Tag Archives: tiros

[February 6, 1966] Hello, Stranger (exploring Space in Winter 65/66)

You don't want to miss today's Journey Show!  In this first episode of the new season, we'll be talking about comics: Marvel, DC, British, European — and we'll also be discussing the new Batman show.  Y'all come!


by Gideon Marcus

It seems like a mighty long time…

Looming huge on the horizon, shining brightly at zenith, one would imagine that visiting the Moon wouldn't be all that difficult.  But making the 400,000+ kilometer trek has proved one of the hardest feats for humanity to tackle.  Just reaching the vicinity of the Moon took four Pioneers and who knows how many secret Mechtas.  And while the Soviets managed to hit the Moon in 1959 with Luna 2, the United States went through four Pioneer Ables and three Rangers before duplicating the feat in 1962.  It wasn't until last year's Ranger 7 that we managed a fully successful TV crashlanding mission.

But despite early successes, the real heartbreak kings have been the Soviets.  Since their spectacular Luna 3 mission in 1959, which was the first to return pictures from the Far Side, the Russians have failed in at least four attempts over the past year to soft-land on the Moon.

That all changed on February 3, 1966, when Luna 9 settled gently onto Oceanus Procellarum and returned the first pictures from the lunar surface.

Luna 9 was launched on January 31 amid the typical TASS fanfare.  After the prior failures, it was hard to get too excited until the vehicle actually reached the Moon.  Even then, we in the West had to find out about its success second-hand at first.  The Russians are notoriously mum about their missions until it is certain that they worked (or that news of a failure can be properly massaged).

Luckily, the good folks at Britain's Jodrell Bank radio observatory were able to intercept Luna 9's transmissions, thus giving us a pretty good idea of its timeline.  The U.S. Army also listened in on Luna 9's whole trip, though this fact wasn't broadcast initially. 

Per TASS, we know that the spacecraft began its landing sequence about an hour before landing at 1:45 PM EST.  Jodrell Bank confirms that Luna 9 broadcast a stream of pictures for the next 20 minutes followed by a second transmission at 9:00 PM. 

And this is what Luna 9 saw:

In addition to the engineering triumph that the Luna 9 mission represents, it also yielded a bonanza of scientific information.  For instance, we now know that the Moon is not covered by a dangerous quicksand of dust, which was a big concern for the Apollo people.  Luna 9 has also returned valuable cosmic ray data.

Luna 9's chief success, however, has been nationalistic.  After the two Voskhod flights, the Soviets watched helplessly as our Gemini program surpassed their accomplishments by leaps and bounds.  For the moment, the Soviets are once again ahead in at least one aspect of the Space Race.

At least until Surveyor 1 lands in May…

I got my eyes on you

The Moon hasn't been the only Soviet target these past two months. Since December 10, they have launched six "Kosmos" class satellites, almost all of which likely been photographic surveillance craft like our Discoverer series (which we have continued to launch consistently every couple of weeks).  We can tell this from the angle of their orbit, designed to maximize coverage of the West, and the fact that they land in Russia after about a week in space.  Certainly, these "scientific" probes don't seem to return much data — I think Kosmos 41 was the last with any results published in any of the journals I follow, and it was launched in August 1964.

Stormy weather

The same day Luna 9 stunned the world with its pictures, the United States launched a quieter but no less momentous shutterbug of its own.  ESSA 1, also known as TIROS 11, marked the beginning of a new era of weather forecasting.  The prior TIROS satellites were all experimental, despite their unquestioned contribution to our daily forecasts.  The new TIROS is not only better able to provide instant global weather pictures to any station in view at any time from its 700km altitude, it is the first to be managed by the new Environmental Science Services Administration. 

From test product to fundamental government equipment in six years.  Not bad!

The Sun is Shining

Completing the exploration of the Earth/Moon/Sun trinity is Pioneer 6, launched December 16, 1965.  In the tradition of Pioneer 5, Pioneer 6 is a truly interplanetary probe.  Its mission is not to encounter any other celestial bodies but to instead be a solar weather station in an orbit somewhere between that of Earth's and Venus'. 

Its six instruments have been diligently recording long term data on radiation and magnetic conditions out in deep space, thus far reporting that the "solar wind" blows at about 1,000,000 km/h during quiet periods as opposed to three times as much in active times.  The solar magnetic field appears comparatively unfluctuating, accompanied by a relatively low number of charged particles.

Pioneer 6 is the first of five such interplanetary probes planned for launch over the next few years. 

