Tag Archives: transit

[May 30, 1964] Every journey begins… (Apollo's first flight!)


by Gideon Marcus

One Step

Humanity took its first halting steps toward the Moon with the (mostly) successful launch of the first Apollo spacecraft into orbit on May 28, 1964.  Blasting off from Cape Kennedy's Pad 37B, the sixth Saturn I, biggest rocket in existence, carried a boilerplate, non-functional spacecraft. 

The mission marked firsts in several ways.  Whereas the previous five Saturns had been topped with Jupiter-C nosecones, SA-6 was the first to prove the actual Apollo structure.  Less auspiciously, the flight also marked the first malfunction of the Saturn rocket: 122 seconds into its mission, 24 seconds before planned cut-off, engine #8 prematurely shut down. 

But out of the jaws of failure came ultimate success.  The other engines continued to fire an additional two seconds, the four inboards shutting down shutting off 142 seconds into flight, the remaining three outboards going dark at Launch + 148.  Despite these compensations, AS-101 (the name for the spacecraft) was still flying "low and slow"; the second stage then ignited and compensated for the balky first stage, ultimately delivering the Apollo spacecraft almost perfectly into its planned orbit. 


That's Wernher von Braun in the middle; next to him, with the glasses, is George Mueller, who used to run the Pioneer lunar project at STL

Thus, the failure of engine #8 actually proved a blessing in disguise — we now know that the Saturn guidance system works quite nicely.  Moreover, given the excellent track record of the first stage's H-1 engines, I suspect the causes of the shutdown will be determined and remedied in short order.

AS-101 will be in orbit about one more day before it plunges into the atmosphere.  Like the first Gemini mission (last month), the spacecraft will not be recovered. 

SA-7/AS-102 will be a largely identical mission that will test the escape tower, the little rocket that will rescue Apollo astronauts in the event of a launch failure.  It is due to go up at the end of August.  Crewed spaceflights should happen as early as 1966!

No News is…

In other news, there isn't much news.  Since our last update, the Soviets launched Kosmoses 29 and 30 (April 25 and May 18), both of which landed just a week after launch, which suggests they were really spy satellites a la our Discoverer program.  Meanwhile, the United States Air Force lofted two birds of its own, a small one on April 27, and a big one on May 19.  I'd bet the first one was some a traditional film-return spy satellite (the kind that snaps photos in space and then sends the shots down to Earth for development in a little capsule).  As for the second, either it carries multiple canisters, or it's some kind of advanced system — maybe a real-time TV eye in orbit?

By the way, on April 21, I understand an Air Force rocket went boom, and the satellite it was carrying, a navigational Transit was on board.  That'd be no big deal…except this Transit was powered by the radioactive decay of plutonium-238.  I haven't heard much reporting on the subject, but I sure hope the flyboys are more careful next time!

The Soviets did launch Polyot-2 on April 12.  This is a special satellite that is able to change orbits.  That could mean that it's a precursor to the next Communist space vehicle (that's the thought advanced in Martin Caidin's recent novel, Marooned) or it could be a spacecraft designed to intercept missiles or other vehicles in space.  We won't know for a while, if ever.

Coming Attractions

As we head into the summer, it looks like things will remain pretty calm, unless the Russians pull another surprise out of their hats.  The only big event on the horizon is the launch of Ranger 7 in July.  After ten straight failures on the way to the Moon, I can't imagine the betting is particularly good for this flight.

But hope springs eternal…  See you then!


[Come join us at Portal 55, Galactic Journey's real-time lounge!  Talk about your favorite SFF, chat with the Traveler and co., relax, sit a spell…]




[May 6, 1964] The Predicament: Transit by Edmund Cooper


by Victoria Lucas

It Finally Came!

Just a wee plug.  My favorite publisher is Faber & Faber.  While I was wiping the drool from my face during a perusal of their last catalog, something caught my eye.  An interesting book, of course, but this time not a playbook (my usual fare, when I can afford it): it was a novel by a popular British author, Edmund Cooper.  If you saw “The Invisible Boy” (the movie), you saw a version of his The Brain Child, a book published the year before.  But the novel I finally counted my pennies and bought long distance was Transit.  The hype made it look delicious, and it had a February 1964 publication date.  So it arrived at last from the Isles.


