the Jupiter family.  On February 3, 1959 that the ARPA renamed the project after the next planet out from the Sun: Saturn. 

Saturn’s development has been nothing less than breakneck.  Dr.  Von Braun’s group at the Army Ballistic Missile Agency (ABMA) delivered the first production H-1 engine on April 28, 1959 and successfully tested it on May 26.  The Department of Defense prioritized the civilian Saturn.  July of that year was a particularly productive month.  At Cape Canaveral there began construction on a blockhouse for the project’s Launch Complex 34, and the Redstone Arsenal shops shifted their focus away from Jupiter rockets in favor of the Saturn project.  By the end of July, the Army Ordnance Missile Command (AOMC) was ordered to cease work on the Titan second stage boosters in favor of the Saturn project. 

NASA stepped in to assume direction of the Saturn Project from ARPA on March 16, 1960.  From the start NASA saw the three stage Saturn C-1 as a starting point in the creation of more powerful, larger vehicles.  Through April and March of 1960, success after success met the Saturn project.  As is tradition, private companies were brought on board to design and construct components of the vehicle.  Contracts between NASA, Douglas Aircraft Company, and Pratt & Whitney, were drawn up in July and August of 1960 respectively.  Douglas Aircraft Company would be responsible for the conceptualization and production of the four-engine S-IV stage of Saturn C-1.  Pratt and Whitney would produce the LR-119 engines to be used in the S-IV and S-V stages. 

As forward thinking as he is driven, Dr. von Braun had bigger plans for the Saturn C-1.  In January 1960, shortly after Convair Astronautics submitted a proposal for an S-V upper stage for the Saturn vehicle, Dr. von Braun floated the idea past NASA administration that the developing lunar project “Apollo” did not need a three-stage C-1; two would be sufficient for the early orbital missions planned for the spacecraft.  His proposal was approved, and NASA removed the S-V stage.  But the S-V stage was not completely scrapped.  In May 1961 the S-1 stage of the vehicle was modified to allow the Saturn C-1 to be a two or three-stage vehicle, increasing its versatility. 

Even before its launch on October 27th, the Saturn C-1 design was already being improved upon in the form of the bigger C-2 and C-3 plans.  In March 1961, considerations were well under way to make use of the Centaur’s LR-115 engines in Saturn C-2 rather than the more expensive LR-119 engines developed for Saturn C-1.  Fins were added to the C-2 design in order to make it more structurally sound, and the thrust capacities of the S-1 stage were reviewed for improvement.  Work continued to accelerate on the Saturn C-2 design until recently on June 23, 1961, when Dr. von Braun announced that the C-3 would hold priority over the C-2 due to the preferable use of the C-3 for the later stages of the Apollo project.

Even as the first of its family, the Saturn C-1 launch is a milestone of astronautics.  First and foremost it represents a great leap into the future of propulsion.  Developed under the guiding hand of Dr. von Braun, the The Saturn C-1 rocket itself is one hundred sixty two feet tall, four hundred sixty tons in weight, and packs one point three million pounds of thrust.  The payload of this particular rocket is 10 tons — far outstripping that of any previously launched rocket. 

More than anything, however, is the fact that the Saturn C-1 was a success on its first flight (albeit with a dummy 2nd stage — that will get tested next year).  This bodes well for future Saturn projects.  In terms of the evolution of rocket science, the C-1 has broken new ground in all aspects of rocket design, execution and function. 

The Saturn project has brought us one step closer to manned expeditions beyond orbital space. 

[September 13, 1961] Dry Run (Mercury-Atlas 4)


by Gideon Marcus

It’s is a red-letter day for the National Aeronautics and Space Administration (NASA), and for America as a whole.  For today, we finally got a Mercury space capsule into orbit!  The flight, dubbed “Mercury-Atlas 4,” began this morning in a blast of fire on a Florida launchpad and lasted one hour and fifty minutes.  At its conclusion, the Mercury capsule deorbited and parachuted safely into the Atlantic ocean.  By all standards, it was a picture-perfect mission.

Except that there wasn’t anyone in the capsule…

All flippancy aside, it really is a big deal.  The reason the Soviets are ahead of us, such that they’ve gotten two fellows into orbit while our two astronauts have been limited to 15-minute suborbital jaunts, is because they started out with the better rocket.

In 1957, the Russians announced that their first ICBM, a missile that can cross the world, was ready for business.  It is no coincidence that their first space probe, Sputnik, was launched soon after.  That’s because an ICBM can be used to carry payloads into orbit about as easily as they can carry atomic weapons to farflung countries. 

The United States had no ICBM in 1957.  We were later to that party.  Instead, we had a stable of shorter-ranged IRBMs, sufficient only to launch small payloads into space.  Our first ICBM, the Atlas, wasn’t operational until 1960.