1-2-3

Our last piece of news covers the multiple launch of December 21.  The Air Force has been testing its mighty Titan IIIC, which remains the world's most powerful rocket until such time as the Saturn 1B takes off later this month.  Since science abhors a vacuum, space aboard the mighty booster was used to launch four satellites into orbit at the same time.

These satellites were OV2-3, a radiation studies probe; LES-3 and 4, communications test satellites; and OSCAR 4, a relay broadcaster designed to be used by amateur "ham" radio enthusiasts.  All of these satellites were supposed to be placed in 35,000 km high geosynchronous orbits, circling the Earth about once every day such that they appeared to remain roughly fixed in the sky.  Unfortunately, while the Titan delivered the satellites into a geosynchronous transfer orbit, a final burn never happened.  The four vehicles are thus trapped in a highly eccentric path that zooms up to 30,000 km while retaining an Earth-grazing 170km perigee.

Moreover, OV2-3 never switched on.  LES-3 and 4 appear to work, however, doing top secret work offering data on communications in the UHF and SHF bands.  OSCAR 4 has been less successful, only being used for 12 transmissions; one of them was the first ever satellite-relayed conversation between the United States and the USSR, however!

Man oh man

The space-related excitment won't stop anytime soon.  On February 20, we'll see our first real Apollo mission when the new Saturn 1B launches a full Apollo CSM on a suborbital flight.  And in March, we'll likely see our first docking in space when Gemini 8 goes up. 

Science fiction made real, indeed!






[July 22, 1965] Do what you do do well (July space round-up)


by Gideon Marcus

With both sides of the Cold War passing milestone after milestone in the Space Race, it's easy to neglect the less splashy events that are still, nonetheless, noteworthy.  So here is a grab bag of July achievements that might have slipped below your radar amidst the Mariner news.

Mother Russia goes big

Four days ago, the Soviets launched Zond 3 with (apparently) no particular destination in mind.  The timing is wrong for a planetary probe, and though the spacecraft sailed past the Moon, it is not being described as a lunar mission.  What could it be?

The consensus is that the Russians are in a similar position to that of the Americans after a string of failures to launch a Pioneer to the Moon.  Those missions had been designed as preambles for a 1959 Venus flight, but because of all the teething problems, the first probe destined for the Planet of Love was launched late.  But while Pioneer 5 couldn't rendezvous with Venus, it could sail out as far as Venus and perform long range telemetry and endurance tests.  The results of these came in very handy with Mariner 2 and now Mariner 4.

The Soviets have attempted to reach Mars at least twice with its Mars 1 and Zond 2 missions.  Zond 1 was a failed Venus probe.  It is likely that Zond 3 is an interplanetary probe, perhaps a back-up to Zond 2 as Mariner 4 was a back-up to Mariner 3.  Rather than wait for another favorable alignment between Earth and Mars, the USSR has elected to launch Zond 3 as an endurance mission to test its systems at a distance.  If they are successful, this will surely add to the reliability of their next interplanetary flights.

In even bigger news, figuratively and literally, the Soviets launched a satellite they call "Proton" into orbit on July 16.  At 26,880 lb, it is the heaviest satellite ever put into orbit, and the Soviets have stated that they now have a new booster in the same class as our Saturn and Titan 3.  Proton is billed as a science satellite, designed to investigate charged particles — and it probably is, like its predecessor "Electron".  However, many experts see Proton as a precursor to elements of a Soviet space station, which could perhaps be launched concurrent with or in support of a lunar program.

Also on the 16th, the Soviets launched five Kosmos satellites in one mission, Nos. 71-75.  Other than their orbital information (low) and that they're equipped with radio transceivers (of course), nothing else is known.  They are probably not spy satellites since they seem too light be the Vostok-derivatives the Russians have used to date.  They might be geodetic satellites, or perhaps engineering test craft.

Last, but hardly not least, Soviet Communist Party General Secretary Leonid Brezhnev, one of the nation's three leaders, boasted that the country had developed a "Fractional Orbital Bombardment System."  This means that they can launch a satellite with a nuclear bomb, which can deorbit and hit any target at any time.  Such a weapon makes our early warning radars virtually useless.

Sleep well tonight…

Think Blue, Count Two

Launched just two days ago, the third pair of Vela satellites will continuously monitor the Earth to ensure that the Soviets keep to the Partial Nuclear Test Ban Treaty of 1963.  Velas 3A and 3B orbit at an altitude of around 70,000 miles on opposite sides of the planet, ensuring that the USSR is always in sight.  They are designed to operate for six months, but since the last two pairs lasted around a year, there's probably some engineering tolerance built in.