Cover art by Brian Rigby

Richard Avery/Edmund Cooper

One of the things I learned about Cooper when I looked him up was that he has a number of pseudonyms: George Kinley, Broderick Duain, Martin Lester, … and Richard Avery.  On page one of Transit, in fact in sentence one I learned that the protagonist of this book is … Richard Avery.  I don’t know what that means that he was putting himself in this book, but perhaps it indicates somehow that Avery and Cooper share opinions about things?

In the first part of the book we learn mainly about Richard, but as he suffers “transit” to another planet in this “sector” of the galaxy, he — and we — are introduced to Barbara, then to Mary.  On the planet where Richard, Mary, and Barbara are marooned, we meet Tom, also late of London as well.  They find themselves in a “predicament.”


Edmund Cooper

Predicament under Achernar

The planet is the fourth orbiting Achernar, a blue giant in a binary system.  (The star is real; who knows about the planet.) The four strangers, already divided into two couples by the choices made by their kidnappers, find themselves on a beach of an island in a strange ocean, with just enough food to last them a single day, but with flashcards identifying useful and dangerous animals and plants, one gun and some ammunition for it, knives and hatchets, and general camping equipment, including tents.  Some of their personal belongings have arrived with them, although they don’t yet know how or why. 

The word “predicament” appears in this early characterization by the narrator, Richard: “The predicament … was, itself, neither clear nor sane.” Of course I looked up the word (as I always do when faced with any word that appears to be important or undefined).  Partridge’s Origins, “a short etymological dictionary of modern English,” delves into the earliest prototypes of the word, taking it back to the Latin for “proclaim.” It is something proclaimed, thus circumstantial, and by extension unpleasant.  One does not land in a predicament by one’s own power except by being in the wrong place at the wrong time.  Each of the protagonists looked down to see a crystal gazing up at them in Kensington Gardens or Hyde Park.  That was the wrong place at the wrong time that landed them on an island on another planet that had not heretofore been home to anything brighter than a crocodile-like creature.

From Kensington Gardens to The Garden

Like the garden populated only by Adam and Eve, this book concerns only four people (and some ghosts of the past haunting their brains) until close to halfway through the book, when unknown others make themselves known but not seen.  Before they begin to impinge on the solitude enjoyed by Tom and Mary, Richard and Barbara, the four (but especially Richard) are occupied by trying to figure out what has happened to them and why.  As they experience their first sunset under two moons, Richard considers the classic universe occupied by the 20th-century Christian, then continues, “But perhaps God had many children, and some of his children were adept at the manufacture of hypnotic crystals.  And other things.”

At first Richard misses London; then, as they camp out on an island on which they are apparently abandoned, he has a “vision of the morning rush hour packed with victims for the City’s concentration camp.” Richard considers that he is having entirely too many visions, and thinks, “Maybe I’m in a lovely nut-house in London” just before the hears the gunshots that herald the end of their idyl.  Instead of being ejected from a primeval garden by God, the two couples are rousted by what turn out to be another group of four dropped on the opposite shore of the island — but these are not humans.

Remaining Mum

To tell you any more about the plot would, I think, rob it of the elements of surprise on which Cooper depends to keep the story fresh.  I will disclose that it is an optimistic tale despite Richard’s and the other characters’ speculations, sufferings, and hardships.  Richard does speak of the “impossible unending promise of tomorrow,” and, particularly about their group, “the conspiracy of sex.” However, the really good thing about this book, aside from the quality of the writing, is the character development.  Most formulaic stories, including detective, romance, and science fiction — all of which Cooper has written — have little to no character development.  The people are often stock characters, Everyman or Everywoman, and they do not learn, change, or otherwise evolve during their stories.  This book is enough about evolution, change, development that I think perhaps “transit” is not just meant in terms of physically going from one place to another, but more like its synonym “movement” or the definition “pass through,” or (from the original Latin) “go across.”

Richard and his companions pass through many states of mind, grow and become different from the people they were when they first saw the crystals.  My criticisms below pale before this achievement.

The Demerits

You will be familiar with my first criticism.  It’s about the way women are generally treated in SF–even by women authors.  We are too helpless, too unintelligent, too timid to make our own decisions.  When they are first on the island, both women assert that “somebody has to be responsible for us” (the group of 4) and “make the decisions.” Barbara adds, “A man.” Of course it is Richard, who, despite a probationary period, remains the group leader afterward.  The women do learn to use weapons and to be responsible for themselves, but they do not make the decisions nor participate in them.