It takes an ICBM to launch something as heavy as a manned spaceship, and it’s not enough that the missile be able to deliver a nuclear payload.  Since the stakes are higher with a human passenger, it is important to qualify an ICBM as a space booster very carefully, something the Soviets have had more time to do.  The Russian qualification flights, Sputniks 4, 6, and 9, all took place before last March.  Our balky Atlas has now been tested with the Mercury capsule four times.  Only two of those flights were successful – the second, a suborbital jaunt, and this latest, orbital, flight

I imagine NASA is still not out of the woods.  They’ll want to see the Mercury Atlas combination work together at least once more before trusting a man to it.  (I use the word “man” in its specific sense.  The team of 13 woman astronaut candidates was disbanded this week, more’s the pity)

Based on the results of this flight, it is just possible there might be a manned orbital Mercury flight before the year is out.  Or at least before the next few Soviet men (and women?) fly overhead…

[August 17, 1961] Voyages of Discovery (Explorer 12)

Every so often, a discovery comes along that shatters our conception of the universe.  Galileo turned his telescope to the heavens and discovered moons around Jupiter – suddenly, it was clear that Earth was not the center of everything.  Roentgen and Curie showed that matter was not entirely stable, leading to our modern understanding of physics (and the challenges that come with the harnessing of atomic energy).  Columbus sailed to find Asia; instead, he was the first to put the Americas on European maps.

Until 1958, space was believed to be a sterile place, a black void in which the planets and stars whirled.  Maybe there was an odd meteoroid or two, and far away, one might find a big cloud of gas, but otherwise space was synonymous with vacuum. 

Then Explorer 1, America’s first space mission, went into orbit around the Earth.  Its particle detectors, designed to measure the free-floating electrons and cosmic rays whizzing around up there, quickly became saturated.  Girdling the planet were hellish streams of energy, particles ionized by the sun and trapped by the Earth’s magnetic field. 

Overnight, our idea of space was revolutionized; a few scientists had speculated as to the existence of the “Van Allen Belts,” but the idea was hardly mainstream.  More probes were sent up to determine the nature of these belts.  Pioneer 5 went beyond far into interplanetary space and sent back news of a solar atmosphere that extended far beyond the shiny yellow bits – a field of particles and rays that went beyond even Earth’s orbit.  Other probes returned maps of the turbulent region where the sun’s field met Earth’s. 

Space was hardly empty – it was a new ocean filled with waves, eddies, and unknowns to be explored.

Yesterday, Explorer 12 zoomed into orbit, NASA’s latest voyager to ply the charged sea of space.  While it practically grazes the Earth at its closest point in its orbit, at its furthest, Explorer 12 zooms out a full 50,000 miles – a fifth of the way to the Moon.  Twice every 31 hours, the satellite studies the Van Allen Belts as well as the region of cislunar space, that variable region in which the Earth and the Sun fight for magnetic dominance. 

Armed with a battery of instruments like that carried by its spiritual predecessor, Explorer 6, the new probe also has several strips of solar cells covered with varying levels of shielding.  These will help determine the extent to which the Van Allen Belts will affect ship’s equipment as they travel through the deadly particles.  The data will be of particular use to Apollo astronauts on their way to the Moon.

If Explorer 1 was the satellite Columbus of the Van Allen Belts, and Explorer 6 was John Cabot, then Explorer 12 will be Amerigo Vespucci, fully determining the contours of a new ocean whose depths had been but briefly surveyed before. 

Shiver me timbers, laddie.  It’s an exciting time to be a sailor!

[August 7, 1961] Day-O!  (Vostok 2 spends day in orbit)


by Gideon Marcus

For a few bright weeks, it looked as if the United States might be gaining in the Space Race.  Now, the Reds have pulled forward again with a most astonishing announcement: their second cosmonaut, a Major Gherman Titov, orbited the Earth in his “Vostok 2” for an entire day before coming safely back to Earth this morning.

As usual, details of the launch were not divulged until Comrade Titov was already in space.  He circled the globe a record 17 times (compare to his predecessor, Gagarin’s, single orbit).  The flight lasted long enough that Americans had the unique, if not entirely pleasant, opportunity to both go to bed and awaken with the knowledge that a Russian was whizzing just a matter of miles over their house.

This flight comes almost on the heels of that of our second spaceman, Captain Gus Grissom, who flew into space for a comparatively puny 15 minutes on July 21.  For a few short weeks, the free world held the lead, if not in time in space, then at least number of astronauts.  The Soviets have now made that success look feeble.  In fact, I am now hearing rumors that astronaut John Glenn’s suborbital Mercury flight, scheduled for next month, will likely be canceled.  There is no propaganda value left in half-measures, and besides, Shepard’s and Grissom’s flights taught us all there was to be learned from the Redstone launched missions.

