Tag Archives: mercury

[May 24, 1962] Adrift in Two Oceans (The Flight of Aurora 7)


by Gideon Marcus

They say things get tedious in repetition.  Well, I can assure you that at no point during Scott Carpenter’s three-orbit flight, planned to be a duplicate of predecessor John Glenn’s, was I in the least bit bored.  In fact, of the six manned space shots, this was the most moving for me.  Since the launch this morning from the East coast of Florida, a couple of hours after dawn, I’ve been hooked to the television and radio, engaged to a greater degree than ever before.

Perhaps it’s the thoughtful, enigmatic nature of Carpenter, a contrast to the gung ho Glenn, the taciturn Shepard, the consummate test pilot Grissom.  Maybe it’s the fact that Carpenter’s flight had its fair share of drama (but then, so did Glenn’s).  It could well be that, now that Glenn has set the template for space travel, I could spend time contemplating what it all meant.

Certainly, NASA wanted to get the most out of the flight out of Aurora 7.  Its pilot was smothered with tasks, each of them taking longer than scheduled.  First, there were the pictures to take.  Carpenter, cramped into a cockpit barely larger than that of the navy planes he used to fly for a living, fumbled to load film of the special space camera.  Then he had to make haste to spin the little Mercury spacecraft around so as to get good pictures of the horizon and ground features of interest.  By the end of Orbit One, half of the ship’s fuel was gone.

During the second orbit, Carpenter’s suit began to overheat.  Sweat dripping into his eyes, the astronaut deployed a parti-colored beachball.  It was supposed to trail behind the Mercury, providing data on the density of the rarefied atmosphere at that height, as well as the reflectivity of light in orbit.  Well, the thing never quite inflated.  The wilted thing followed along dispiritedly behind Aurora 7 for the next few hours.

This is not to say that Carpenter was having a bad time.  From his first exuberant exclamation upon becoming weightless, it was clear the astronaut was enjoying himself.  He got to eat the first full meal in space…from tubes: one of peaches, and one of beef and vegetables.  And, for a blessed four-and-a-half hours, the heavy space suit weighed nothing at all.  Even overtasked, Carpenter felt free as a bird, even in his tiny, spacecraft-shaped cage.  The dark sky framed three sunrises and three sunsets, punctuated by flurries of the same fireflies that accompanied Glenn in his flight (the astronaut believes they are ice particles shaken from the capsule). 

Fun, to be sure, but at the end of the third orbit, Carpenter was in a pickle.  Almost out of fuel, the ship misaligned thanks to a balky thruster, and the window for firing his retrorockets sliver-thin, the astronaut fired his braking thrusters a few seconds late.  For half an hour, first in the shuddering initial reentry, and then in the chest crushing crashing through the atmosphere, culminating in the gentle sway beneath parachutes before splashdown in the Atlantic, Carpenter had no idea where he would end up.

Neither did the recovery fleet.  In fact, Carpenter landed some 250 miles away from where he was supposed to.  This did not bother the philosophical spaceman, who spent the next hours relaxing on his inflatable raft, sitting in pleasant companionship with a little black fish nearby.  When the boats of the U.S.S. Intrepid finally arrived, hours later, Carpenter was completely calm.  In fact, like a good guest, he offered them some of his food. 

Aside from a little dehydration (he’d lost seven pounds in space!) Carpenter was in tip-top shape.  He has since been whisked off to Grand Turk island for extensive post-flight evaluation, and it is my understanding he got quite the hug from Glenn upon arrival.  There he will stay for a couple of days before he gets to make a tour of his home town of Boulder, Colorado. 

The folks there must be proud of their native son who has ascended far beyond the lofty Rockies.  I know I am.

[Apr. 30, 1962] Common Practice Period (April Spaceflight Round-up)


by Gideon Marcus

The radio plays Classical music on the FM band now. 

The difference is palpable.  Bach and Mozart on the AM band were tinny and remote.  It was almost as though the centuries separating me and the composers had been attenuating the signal.  This new radio band (well, not so new, but newly utilized) allows transmissions as clear as any Hi-Fi record set could deliver. 

Don’t get me wrong; I still listen to the latest pop hits by The Shirelles and The Ventures, but I find myself increasingly tuned into the local classics station.  The sound, and the selections, are just too good to ignore.  The last movement of Robert Schumann’s Symphony #1, with its stirring accelerando is playing right now, and it is a fitting accompaniment for the article I am currently composing.

Time was I would write an article on a space mission about once a month.  This wouldn’t be a wrap-up, but an article devoted to a single satellite.  But the pace of space launches has increased – there were two successful orbital flights in 1957, nine in 1958, 13 in 1959, 20 in 1960, 38 in 1961.  There were six flights just last week.  Either I’m going to have to start abbreviating my coverage, or I’ll need to start a satellite (no pun intended) column. 

But that’s a decision for next year.  Right now, with a bit of musical texturing, let me tell you all about the exciting things that happened in spaceflight, April 1962:

Quartet in USAF Minor

Late last year, President Kennedy put a lid on all military space programs, classifying their details.  This was a break from Ike’s policy, which was to publicize them (more or less accurately).  I think Eisenhower’s idea was that any space shot was good for prestige.  Also, if we were upfront about military flights, maybe the Soviets would follow suit.