Second, the ending: I find it really unsatisfactory.  Without revealing too much, I feel as if Cooper, whose eighth novel this was, reached a word count and decided that was enough.  Perhaps he felt that with a wide-open future before his protagonists there was no need to expand further.  I’m too practical for that.  I want to know how their future could be accomplished with the tools they have, and I’m also pretty disappointed in the aliens who brought them to the garden.  The very qualities that they appreciate in the humans are the ones they seem to lack themselves.  Oh, well.  I say go read the book and see what you think.  I give it maybe 4 out of 5.  Pretty good.

Parting Note

And now for a word about my own future.  My own predicament is also “neither clear nor sane,” and I am doing the only thing I know to do about it, leaving for what I hope are greener pastures.  Look for me next month in San Francisco.


[Come join us at Portal 55, Galactic Journey's real-time lounge!  Talk about your favorite SFF, chat with the Traveler and co., relax, sit a spell…]




[November 30, 1961] Man vs. Machine (November 1961 Space Round-up)


by Gideon Marcus

November 1961 been an exciting month for space buffs with several sequels to exciting missions as well as one brand new satellite. 

For instance, the fourth Transit navigational satellite went up on November 15.  Not only did it carry a little nuclear reactor for power, but it also had a piggyback pal.  Called Transit Research and Attitude Control (TRAAC), it's a little research probe designed to try a new method of stabilization.  You see, an object launched into orbit will have a tendency to tumble.  There are active methods to right a satellite, like engines or gyroscopes.  TRAAC uses a passive method, employing just its shape and the tidal force of the Earth.  It's an exciting experiment.

The Air Force was two for three this month with their reconnaissance programs.  Discoverer 34, on November 5, and Discoverer 35, on November 15, were sent into space to spy on the Soviet Union.  Each had a little camera on board and a capsule for sending film back to Earth.  Both craft made it into orbit, and at least the latter mission's payload was recovered in a daring (but now routine) mid-air catch by a plane.  Only the boys in blue know whether the targets were a Soviet base or skinny dippers on the Black Sea.  Samos 4, launched November 22, failed to orbit.

By the way, it's going to get harder for me to give you the skinny on military missions.  While Eisenhower was rather cavalier about letting the Soviets know what we're up to, probably to show off, President Kennedy has put a lid on spy flights.  Newspapers aren't covering them much anymore, and the details we do get are sketchy.  Just be aware that, at any given time, there are robot shutterbugs in orbit, taking snapshots of Nikita.  And maybe of you.

On to the civilian world: the second Moon probe Ranger probe was a bust, just like the first.  It's a shame because these two missions, comprising the first iteration of the probe known as "Block 1," were designed to do some excellent sky science.  They weren't aimed at our celestial neighbor.  Rather, they were to be flung into high orbits for engineering tests and cosmic investigation.  The next mission, a Block 2 lunar impactor, is planned for January 1962.

But the real NASA news this month involves a little primate named Enos.  Yesterday, for the second time, an Atlas booster roared into the orbit from Cape Canaveral with a Mercury capsule at its tip.  Unlike the last one, however, Mercury-Atlas #5 (the first three had been suborbital missions) carried a passenger.  The 37.5 pound chimpanzee circled the Earth twice before safely splashing down some 255 miles southeast of Bermuda.

Just as the launch of a chimp presaged Alan Shepard's suborbital flight in May, so Enos' jaunt paves the way for astronaut John Glenn to be the first American in orbit in just a few weeks (weather permitting).  Now, the flight was not entirely flawless.  A roll reaction jet failed, and one of the components of the electrical system overheated.  As a result, Enos' capsule returned to Earth after just two of the planned three orbits.  But, had a human been on board, he could have compensated for these issues, easily. 

That's the bigger story, to me.  I know some people wonder why we bother to send people up into space when electric implements have proven capable enough, and cheaper.  And there is certainly a segment of the flyboy population that snickers at the thought of test pilots relegated to following in the furry shoes of ape predecessors. 

Yet, in MA-5, we have the reason.  No monkey and, as yet, no machine can react with the speed and intellect of a human.  Moreover, no machine can think creatively, adapting to an evolving situation beyond a few set scenarios programmed into its core.  Imagine if an astronaut were flying the Discoverer missions.  He'd have the discretion of choosing the targets to photograph.  He'd be able to bring a film capsule home with him rather than relying on complicated automatic systems and aerial recovery planes. 