Now, there is a whole lot of worry being dispensed by the newspapers over Titov’s flight.  Many speculate that there is no way we can catch up to the Communists in our race for the Moon.  After all, our first orbital flight is still untold months away; before an American ever orbits the Earth, the Russians may have a space station or even a foothold on our nearest celestial neighbor.

I think these fears are unfounded.  Vostok 2 was almost assuredly the same type of ship as Gagarin’s Vostok 1.  It was designed, like our Mercury, to endure several days in orbit.  The increase in orbits from 1 to 17 does not reflect a seventeen-fold increase in Soviet space capability – merely greater use of Vostok’s full potential.

Similarly, the 15 minute flights of Freedom 7 and Liberty Bell 7 reflect but a tiny proportion of the Mercury spacecraft’s endurance.  When the Atlas booster is on-line in a few months, you will see the American program accomplishing the same feats as that of the Soviets.  I’m willing to bet our lunar ship, which the National Aeronautics and Space Administration began work on earlier this year, will be done before its Russian counterpart, too.

We have to remember that the timing of the Soviet missions is designed for maximum psychological effect.  Without taking anything away from the 26-year old Titov’s noteworthy trip, I note that it occurred just as tensions over Berlin reached their highest since the Commnunist blockade of 1948.  Khruschev is flexing his muscles, both on the land and in space, hoping that Kennedy will blink if the Soviets carry out their threat to wall off their side of Berlin from ours. 

Now is not the time to get discouraged.  Not in the Space Race, not in the Cold War.  As I’ve said before, the Race to the Moon is not a sprint; it’s a marathon.

[July 22, 1961] Into Space – and the Deep Blue (The Flight of Liberty Bell 7)


By Larry Klaes

After three failed attempts just this week, yesterday (July 21, 1961), astronaut Virgil I. “Gus” Grissom finally became this nation’s second (and the world’s third) man to reach outer space.  Grissom achieved another sort of milestone when his spacecraft unexpectedly sank after splashdown – and almost took the astronaut with it to the bottom of the Atlantic Ocean!

Following a very similar mission profile to that of his predecessor, Alan Shepard, back on May 5, Grissom rode his Mercury vessel, which he christened Liberty Bell 7 (complete with a painted white crack on the hull) in an arcing flight across the Atlantic Ocean from Cape Canaveral’s Launch Complex 5 (LC-5) in Florida.

The reliable Redstone booster hurled the ton-and-a-half craft, some 262.50 nautical miles downrange and 102.76 nautical miles above the Earth’s surface Grissom’s 15-minute suborbital flight lasted just nine seconds longer than Shepard’s.  Of course, both flights were far shorter than Cosmonaut Gagarin’s 90-minute flight in April.  That’s because the Redstone simply isn’t powerful enough to send a Mercury into orbit, unlike the unnamed ICBM the Soviets are using. 

Grissom’s flight was relatively short in both duration and distance, but our second American astronaut did get to experience a few moments of weightlessness, move his ship around, and view our home planet and the blackness of space as few have yet to do.  His view was better than Shepard’s: The two portholes on Freedom 7 were replaced with a larger single window. 

The other improvement on Liberty Bell 7 was an explosive side hatch, to be activated in the event of emergency after landing.  It was a wise precaution, but it almost caused the Mercury program’s first fatality.

After Grissom’s splashdown in the Atlantic, while he waited inside his space vessel to be rescued by four Sikovsky UH-34D helicopters dispatched from the aircraft carrier USS Randolph, the explosive release on the Liberty Bell 7 side hatch suddenly activated, blowing the heavy metal door across the water like a skipping stone.  The Atlantic Ocean rushed into the now open spacecraft.

The Mercury astronaut prudently abandoned his vessel and waved frantically at the hovering helicopters to hoist him out of the drink: Grissom’s spacesuit was filling with sea water due to an open oxygen inlet connection and it began weighing him down.  The rolls of Mercury dimes Gus had taken along in his suit to later hand out as souvenirs were also contributing to his inexorable dip beneath the ocean surface.

Unfortunately, the lead helicopter pilot interpreted Grissom’s reaction as an indication that he was okay, so they focused on trying to rescue the sinking Liberty Bell 7 by attaching a cable to it>.

The flooding Mercury spacecraft soon became too heavy for the helicopter to lift from the water, and it threatened to bring down the chopper and its crew as well.  With no other choice, the rescue team detached Liberty Bell 7, which quickly sank to the bottom of the ocean over seventeen thousand feet below. 

Attention finally returned to the desperate astronaut.  Grissom grasped for the lowered harness.  Exhausted, he slumped in the harness as he was retrieved for his trip back to the rescue ship. 