The current President has decided that discretion is the better path.  So even though I have it on good authority that four boosters took off from Vandenberg Air Force Base in California (it being rather hard to hide a blast of that magnitude, and the papers are still reporting on them as best they can), I couldn’t tell you exactly what was at the tips of those rockets.  It’s a fair bet, however, that three of them were reconnaissance satellites, snapping photos of the USSR from orbit.  The last was probably a nuclear missile launch detector called MIDAS.  That’s make it the 5th in the series. 

Quartet in USSR Minor

Meanwhile, the Russians, who had not reported any spaceflights since Comrade Titov’s flight last summer, suddenly threw up four probes in about as many weeks.  The missions of “Kosmos” 1-4 were “to study weather, communications, and radiation effects during long space flights in preparation for an eventual manned landing.”

That sounds good, but while the first three satellites are still up in orbit returning scientific data, the fourth, launched four days ago, landed three days later – after passing over the United States several times.  All we know about it was it was launched from “a secret base” and “valuable data [was] obtained.”  Given that Kosmos 4’s mission plan bore a striking resemblance to that of our Discoverer capsule-return spy sats, I suspect the first three Kosmos shots were a flimsy camouflage.  What’s interesting here is that the Communists feel it necessary to construct a cover-up.  But the fact is, they just can’t hide when they launch things into space, any more than we can. 

Solo for English Horn

The first UK satellite, Ariel 1, was successfully launched on April 26, 1962 atop an American Thor Delta booster.  The little probe will investigate the Earth’s ionosphere.  You can read all about this mission in Ashley Pollard’s recent article.

Mooncrash Sonata

It’s two steps forward, one step back for NASA’s ill-starred (“mooned?”) Ranger program.  Thrice, the lunar probe failed to fly due to a balky Atlas Agena booster.  This time, Ranger 4, launched April 24, 1962, was hurled on a perfect course for the Earth’s celestial companion.  The trajectory was so perfect that the craft didn’t even require a mid-course correction.

Of course, it wouldn’t have mattered if it had.  Upon leaving the Earth, it quickly became apparent that Ranger 4 was brain-dead.  It issued no telemetry, nor did it respond to commands.  NASA dispiritedly tracked the probe’s 64-hour trip to the moon, which ended in its impact on the far side. 

Heart-breaking, but it is a sort of semi-victory: At least the rocket works now, and the United States as finally caught up with the Soviets in another aspect of the Space Race (just two-and-a-half years late…)

Saturn (fortissimo)

Speaking of successful rockets, the tremendous Saturn I had another successful test on April 25, 1962.  Like the first, the upper two stages were inert, filled with water for ballast.  This flight has a twist, however.  After the first stage had exhausted its fuel, the dummy stages were detonated and the ensuing watery explosion observed.  This “Operation Highwater” was designed to demonstrate how far the debris of a booster blast would travel.  I imagine it was also a lot of fun.

I have to wonder about the future of the Saturn I.  It has already been determined that the Apollo moon craft will be launched by the much more powerful and generally unrelated Saturn C-5 and Nova boosters.  It seems that the Saturn I is something of a technological dead end, though I’m sure they are at least perfecting their heavy booster launch techniques.

Prelude, Symphony #2

The National Aeronautics and Space Administration is planning another Mercury one-person shot for next month.  It will be an exact duplicate of John Glenn’s February flight, down to the three-orbit duration.  To be piloted by Navy aviator Scott Carpenter (the hunkiest of the Mercury 7), the main purpose of the mission is to make sure that the errors that plagued Glenn during his flight are fixed before the little spacecraft takes on longer journeys.  And, of course, then we will have caught up with the Russians in another way – we’ll have had two men orbit the planet.

No doubt, Carpenter’s flight will be the spaceflight highlight of next month; I have not seen any other missions announced.  Then again, the Reds might have a surprise that’ll have us singing a different tune…

[Mar. 17, 1962]  Our Knights in Shining Armor (Have Space Suit, Will Travel)

[The Journey’s “Fashion Columnist” returns with a timely piece on the latest advancement in sartorial science…]


by Gwyn Conaway

Last month, on February 20th, 1962, John Glenn became the second American to leave behind our earthly constraints for the majesty of space.

Less than one year after Alan Shepard’s historic suborbital flight on a Redstone rocket, John Glenn ascended to low Earth orbit in his spacecraft, Friendship 7. He circled the Earth three times at speeds upwards of 17,000 miles per hour, and persevered through the crushing force of nearly eight times the force of Earth’s gravity Gs at reentry into our atmosphere.

What a time to be alive! We are witness to human history! This is a milestone in a long journey toward chasing the unknown. Never have I been more certain that we are explorers, creatures of adventure. And what better bedfellow to our curiosity than innovation?  For to accomplish his mission, Colonel Glenn required two spacecraft: the bell-shaped Mercury, as well as his formfitting personal capsule – the Mark IV spacesuit.

Our newly beloved Space Age is thanks, in no small part, to a little-known mechanical engineer and designer named Russell Colley at B. F. Goodrich Company. Owing to his career-long devotion to high-altitude pressure suits, Colley has been deemed the Father of the Spacesuit, the First Tailor of the Space Age. Mark my words, his Mark IV spacesuits, with their sleek and futuristic design, will inspire generations of fashion to come.

The Mark IV rides on the coattails of many pressure suits designed by Colley and others over the years. Its evolution is a testament to American doggedness and bears the fruits of the unbridled technological advancements in textiles and garment manufacturing we’ve seen through the past decade.


The Post pressure suit, first flown in 1934. This suit had a skewed visor to favor Wiley Post’s one good eye.