When John Glenn flies, he will return far more information about the universe than any experiment or animal could, not just scientific, but about the human condition.  For 270 minutes, he will be an outpost of the Free World in space.  What will it mean to him, to all of us, his three circuits of the globe? 

We can't know until he gets there, but I'm betting it will be profound.

[June 30, 1961] Reaping the Harvest (June 1961 space science results)

June was a busy month for space travel buffs, especially those who live in the Free World.  Here's an omnibus edition covering all of the missions I caught wind of in the papers or the magazines:

Little lost probe

The Goddess of Love gets to keep her secrets…for now.  The first probe aimed at another planet, the Soviet "Venera," flew past Venus on May 19.  Unfortunately, the spacecraft developed laryngitis soon after launch and even the Big Ear at Jodrell Bank, England, was unable to clearly hear its signal.

The next favorable launch opportunity (which depends on the relative positions of Earth and Venus) will occur next summer.  Expect both American and Soviet probes to launch then.

X Marks the Spot

Just as planes use fixed radio beacons to determine their position, soon submarines (and people!) will be able to calculate where they are by listening to the doppler whines of whizzing satellites.  Transit 4A, launched by the Navy, joined the still-functioning Transit 2 on June 29 (#3 conked out March 30, and #1's been off the air since last July). 

This Transit has an all-new power source.  Instead of batteries or solar panels, it gets its juice from little nuclear reactors.  These aren't aren't like the big fission plants you see being established all over the country.  Rather, they are powered by the heat of radioactive decay.  These energy packs are small and much simpler than solar panels.  Expect to see them used quite a bit on military satellites.

The Navy gets extra points for making their rocket do triple-duty: Also boosted into orbit were Injun 1 and Solrad 3.  The first is another University of Iowa particle experiment from the folks who discovered the Van Allen Belt; the latter a solar x-ray observatory.

Along a dusty trail

Contrary to popular belief, outer space is not empty.  There are energetic particles, clouds of dust, and little chunks of high-speed matter called micrometeorites.  All of them pose hazards to orbital travel.  Moreover, they offer clues as to the make-up and workings of the solar system. 

Prior satellites have tried to measure just how much dirt swirls around in orbit, but the results have been vague.  For instance, Explorer 8 ran into high-speed clouds of micrometeorites zooming near the Earth late last year corresponding with the annual Leonids meteor shower.  Vanguard 3 encountered the same cloud in '59, around the same time.  But neither could tell you precisely how many rocks they ran into; nor could previous probes.

NASA's new "S(atellite)-55" is the first probe dedicated to the investigation of micrometeorites.  It carries five different experiments — a grid of wires to detect when rocks caused short circuits, a battery of gas cells that would depressurize when impacted, acoustic sounding boards…the whole megillah.  It is one of those missions whose purpose is completely clear, accessible to the layman, unarguably useful.

Sadly, the first S-55, launched today from Wallops island, failed to achieve orbit when the third stage of its Scout rocket failed to ignite. 

It's a shame, but not a particularly noteworthy one.  The Scout is a brand new rocket.  We can expect teething troubles.  Every failure is instructive, and I'll put good money on the next S-55, scheduled for launch in August.

Worth the Wait

Speaking of Explorer 8, Aviation Week and Space Technology just reported the latest findings from that satellite.  Now, you may be wondering how a probe that went off the air last December could still generate scientific results.  You have to understand that a satellite starts returning data almost immediately, but analysis can take years. 

I'd argue that the papers that get published after a mission are far more exciting than the fiery blast of a rocket.  Your mileage may vary.  In any event, here's what the eighth Explorer has taught us thus far (and NASA says it'll be another six months until we process all the information it's sent!):

1) The ionized clouds that surround a metal satellite as it zooms through orbit effectively double the electrical size of the vehicle.  This makes satellites bigger radar targets (and presumably increases drag).

2) We now know what causes radio blackouts: it is sunspot influence on the lower ionosphere. Solar storms create turbulence that can cut reception.

3) The most common charged element in the ionosphere is oxygen.

4) The temperature of the electrons Explorer ran into was about the same as uncharged ionospheric gas – a whopping 1800 degrees Kelvin.

This may all seem like pretty arcane information, but it tells us not just about conditions above the Earth, but the fundamental behavior of magnetic fields and charged particles on a large scale.  Orbiting a satellite is like renting the biggest laboratory in the universe, creating the opportunity to dramatically expand our knowledge of science.