It remains to be determined whether the premature explosion of the side hatch was caused by a mechanical defect or by manual release by Grissom, perhaps in a momentary panic.  Gus himself swears he was lying calmly inside the spacecraft when the incident occurred.  Whatever the real story, engineers will need to check the hatch escape system thoroughly to make sure it does not happen again – especially in space!  Perhaps this system will be more fully tested during the next Mercury mission, another suborbital flight scheduled for September, with John Glenn the anticipated pilot.

Intriguingly, in his post-flight briefing this morning, attended by his family and fellow astronauts, Grissom admitted to feeling “scared” when his vessel lifted off towards space.  The Mercury spacemen were chosen for their exceptional bravery and flying skills.  Yet, in the end, they are human.  Did Gus, who flew 100 combat missions during the Korean War and has had a long reputation as a top-notch pilot, have a moment of weakness when confronting the unknowns of outer space?  Is this what contributed to the release of the spacecraft hatch that caused the loss of the Liberty Bell 7 and nearly the astronaut as well?  Are there aspects about the vast realm beyond Earth that may make it impossible for a man to extensively explore and colonize space?

At the moment only three human beings have actually ventured into the alien void.  All have returned alive and unharmed; however, in all of these cases they made only the briefest of ventures into space.  Can someone survive the longer durations entailed in extended orbital missions?  What about manned expeditions to the Moon and other worlds in our Solar System?  Can man make it to those places in person and live to tell the tale?

In the end, there can be only one way to find out: By sending qualified men and eventually even women into the Final Frontier to confront what may be there and conquer it for the good of humanity. 

[July 12, 1961] Reaction time (The launches of MIDAS 3 and TIROS 3)

My brother, Lou, used to tell me that the only way to beat a bully is to not fight fair.  Jump the guy when he’s not looking, and fight like there are no rules.  That’ll teach him that you’re nuts and not worth messing with.

He learned this lesson honestly.  When Lou was in the navy, he immediately got flak for being Jewish.  Someone tried to steal his bunk; Lou rammed the guy’s head into the wall.  After that, whenever someone tried to take advantage of Lou, by cutting in the chow line, for instance, another sailor would restrain the miscreant.  “Don’t do it!  That’s Marcus.  He’s crazy.  He’ll kill you!”

The problem is that these days, there are just two kids on the block: The USA and the USSR.  Each one’s the bully in the other’s eyes.  If the Russians decide they can get in a sucker punch, they just might do it to get us out of the way, once and for all.

We have the same option, of course, but it is the avowed intention of our leaders that America will never start a nuclear war.  The Soviets have not made such a pledge.

That’s why we have invested so much time and money in developing a strategic nuclear force.  We want the Russians to know that we can strike back if they launch an attack, so that any attempt at a preemptive blow would be an act of suicide.

But we can’t retaliate if the first indication we have a Soviet attack is the sprouting of atomic mushrooms over our cities and missile fields.

To that end, we recently finished the construction of the Distant Early Warning (DEW) line, a string of radar installations along the northern coasts of Alaska and Canada.  These can detect a missile some ten minutes from target.  Still not a very good window of time in which to order a counter-strike.

Enter MIDAS.  The MIssile Defense Alarm System satellite has infrared sensors.  As it flies over the Soviet Union, it will be able to detect the heat off a rising ICBM (or space shot, presumably).  Operated in a constellation of low-orbiting craft, there will always be one or two whizzing over the vast expanse of our enemy superpower.  This will raise the window of decision to a more-comfortable 30 minutes.

That should give the Soviet Union pause.  If they can’t wind up a punch without us seeing and countering, maybe they won’t wind up at all.

I’ve written about MIDAS before.  The difference this time is that the launch of MIDAS 3 today was freely covered in the press, and it looks like this may have been the first operational vehicle in the series.  In any event, it’s one more use of space that benefits all of humanity…hopefully.

In a similar, if more benign vein, today NASA got up the third in its TIROS weather satellite series.  It replaces TIROS 2, which went off the air in January.  TIROS 3 is an improvement on its predecessors, incorporating two wide-angle cameras (the narrow-angle cameras having been eliminated as not particularly useful) as well as five infrared sensors to measure the Earth’s heat budget.  I cannot stress enough how revolutionary the TIROS series has been.  Not only has it provided the first full pictures of large-scale weather patterns, but we’re getting global climatological data, too.  In concert with the super-powerful computers now at our disposal, meteorology has entered a new age.

For those who live in the Gulf area or Florida, TIROS 3 will be of particular interest: it will be spotting those pesky hurricanes long before they hit the shore.  Again, outer space provides a valuable window of decision for folks on the ground…in this case, the decision whether or not to evacuate!

See you in two with the rest of the latest Analog!