Colley first began his groundbreaking work in 1934 when Wiley Post, the aviator who achieved fame through making the first solo flight around the globe, commissioned him to design the world’s first pressurized suit for high-altitude flight. Later the same year, after two failed designs, Colley built a rubber bladder suit with long underwear and a diver’s helmet on his wife’s sewing machine. This suit launched Wiley Post 50,000 ft into the air and jump-started an evolution over the next thirty years that leads us to our current moment of triumph – the Mark IV spacesuits.


John Glenn being fit for his Mark IV, destined to carry him into orbit last month. What once looked like a diver’s suit has now been transformed into a feat of futuristic design and engineering.

From 1941 to 1954, the David Clark Company designed and built twenty pressure suit models for the U.S. Military.  When David Clark’s funding dried up, B.F. Goodrich, where Colley worked, was offered the contract. Colley himself built seven suits at B.F. Goodrich. They started this contract with the Model H (the 8th letter of the alphabet and their 8th suit design, in case you were wondering). Models H through R were built and tested before the company began the Mark series that would take Alan Shepard, Gus Grissom, and now John Glenn into space.

By the time B.F. Goodrich won the bid to build their Mark IV spacesuits in 1961, the U.S. Military and NASA had collectively funded more than forty pressure suit designs across three major engineering companies.


The Mercury 7 in a fitting for their Mark IV space suits. Note the sage green option for the suit in the back right.

The Mark IV, in addition to its sleek name, is a marvel to behold, unlike any other piece of flight equipment I’ve ever seen. Each suit is fitted by Colley in Akron, OH, where he attended to each of the Mercury 7 pilots. The gloves alone come in fifteen sizes: five palm sizes, each with short, regular, or long digits. John Glenn had a new feature added to his gloves specifically for his February flight: tiny lights affixed to the tops of each finger so he could read the instrument panels.


John Glenn shows off his finger flashlights. Also visible in this photo are the only two instances of metal bearings in the entire suit: the neck ring and glove attachments.

Space suits have made incredible strides since his Colley’s collaboration with Wiley Post more than thirty years ago. When pressurized, these high altitude suits inflate the interior, pushing in on the human body and out on the suit. This provides the pilot with enough atmospheric pressure to stabilize blood flow to the brain and keeping them conscious during difficult maneuvers. However, once these suits are pressurized, mobility becomes extremely limited, and even bending one’s fingers becomes a task of titanic strength.


Astronauts ‘test’ the Mark IV in a light-hearted ball game. Clearly visible along the outer seams of the arms and legs are Colley’s revolutionary elastic pleating to enhance mobility.

The earliest suits were outfitted with heavy metal hinges at the joints for mobility. In a stroke of genius, Colley departed from metal bearings and joints in the Mark series. Rather, he used adjustable cords and pleats to fold the inflated suit at important junctions. While the cords had originally concerned NASA, they proved invaluable in fittings, where Colley was able to replace the lengths of many of these cords with highly-tailored zippers, elastic seams, and pressure pockets for each pilot.


John Glenn’s waffle-weave long underwear can be seen here as he suits up. The waffling occurs across the back, buttocks, thighs, and biceps in reinforced panels.

It’s a daring, romantic choice. I’m sure I’m not the only one who saw John Glenn walk to his shuttle last month and sigh, “Ah, now there is a knight in shining armor!” I wonder how far into the future Russell Colley’s Mark IV will inspire children, artists, and science fiction? How long will the stamp of America’s Mercury 7 linger on the face of space exploration? Decades? Centuries?

Yuri Gagarin may have beat us to space in April of last year, but the cosmonaut’s orange utility suit will not leave such a glimmer in the eyes of our children. The Russians touched the stars first, but Russell Colley has won the hearts of the people of Earth.

[February 20, 1962] American Made (John Glen and the flight of Friendship 7)


by Gideon Marcus

And the Free World exhales.  At long last, an American has orbited the Earth.  This morning, Astronaut John Glenn ascended to the heavens on the back of an Atlas nuclear missile.  He circled the globe three times before splashing down in the Atlantic Ocean.

It is impossible to understate what this means for us.  The Soviets have been ahead of us in the Space Race since it started in 1957: First satellite, first lunar probe, first space traveler.  Last year, the best we could muster was a pair of 15 minute cannonball shots into the edges of space.  For two months, Glenn has gone again and again into his little capsule and lain on his back only to emerge some time later, disappointed by technical failure or bad weather.  Each time, the clock ticked; would the Soviets trump us with yet another spectacular display of technological prowess?

But this morning, everything was fine – the weather, the booster, the spacecraft, and the astronaut.  As I went to sleep last night, Glenn woke up.  He had the traditional low residue breakfast of orange juice, toast, eggs over-easy, fillet mignon, and Postum, before suiting up and entering the capsule.  That was at 5 AM his time (2 AM mine).  For five hours, the patient Colonel waited as his Atlas rocket, only recently tamed sufficiently for human use, was prepared and tested for flight.

At 9:47 AM his time, at last we saw the fire shoot out from beneath the missile, saw the Atlas and its black-painted cargo lift off, leaving its support gantry shrouded in white smoke.  For several minutes, the flight of mission Mercury-Atlas #6 was a strictly aural affair, the TV cameras’ only subject being the now-empty launchpad.  But we heard the confident communication between Alan Shepard on the ground and Glenn hurtling skyward, America’s first and American’s latest spacemen, and we knew everything was still going well.