Air Force discovers Pacific Ocean

The 25th Discoverer satellite, a two-part vehicle designed to return a 300 pound capsule from orbit, was successfully launched June 16.  Its payload was fished from the Pacific Ocean two days later, the recovery plane having failed to catch it in mid-descent.  I recently got to see one of those odd-tailed Fairchild C-119 aircraft that fly those recovery missions; they're bizarre little planes, for sure. 

As for the contents of the space capsules, it's generally assumed that they carry snapshots of the Soviet Union taken from orbit.  This time around, however, the flyboys included some interesting experiments: three geiger tubes, some micrometeroid detectors, and a myriad of rare and common metals (presumably to see the effects of radiation upon them). 

You may be wondering what happened to Discoverers 23 and 24 (the last Discoverer on which I've reported was numbered 22).  The former, launched on April 8, never dropped its capsule; the latter failed to reach orbit on June 8.  Unlike NASA, the Air Force gives numbers to its failed missions.

Next Mercury shots planned

Virgil I. "Gus" Grissom is set to be the next Mercury astronaut in late July.  His flight will be a duplicate of Alan Shepard's 15 minute jaunt last month.  If all goes well, astronaut John Glenn will fly a similar mission in September.

I don't think the Atlas is going to be ready in time this year for an orbital shot.  That means there will be several tense months during which the Soviets could upstage us with yet another spectacle. 

[February 28, 1961] Strings of Success… and Failure (Transit 3B, Venera)

Before we move on to the latest Space Race update, why don't you mosey on down to your local record store and pick up a copy of Wheels, by the String-a-longs?  It's a swinging tune, and it's been on the radio a lot lately.  It'll keep a smile on your face even when the news threatens to be a drag.

There are good weeks and there are bad weeks.  For the Space Race, this wasn't the best week.

It's been several months since the Navy got one of their Transit navigational satellites up into orbit.  Last year, I raved about these little marvels that make it possible to determine one's position just by listening to the satellite's whistle (and doing a little math).  Two were launched in quick succession, and it seemed a constellation would be established in short order. 

But the third Transit (and its piggyback Solrad probe) failed to launch last November, and its replacement, Transit 3B, had a booster malfunction that stuck it in an eccentric, relatively useless orbit.  In attendance at the ill-fated launch were two of the three Mercury astronauts who have been chosen to make the first manned flights: Alan Shepard and John Glenn (Gus Grissom was in Bermuda).  When asked for their opinions on the botched mission, they voiced their confidence in NASA's rockets. 

The launch may not have been a complete bust.  This Transit had a piggyback, too—the LOw Frequency Transmission through the Ionosphere (LOFTI) satellite.  It will test the ability of submarines to use the VLF band (below the bottom of your AM dial) for communications.  Maybe.  At last report, LOFTI had not detached from Transit 3B as planned, and I don't know if either satellite will work in a Siamese configuration.

The Soviets aren't having a great time of it, either.  Their Venus probe, launched two weeks ago, fizzled out some time before February 26, when it failed to respond to ground-based radio queries.  Venera may not be dead, but it is certainly giving us the silent treatment.  It's a shame—we will have to wait another 11 months for Venus and Earth to be favorably aligned before we see Venera 2 or its American counterpart.

To take the taste out of failure out of our mouths, let's ponder Things to Come.  The Air Force has announced that its next Discoverer capsule-return probe will carry a monkey; look for that launch late next month.  Also, NASA is hard at work developing the next generation lunar probe.  It is called Ranger, and as its "mother" is Jet Propulsion Laboratories in Pasadena, it will have an entirely different configuration from Space Technology Laboratories' ill-fated Pioneer-Atlas series. 

Fingers crossed!

[June 30, 1960] On a roll! (Space Race Wrap-up)

Something very exciting happened this week: Spaceflight became routine.

Remember just a couple of years ago?  The press was full of flopniks, grapefruit-sized spacecraft, and about a launch every other month.  Every mission was an adventure, and space was the great unknown.

All that has changed.  Not only are we launching more, and more advanced scientific satellites, but we are launching satellite systems.  Only two months ago, the Navy launched the first of the Transit satellites.  These satellites allow a ground-based observer to determine one's location to a fair degree of accuracy.  But since there's no guarantee any one satellite will be overhead at a given time, you need a constellation of Transits.

Number two was launched last week on June 22.  The age of reliable space utilization has dawned.

The news gets even more exciting: The launch of Transit also marked the first piggyback mission.  A little scientific probe called Solrad hitched a ride along with the navigation satellite.  How's that for efficiency?

Solrad is actually quite a neat little device.  For a while, scientists have been trying to study the Sun in the X-Ray spectrum, but the devices carried by Explorer 7 and Vanguard 3 were swamped by the charged particles swirling around the Earth in the so-called Van Allen Belts; thus no useful data was obtained. 

Navy scientists solved this problem in two ways.  First, they put the probe in a lower orbit, avoiding the worst of the Belt radiation.  Second, they employed the simple expedient of placing a large magnet on the front of the detector.  This swept out the unwanted electrons leaving the satellite's sensors clear for observing the Sun.

Solrad doesn't take pictures, mind you.  It just measures the raw value of solar X-ray flux.  But already, the probe has contributed significantly to science–in a rather unexpected field. 

Long distance communications on Earth are largely conducted via radio.  Sometimes, signals will fade out for no (hitherto) discernible reason.  Solrad has found out why–the level of solar X-ray emissions directly affects the radio-reflective properties of the Earth's ionosphere, that upper atmospheric layer of charged particles that causes radio waves to bounce across the planet rather than simply flying off into space.  Thanks to Solrad, and probes like it, I can imagine a time in the near future when we'll not only have a daily weather report, but also a radio reception report.

Speaking of communications, the Air Force reports that, in about a month, it will be launching a real communications satellite (unlike SCORE which just broadcast a prerecorded message).

It's not all good news on the Space Front, however.  I present to you the Galactic Journey obituaries for the month of June:

The Air Force has lost yet another Discoverer satellite: Discoverer 12 never made it to orbit; its booster suffered a second stage failure and crashed into the Atlantic.  Better luck next time.

Transit 1 went offline the day before Transit 2 launched.  I don't know if that was intentional or coincidental.

TIROS 1, the world's first weather satellite, threw in the towel on June 18, 1960.  It is my understanding that the probe did not perform as reliably as had been hoped, but we should see a TIROS 2 in the near future.

Pioneer 5, the first deep space probe, appears to have passed beyond the range of radio reception.  My sources inform me that the last telemetry was received on June 27.  STL engineers will continue to try to resume contact, however.

Services will be held next Sunday at 12:00 PM.  In attendance will be the currently functioning satellites: Vanguard 1, Explorer 7, Transit 2, and Solrad 1. 

[April 19, 1960] Where we are (Space News Round-up)

Remember the years before Sputnik when space news comprised semi-annual rocket launch reports, annual Willy Ley books, and the occasional Bonestell/Von Braun coffee table book?

Even after Sputnik, weeks would go by without a noteworthy event.  But, slowly but surely, the pace of space launches has increased.  Just this last week, I caught wind of four exciting pieces of news.  I can imagine a day in the not too distant future when I have to pick and choose from a myriad of stories rather than reporting on every mission.

So what happened this week?  First off, on April 13, 1960, the Navy launched, on an Air Force Thor Able-Star rocket, Transit 1B (somehow, I missed the failed launch of its earlier brother, Transit 1A, last September).  It is a brand new kind of satellite, using the simplest of concepts. 

Have you ever noticed how a train's whistle rises in pitch as the locomotive approaches, and then the pitch lowers as the train moves away?  This is because the sound waves from the whistle are compressed by the train's motion as it nears; conversely, the waves stretch out as the train departs.  The wavelength determines the whistle's pitch, so a moving train's whistle will never play entirely true—unless you happen to be riding the train and, thus, going the same velocity.

Now, if one knows the true pitch of the whistle, one can mathematically figure out how fast the train is going with respect to the listener just by comparing the true pitch to the heard pitch.  Imagine a satellite equipped with a whistle (a radio transmitter, actually; sound doesn't travel through the vacuum of space).  Since the satellite is always moving with respect to the ground observer, if that observer knows the true wavelength of the satellite's signal, then s/he can figure out how fast the satellite is going from the wavelength of the observed signal.  Knowing the orbital path of the satellite, it is then easy to determine exactly where one must be at any given time to hear the satellite's signal at the received pitch.