The sky went quickly from blue to black as Glenn struggled against six times his normal weight.  First, the Atlas’ two side engines exhausted their fuel and detached.  A few minutes later, the central sustainer engine’s job was complete, and the Mercury capsule, dubbed Friendship 7 by Glenn, flung itself from its empty booster.  Glenn was now in orbit, weightless, and cleared for his full three-orbit, five-hour mission.

For the first time, an American flight was long enough for the public to contemplate, to be worthy of news flashes.  And even though the last Soviet flight had spanned a full day, it was shrouded in secrecy until after its completion.  Glenn’s mission was, on the other hand, entirely open.  Cockpit chatter was broadcast in the clear; each success and potential failure was presented for the world to hear.  Space travel had become a spectator sport.

The world participated.  Indeed, it had to.  An orbital mission requires global tracking.  Glenn’s flight was monitored as he passed over exotic locales like Zanzibar, Woomera, Hawaii.  The citizens of the west Australian city of Perth turned their lights on for the astronaut’s passage, providing a virtual streetlamp as he whizzed overhead at 18,000 miles per hour. 

Three sunsets and three sunrises greeted Colonel Glenn, though he was given precious little time to appreciate them, so crowded was his schedule with experiments and ship operations.  As the Mercury spacecraft’s functions began to degrade in its third orbit, the value of an experienced human pilot became evident.  Glenn manually configured and trimmed the vessel to make the most of the journey and ensure the mission could be completed. 

Glenn’s biggest challenge came at the end of the mission.  Sailing backwards over the Earth, the astronaut prepared to fire the ship’s retrorockets, a blast of fire that would slow the craft such that it could break out of orbit and back toward ground.  But an indicator suggested that the Mercury’s heat shield was loose.  If that were true, then there could be no returning for the astronaut – he would burn up on reentry. 

Was there anything the astronaut could do about the situation?  Well, the retrorocket package was held tight against the bottom of the bell-shaped craft (and thus, its heat shield) by a series of straps.  Normally, the retrorockets would be discarded before reentry.  This time, on the advisement of ground control, Glenn left the retrorockets strapped in.  The hope was that the straps would keep the shield attached, if it was indeed loose.

What a terrifying display that must have been for the pilot, watching flaming chunks of the retrorockets fly past his window as he tore through the white-hot outer layers of the atmosphere.  Glenn had plenty of other things to worry about.  The “G” forces spiked as the craft decelerated, and the ionization of the air cut off radio contact.  We all waited, white-knuckled, for some sign that the astronaut had survived the journey…or had been vaporized.

Then his voice crackled over the air again, the Mercury’s striped parachutes were deployed, and we began breathing again.  A ship of the recovery fleet, the little destroyer called the U.S.S. Noa, was already close at hand when Friendship 7 touched down in the waves.  Once the capsule was hoisted aboard, the astronaut popped the side hatch, the one that had exploded prematurely for second astronaut Grissom.  An overheated but grinning Glenn stepped out of the Mercury, and into history.

Mercury’s primary mission, to orbit and safely return a human, has been completed.  Nevertheless, there is obviously much life left in the bird.  Three more three-orbit flights are planned to shake out the bugs that plagued the latter portion of Glenn’s flight.  Then 12, 24 hour, and perhaps multi-day flights are slated. 

Of course, the Soviets may soon respond with a flight that trumps ours, perhaps even a two-person mission.  But for now, the hour rightfully belongs to the West.  The democracies of the world at last have their emissary to the stars. 

Godspeed, John Glenn!

[February 1, 1962] Silver Lining (January Space Race round-up!)


by Gideon Marcus

January has been a frustrating month in the Space Race.  We are no closer to matching the Soviets in the manned competition, much less beating them, and our unmanned shots have been a disappointment, too.  That said, it’s not all bad news in January’s round-up: stick to it through the end, and you’ll see cause for cheer!

Quintuplets fail to deliver

The Air Force has been playing around with combined launches for a while now.  After all, if you’re going to spend millions of dollars to throw a booster away, you might as well get multiple bangs for your buck.  Sadly, the latest attempt, a Thor Ablestar launch on January 24 dubbed “Composite 1,” failed when the top stage tumbled in orbit and failed to separate from its payloads.

What we lost: SolRad 4, for measuring solar X-rays (only visible above the curtain of the atmosphere); Lofti 2, which would have examined the effects of Earth’s ionosphere on Very Low Frequency radio transmissions; Surcal, a strictly military probe designed to calibrate the navy’s communications net in orbit; the wholly civilian Injun 2, which would help map the Van Allen belts (see below); and Secor, a big balloon that would have helped the Army with their ranging equipment.

Copies of these probes will end up at some point, either launched together on a big rocket or separately on little ones.

Moon Miss-ion

It’s been a bad run of luck for NASA’s latest moon program, Project Ranger.  After the failure of the first two Ranger missions, designed to test the probe’s engineering and return sky science, there were high hopes for the lunar flight, launched January 26. 

Things went badly from the beginning.  Ranger 3 was pushed into a bad trajectory by a faulty guidance system.  Not only did it rush past the moon, failing both to hit the target or end up in orbit, but it was pointed the wrong way the entire length of the journey.  No useful data or pictures were obtained.  That nifty seismometer that makes up Ranger’s Rudolph nose went completely unused. 

Ranger 4, a carbon copy of #3, should launch in the next few months.  Hopefully, they’ll have the kinks worked out by then.  This is one of those clear places where the Communists are ahead in the space race, having pioneered both lunar orbit and the moon’s surface several years ago.

A rain check for Mercury

The third time turned out also not to be the charm for Major John Glenn.  His orbital Mercury mission has now been postponed three times.  It’s a good thing the Marine is so good-natured; I know I’d be frustrated.

The first delay happened on January 22 when there was a failure in the spacecraft’s oxygen system.  Definitely something I’d like working on a five hour flight!  On the 27th, cloud cover prevented the launch, and just today, there was a problem with the temperamental Atlas booster.  The next opportunity to launch won’t come until February 13.

So much is riding on this flight.  The Soviets have already launched two of theirs into orbit while we flutter futilely on the ground.  Newspapers and talking heads are already opining that we’ll have a Red-staffed space station and a Red-dominated moon before long if we don’t hurry to catch up. 

Explorer 12: Reaping the harvest

Here’s the good news: I’ve said before that the most exciting thing about a satellite is not its fiery launch but the heap of data it returns.  That’s where the taxpayer gets one’s money’s worth and where the scientist sees the payoff.  Explorer 12 was the latest in the series of probes (starting with America’s first, Explorer 1) sent into orbit to probe the hellish fields of charged particles that circle the Earth.  The spacecraft is still up there, though it went silent in December.  However, in its four months of life, it learned a great deal about the furthest reaches of our planet’s influence.

For one, Explorer 12 found that the outer of the two “Van Allen” belts around our planet is made mostly of protons rather than electrons (though there are still plenty of the latter — enough to make hanging around a dangerous proposition for astronauts).  Those protons, particularly the less energetic ones, have been linked to solar magnetic storms, which result in spectacular auroras on Earth.

Perhaps even more interesting is that the probe found the edge of the Earth’s magnetosphere.  “What’s that?” you ask.  Well, our planet is a giant magnet, probably the result of a dense iron core that spins deep inside the Earth.  These magnetic lines of force extend far beyond the Earth’s crust and 70,000 kilometers into space where they trap the wind of high energy particles from our sun.  This keeps them from scouring away our atmosphere. 

Where our magnetic field meets the field carried on the solar wind, called the magnetopause, there is an area of turbulence and disorganized magnetism. It is now believed that the sun’s wind smashes against the Earth’s field, creating a bow shock – the kind you’d see when a blunt body is smacked by a supersonic gas.  Moreover, the Outer Van Belt “breathes” inward and outward, responding to waves in the solar wind.

And speaking of magnetic fields, NASA scientists just released findings from the intentionally short-lived Explorer 10 found a magnetic “shadow” behind the Earth.  Specifically, the solar wind seems to hit our planet’s magnetosphere and deflect around the Earth, but the magnetic field acts as kind of an umbrella, shielding a large portion of near-Earth space. 

The general contours of Earth’s magnetic environment have thus been mapped.  Neat stuff, eh?

[November 30, 1961] Man vs. Machine (November 1961 Space Round-up)


by Gideon Marcus

November 1961 been an exciting month for space buffs with several sequels to exciting missions as well as one brand new satellite. 

For instance, the fourth Transit navigational satellite went up on November 15.  Not only did it carry a little nuclear reactor for power, but it also had a piggyback pal.  Called Transit Research and Attitude Control (TRAAC), it’s a little research probe designed to try a new method of stabilization.  You see, an object launched into orbit will have a tendency to tumble.  There are active methods to right a satellite, like engines or gyroscopes.  TRAAC uses a passive method, employing just its shape and the tidal force of the Earth.  It’s an exciting experiment.

The Air Force was two for three this month with their reconnaissance programs.  Discoverer 34, on November 5, and Discoverer 35, on November 15, were sent into space to spy on the Soviet Union.  Each had a little camera on board and a capsule for sending film back to Earth.  Both craft made it into orbit, and at least the latter mission’s payload was recovered in a daring (but now routine) mid-air catch by a plane.  Only the boys in blue know whether the targets were a Soviet base or skinny dippers on the Black Sea.  Samos 4, launched November 22, failed to orbit.

By the way, it’s going to get harder for me to give you the skinny on military missions.  While Eisenhower was rather cavalier about letting the Soviets know what we’re up to, probably to show off, President Kennedy has put a lid on spy flights.  Newspapers aren’t covering them much anymore, and the details we do get are sketchy.  Just be aware that, at any given time, there are robot shutterbugs in orbit, taking snapshots of Nikita.  And maybe of you.

On to the civilian world: the second Moon probe Ranger probe was a bust, just like the first.  It’s a shame because these two missions, comprising the first iteration of the probe known as “Block 1,” were designed to do some excellent sky science.  They weren’t aimed at our celestial neighbor.  Rather, they were to be flung into high orbits for engineering tests and cosmic investigation.  The next mission, a Block 2 lunar impactor, is planned for January 1962.

But the real NASA news this month involves a little primate named Enos.  Yesterday, for the second time, an Atlas booster roared into the orbit from Cape Canaveral with a Mercury capsule at its tip.  Unlike the last one, however, Mercury-Atlas #5 (the first three had been suborbital missions) carried a passenger.  The 37.5 pound chimpanzee circled the Earth twice before safely splashing down some 255 miles southeast of Bermuda.

Just as the launch of a chimp presaged Alan Shepard’s suborbital flight in May, so Enos’ jaunt paves the way for astronaut John Glenn to be the first American in orbit in just a few weeks (weather permitting).  Now, the flight was not entirely flawless.  A roll reaction jet failed, and one of the components of the electrical system overheated.  As a result, Enos’ capsule returned to Earth after just two of the planned three orbits.  But, had a human been on board, he could have compensated for these issues, easily. 