In other words, using just a satellite, a transmitter, a receiver, and a computerized calculator, one can determine one's position to within one-half of a kilometer.  Now, this isn't good enough to help you navigate your car to work or a weekend party, but it is quite sufficient to help ships find their way at sea.  In particular, America's submarines will use Transit for high-accuracy navigation.  But someday, I can imagine Transit's descendants providing pinpoint accuracy to civilians.  Imagine a suitcase sized machine that could tell you where you are to the resolution of just a few meters!  Yet another way satellites are returning on their investment.  Soon, we'll wonder how we ever did without them.

It may be a while before we say that about the Air Force's Discoverer program.  Designed (ostensibly) to carry biological samples to and from orbit, the series has not yet been successful.  Sometimes the rocket malfunctions.  Sometimes the capsule gets lots on reentry.  And sometimes, the capsule stays forever in space.  That's what happened this time, to Discoverer 11.  The rocket launch on April 15 was successful, but it looks like the reentry capsule suffered separation anxiety after detaching from its mothership.  Both are still in orbit, and it looks like they will remain there, close to each other, until friction with the atmosphere causes them to become artificial meteors.

Speaking of spy satellites (ahem), the first weather satellite, continues to send beautiful pictures of Earth's weather.  Interestingly, NASA goes out of its way to deny that TIROS is being used for espionage (whereas the Air Force has been conspicuously quiet regarding Discoverer's true role).  I believe NASA—TIROS' cameras aren't nearly good enough to return surveillance data, though there is no doubt the military could benefit from accurate weather reports.

Finally, Pioneer 5, the world's first deep space probe, has passed the 5 million mile mark (20 times the distance to the Moon) and is still going strong!  So far, the probe has returned 100 hours of usable data on the "space weather" beyond the Earth's influence.  I can't wait to read the papers resulting from their analysis! 

And for the non-eggheads amongst my readers, while the scientific papers may not be of exceptional interest, the inventions they inspire likely will be.

See you soon!

[Sep. 19, 1959] Anchors Aweigh! (The Navy's Transit and Vanguard launches)

A bit of a stop press on the Space Race as I wade through this months Astounding, which I unwisely saved for last.  You should never eat dessert first…

Have you ever noticed how a train’s whistle seems to rise in pitch as the locomotive approaches and then the pitch lowers as the train departs?  This is caused by the compression of sound waves as they whistle heads toward your ears followed by a decompression as it heads away.  It’s called the Doppler Effect (after the 19th century Austrian scientist, Christian Doppler).

This concept will be used by satellites to provide accurate navigation aids for American military craft and, someday, civilians as well.  The idea is that the satellites, called Transit, will broadcast at a fixed frequency.  A receiver on the ground can tell from the quality of the Doppler frequency shifts, knowing the satellite’s orbit, where it is to within a small degree of error.  Very simple in concept.

Sadly, Transit 1 failed to orbit the day-before-yesterday when its Thor Able booster malfunctioned after liftoff.  On the other hand, the Navy (the service that developed the satellite) did get some useful data from the sub-orbital flight, I’m told.

Speaking of the Navy, the final flight of the Navy/civilian Vanguard program ended in success yesterday with the orbiting of Vanguard 3.  It is another x-ray, magnetosphere, and micrometeoroid detecting probe along the lines of the Explorers.  Its long-lasting orbit and conical shape will also allow the satellite to be used to determine the density of the upper atmosphere for decades to come.

I’ll publish more on the scientific findings of this probe as I hear them.  We are beyond the days where just getting the things up is the whole story.

And with that, the Vanguard program comes to an end with three successful flights out of 11.  This may sound like a poor record, particularly given the rather vicious coverage given the program by both domestic and foreign media (remember “Flopnik”?)

But Vanguard has enabled the reaping of a tremendous harvest.  As a booster, it was remarkably efficient and cheap.  The reliable second and third stages have been adopted as supplemental stages on other rockets, and it looks like the first stage will be turned into NASA’s new Vega second-stage system.  Thanks to Vanguard, there will be American property in space for the next several hundred years. 

Most importantly, Vanguard paved the way for a truly civilian space program.  Though it was derived from a Navy proposal, and spin-off technology from the program is being used by the military, the idea of a purely scientific and non-military space endeavor is a powerful and important one.  Our new space agency, NASA, owes much to it.

P.S. Galactic Journey is now a proud member of a constellation of interesting columns.  While you're waiting for me to publish my next article, why not give one of them a read!

(Confused?  Click here for an explanation as to what's really going on)


This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.