That’s the bigger story, to me.  I know some people wonder why we bother to send people up into space when electric implements have proven capable enough, and cheaper.  And there is certainly a segment of the flyboy population that snickers at the thought of test pilots relegated to following in the furry shoes of ape predecessors. 

Yet, in MA-5, we have the reason.  No monkey and, as yet, no machine can react with the speed and intellect of a human.  Moreover, no machine can think creatively, adapting to an evolving situation beyond a few set scenarios programmed into its core.  Imagine if an astronaut were flying the Discoverer missions.  He’d have the discretion of choosing the targets to photograph.  He’d be able to bring a film capsule home with him rather than relying on complicated automatic systems and aerial recovery planes. 

When John Glenn flies, he will return far more information about the universe than any experiment or animal could, not just scientific, but about the human condition.  For 270 minutes, he will be an outpost of the Free World in space.  What will it mean to him, to all of us, his three circuits of the globe? 

We can’t know until he gets there, but I’m betting it will be profound.

[September 13, 1961] Dry Run (Mercury-Atlas 4)


by Gideon Marcus

It’s is a red-letter day for the National Aeronautics and Space Administration (NASA), and for America as a whole.  For today, we finally got a Mercury space capsule into orbit!  The flight, dubbed “Mercury-Atlas 4,” began this morning in a blast of fire on a Florida launchpad and lasted one hour and fifty minutes.  At its conclusion, the Mercury capsule deorbited and parachuted safely into the Atlantic ocean.  By all standards, it was a picture-perfect mission.

Except that there wasn’t anyone in the capsule…

All flippancy aside, it really is a big deal.  The reason the Soviets are ahead of us, such that they’ve gotten two fellows into orbit while our two astronauts have been limited to 15-minute suborbital jaunts, is because they started out with the better rocket.

In 1957, the Russians announced that their first ICBM, a missile that can cross the world, was ready for business.  It is no coincidence that their first space probe, Sputnik, was launched soon after.  That’s because an ICBM can be used to carry payloads into orbit about as easily as they can carry atomic weapons to farflung countries. 

The United States had no ICBM in 1957.  We were later to that party.  Instead, we had a stable of shorter-ranged IRBMs, sufficient only to launch small payloads into space.  Our first ICBM, the Atlas, wasn’t operational until 1960.

It takes an ICBM to launch something as heavy as a manned spaceship, and it’s not enough that the missile be able to deliver a nuclear payload.  Since the stakes are higher with a human passenger, it is important to qualify an ICBM as a space booster very carefully, something the Soviets have had more time to do.  The Russian qualification flights, Sputniks 4, 6, and 9, all took place before last March.  Our balky Atlas has now been tested with the Mercury capsule four times.  Only two of those flights were successful – the second, a suborbital jaunt, and this latest, orbital, flight

I imagine NASA is still not out of the woods.  They’ll want to see the Mercury Atlas combination work together at least once more before trusting a man to it.  (I use the word “man” in its specific sense.  The team of 13 woman astronaut candidates was disbanded this week, more’s the pity)

Based on the results of this flight, it is just possible there might be a manned orbital Mercury flight before the year is out.  Or at least before the next few Soviet men (and women?) fly overhead…

[August 7, 1961] Day-O!  (Vostok 2 spends day in orbit)


by Gideon Marcus

For a few bright weeks, it looked as if the United States might be gaining in the Space Race.  Now, the Reds have pulled forward again with a most astonishing announcement: their second cosmonaut, a Major Gherman Titov, orbited the Earth in his “Vostok 2” for an entire day before coming safely back to Earth this morning.

As usual, details of the launch were not divulged until Comrade Titov was already in space.  He circled the globe a record 17 times (compare to his predecessor, Gagarin’s, single orbit).  The flight lasted long enough that Americans had the unique, if not entirely pleasant, opportunity to both go to bed and awaken with the knowledge that a Russian was whizzing just a matter of miles over their house.

This flight comes almost on the heels of that of our second spaceman, Captain Gus Grissom, who flew into space for a comparatively puny 15 minutes on July 21.  For a few short weeks, the free world held the lead, if not in time in space, then at least number of astronauts.  The Soviets have now made that success look feeble.  In fact, I am now hearing rumors that astronaut John Glenn’s suborbital Mercury flight, scheduled for next month, will likely be canceled.  There is no propaganda value left in half-measures, and besides, Shepard’s and Grissom’s flights taught us all there was to be learned from the Redstone launched missions.

Now, there is a whole lot of worry being dispensed by the newspapers over Titov’s flight.  Many speculate that there is no way we can catch up to the Communists in our race for the Moon.  After all, our first orbital flight is still untold months away; before an American ever orbits the Earth, the Russians may have a space station or even a foothold on our nearest celestial neighbor.

I think these fears are unfounded.  Vostok 2 was almost assuredly the same type of ship as Gagarin’s Vostok 1.  It was designed, like our Mercury, to endure several days in orbit.  The increase in orbits from 1 to 17 does not reflect a seventeen-fold increase in Soviet space capability – merely greater use of Vostok’s full potential.

Similarly, the 15 minute flights of Freedom 7 and Liberty Bell 7 reflect but a tiny proportion of the Mercury spacecraft’s endurance.  When the Atlas booster is on-line in a few months, you will see the American program accomplishing the same feats as that of the Soviets.  I’m willing to bet our lunar ship, which the National Aeronautics and Space Administration began work on earlier this year, will be done before its Russian counterpart, too.

We have to remember that the timing of the Soviet missions is designed for maximum psychological effect.  Without taking anything away from the 26-year old Titov’s noteworthy trip, I note that it occurred just as tensions over Berlin reached their highest since the Commnunist blockade of 1948.  Khruschev is flexing his muscles, both on the land and in space, hoping that Kennedy will blink if the Soviets carry out their threat to wall off their side of Berlin from ours. 

Now is not the time to get discouraged.  Not in the Space Race, not in the Cold War.  As I’ve said before, the Race to the Moon is not a sprint; it’s a marathon.

[July 22, 1961] Into Space – and the Deep Blue (The Flight of Liberty Bell 7)


by Lawrence Klaes

After three failed attempts just this week, yesterday (July 21, 1961), astronaut Virgil I. “Gus” Grissom finally became this nation’s second (and the world’s third) man to reach outer space.  Grissom achieved another sort of milestone when his spacecraft unexpectedly sank after splashdown – and almost took the astronaut with it to the bottom of the Atlantic Ocean!

Following a very similar mission profile to that of his predecessor, Alan Shepard, back on May 5, Grissom rode his Mercury vessel, which he christened Liberty Bell 7 (complete with a painted white crack on the hull) in an arcing flight across the Atlantic Ocean from Cape Canaveral’s Launch Complex 5 (LC-5) in Florida.

The reliable Redstone booster hurled the ton-and-a-half craft, some 262.50 nautical miles downrange and 102.76 nautical miles above the Earth’s surface Grissom’s 15-minute suborbital flight lasted just nine seconds longer than Shepard’s.  Of course, both flights were far shorter than Cosmonaut Gagarin’s 90-minute flight in April.  That’s because the Redstone simply isn’t powerful enough to send a Mercury into orbit, unlike the unnamed ICBM the Soviets are using. 

Grissom’s flight was relatively short in both duration and distance, but our second American astronaut did get to experience a few moments of weightlessness, move his ship around, and view our home planet and the blackness of space as few have yet to do.  His view was better than Shepard’s: The two portholes on Freedom 7 were replaced with a larger single window. 

The other improvement on Liberty Bell 7 was an explosive side hatch, to be activated in the event of emergency after landing.  It was a wise precaution, but it almost caused the Mercury program’s first fatality.

After Grissom’s splashdown in the Atlantic, while he waited inside his space vessel to be rescued by four Sikovsky UH-34D helicopters dispatched from the aircraft carrier USS Randolph, the explosive release on the Liberty Bell 7 side hatch suddenly activated, blowing the heavy metal door across the water like a skipping stone.  The Atlantic Ocean rushed into the now open spacecraft.

The Mercury astronaut prudently abandoned his vessel and waved frantically at the hovering helicopters to hoist him out of the drink: Grissom’s spacesuit was filling with sea water due to an open oxygen inlet connection and it began weighing him down.  The rolls of Mercury dimes Gus had taken along in his suit to later hand out as souvenirs were also contributing to his inexorable dip beneath the ocean surface.

Unfortunately, the lead helicopter pilot interpreted Grissom’s reaction as an indication that he was okay, so they focused on trying to rescue the sinking Liberty Bell 7 by attaching a cable to it>.

The flooding Mercury spacecraft soon became too heavy for the helicopter to lift from the water, and it threatened to bring down the chopper and its crew as well.  With no other choice, the rescue team detached Liberty Bell 7, which quickly sank to the bottom of the ocean over seventeen thousand feet below. 

Attention finally returned to the desperate astronaut.  Grissom grasped for the lowered harness.  Exhausted, he slumped in the harness as he was retrieved for his trip back to the rescue ship. 

It remains to be determined whether the premature explosion of the side hatch was caused by a mechanical defect or by manual release by Grissom, perhaps in a momentary panic.  Gus himself swears he was lying calmly inside the spacecraft when the incident occurred.  Whatever the real story, engineers will need to check the hatch escape system thoroughly to make sure it does not happen again – especially in space!  Perhaps this system will be more fully tested during the next Mercury mission, another suborbital flight scheduled for September, with John Glenn the anticipated pilot.

Intriguingly, in his post-flight briefing this morning, attended by his family and fellow astronauts, Grissom admitted to feeling “scared” when his vessel lifted off towards space.  The Mercury spacemen were chosen for their exceptional bravery and flying skills.  Yet, in the end, they are human.  Did Gus, who flew 100 combat missions during the Korean War and has had a long reputation as a top-notch pilot, have a moment of weakness when confronting the unknowns of outer space?  Is this what contributed to the release of the spacecraft hatch that caused the loss of the Liberty Bell 7 and nearly the astronaut as well?  Are there aspects about the vast realm beyond Earth that may make it impossible for a man to extensively explore and colonize space?

At the moment only three human beings have actually ventured into the alien void.  All have returned alive and unharmed; however, in all of these cases they made only the briefest of ventures into space.  Can someone survive the longer durations entailed in extended orbital missions?  What about manned expeditions to the Moon and other worlds in our Solar System?  Can man make it to those places in person and live to tell the tale?

In the end, there can be only one way to find out: By sending qualified men and eventually even women into the Final Frontier to confront what may be there and conquer it for the good of humanity. 

[June 30, 1961] Reaping the Harvest (June 1961 space science results)

June was a busy month for space travel buffs, especially those who live in the Free World.  Here’s an omnibus edition covering all of the missions I caught wind of in the papers or the magazines:

Little lost probe

The Goddess of Love gets to keep her secrets…for now.  The first probe aimed at another planet, the Soviet “Venera,” flew past Venus on May 19.  Unfortunately, the spacecraft developed laryngitis soon after launch and even the Big Ear at Jodrell Bank, England, was unable to clearly hear its signal.

The next favorable launch opportunity (which depends on the relative positions of Earth and Venus) will occur next summer.  Expect both American and Soviet probes to launch then.

X Marks the Spot

Just as planes use fixed radio beacons to determine their position, soon submarines (and people!) will be able to calculate where they are by listening to the doppler whines of whizzing satellites.  Transit 4A, launched by the Navy, joined the still-functioning Transit 2 on June 29 (#3 conked out March 30, and #1’s been off the air since last July). 

This Transit has an all-new power source.  Instead of batteries or solar panels, it gets its juice from little nuclear reactors.  These aren’t aren’t like the big fission plants you see being established all over the country.  Rather, they are powered by the heat of radioactive decay.  These energy packs are small and much simpler than solar panels.  Expect to see them used quite a bit on military satellites.

The Navy gets extra points for making their rocket do triple-duty: Also boosted into orbit were Injun 1 and Solrad 3.  The first is another University of Iowa particle experiment from the folks who discovered the Van Allen Belt; the latter a solar x-ray observatory.

Along a dusty trail

Contrary to popular belief, outer space is not empty.  There are energetic particles, clouds of dust, and little chunks of high-speed matter called micrometeorites.  All of them pose hazards to orbital travel.  Moreover, they offer clues as to the make-up and workings of the solar system. 

Prior satellites have tried to measure just how much dirt swirls around in orbit, but the results have been vague.  For instance, Explorer 8 ran into high-speed clouds of micrometeorites zooming near the Earth late last year corresponding with the annual Leonids meteor shower.  Vanguard 3 encountered the same cloud in ’59, around the same time.  But neither could tell you precisely how many rocks they ran into; nor could previous probes.

NASA’s new “S(atellite)-55” is the first probe dedicated to the investigation of micrometeorites.  It carries five different experiments — a grid of wires to detect when rocks caused short circuits, a battery of gas cells that would depressurize when impacted, acoustic sounding boards…the whole megillah.  It is one of those missions whose purpose is completely clear, accessible to the layman, unarguably useful.

Sadly, the first S-55, launched today from Wallops island, failed to achieve orbit when the third stage of its Scout rocket failed to ignite. 

It’s a shame, but not a particularly noteworthy one.  The Scout is a brand new rocket.  We can expect teething troubles.  Every failure is instructive, and I’ll put good money on the next S-55, scheduled for launch in August.

Worth the Wait

Speaking of Explorer 8, Aviation Week and Space Technology just reported the latest findings from that satellite.  Now, you may be wondering how a probe that went off the air last December could still generate scientific results.  You have to understand that a satellite starts returning data almost immediately, but analysis can take years. 

I’d argue that the papers that get published after a mission are far more exciting than the fiery blast of a rocket.  Your mileage may vary.  In any event, here’s what the eighth Explorer has taught us thus far (and NASA says it’ll be another six months until we process all the information it’s sent!):

1) The ionized clouds that surround a metal satellite as it zooms through orbit effectively double the electrical size of the vehicle.  This makes satellites bigger radar targets (and presumably increases drag).

2) We now know what causes radio blackouts: it is sunspot influence on the lower ionosphere. Solar storms create turbulence that can cut reception.

3) The most common charged element in the ionosphere is oxygen.

4) The temperature of the electrons Explorer ran into was about the same as uncharged ionospheric gas – a whopping 1800 degrees Kelvin.

This may all seem like pretty arcane information, but it tells us not just about conditions above the Earth, but the fundamental behavior of magnetic fields and charged particles on a large scale.  Orbiting a satellite is like renting the biggest laboratory in the universe, creating the opportunity to dramatically expand our knowledge of science.

Air Force discovers Pacific Ocean

The 25th Discoverer satellite, a two-part vehicle designed to return a 300 pound capsule from orbit, was successfully launched June 16.  Its payload was fished from the Pacific Ocean two days later, the recovery plane having failed to catch it in mid-descent.  I recently got to see one of those odd-tailed Fairchild C-119 aircraft that fly those recovery missions; they’re bizarre little planes, for sure. 

As for the contents of the space capsules, it’s generally assumed that they carry snapshots of the Soviet Union taken from orbit.  This time around, however, the flyboys included some interesting experiments: three geiger tubes, some micrometeroid detectors, and a myriad of rare and common metals (presumably to see the effects of radiation upon them). 

You may be wondering what happened to Discoverers 23 and 24 (the last Discoverer on which I’ve reported was numbered 22).  The former, launched on April 8, never dropped its capsule; the latter failed to reach orbit on June 8.  Unlike NASA, the Air Force gives numbers to its failed missions.

Next Mercury shots planned

Virgil I. “Gus” Grissom is set to be the next Mercury astronaut in late July.  His flight will be a duplicate of Alan Shepard’s 15 minute jaunt last month.  If all goes well, astronaut John Glenn will fly a similar mission in September.

I don’t think the Atlas is going to be ready in time this year for an orbital shot.  That means there will be several tense months during which the Soviets could upstage us with yet another spectacle.