Piggybacked with the twins was ORS (Octagon Research Satellite) 3, whose mission is to monitor natural radiation far above the Earth's magnetic field.

Finally, though actually first chronologically, is TIROS 10, the latest weather satellite.  It's funny; the TIROS series, begun in 1960, was supposed to be superseded by the next-generation NIMBUS satellites.  Yet TIROS has proven so useful and reliable, that we still use them. 

That doesn't mean this is the same old TIROS, however.  For one, it's the second TIROS to be launched into a polar orbit, which means it circles the Earth as the planet spins beneath it.  This orbit is called "sun-synchronous" which means that, from the perspective of the satellite, it is always the same time of day.  Thus, every 24 hours, the entire world gets photographed in complete daylight.

TIROS 10 is the first of three satellites to be funded by the Weather Bureau “to be used to assure continuity of satellite observations for operational purposes;” the previous nine satellites were categorized as research missions. 

It is astonishing that just ten years ago, there were no satellites of any kind.  Now TIROS is a fundamental part of our daily forecast.  It boggles to think what might be next coming down the pike!



Our next Journey Show features Dr. Lisa Yaszek, a Professor of Science Fiction at Georgia Tech; Hugo Finalists Tom Purdom and Cora Buhlert; Marie Vibbert, author of 50 science fiction stories in magazines like Analog and F&SF; plus a musical performance by Lorelei!

DON'T MISS IT!




[February 18, 1965] OSO Exciting!  (February 1965 Space Roundup)


by Gideon Marcus

Remember the early days of the Space Race, when launches came about once a month, and there was plenty of time to ruminate over the significance of each one?

Those days are long past, my friends.  Like every other aspect of this crazy modern world we live in, the pace of space missions is only accelerating.  Just look at this grab bag of space headlines, any one of which might have been front page news just a few years ago:

Staring at the Sun

Three years ago, NASA launched the first of its "Observatory Class" satellites, the 200 kg Orbiting Solar Observatory (OSO).  Its mission was unprecedented: to get the first long-term observations of the Sun in all of the frequencies of the electro-magnetic spectrum, not just the narrow windows visible from the Earth's surface.

For two years, OSO gazed at the Sun with its thirteen instruments, dutifully reporting its findings to the ground.  The observatory revolutionized our understanding of our neighborhood star, particularly in finding the correlation between solar flares and the little microflares that precede them. 

OSO 1 went silent last May.  Like nature, NASA abhors a vacuum — at least one without satellites floating through it!  So on February 3, 1965, OSO 2 sailed into orbit to pick up where its predecessor had left off.

The new observatory only has eight instruments, but given that the weight of the craft is similar to that of OSO 1, I have to believe the new load-out is intentional.  Moreover, OSO 2 has some neat developments.  Its Ultraviolet spectrometer, Solar x-ray and UV telescope, and White-light coronagraph are all mounted on the "sail" of the spacecraft, and they can scan the disk of the sun from end to end, like a TV camera.  That should allow for more precision in the measurements.

Also, OSO 2 has a digital telemetry system rather than the analog FM system of OSO 1.  Digital systems are far less prone to error, and more information can be sent over any given length of time.  The new system can dump 3 million bits of data in just 5.5 minutes.

Finally, OSO 2 is smarter — it can accept some 70 commands from the ground instead of just 8.  Just what NASA scientists do with those commands, I don't know.  Maybe OSO brews great coffee.

The most important thing about OSO 2 is the timing of its launch.  Every 11 years, the Sun completes an output cycle, warbling from active to inactive status.  1965 is the Solar minimum, and this year marks a concerted international effort to watch the Sun from many different vantage points to take advantage of the opportunity.

You can bet OSO 2 will have some interesting data for us come 1966!

Requiem for a Vanguard

Hands over hearts, folks.  On February 12, NASA announced that Vanguard 1 had gone silent, and the agency was finally turning off its 108 Mhz ground transceivers, set up during the International Geophysical Year.  The grapefruit-sized satellite, launched March 17, 1958, was the fourth satellite to be orbited.  It had been designed as a minimum space probe and, had its rocket worked in December 1957, would have been America's first satellite rather than its second.  Nevertheless, rugged little Vanguard 1 beat all of its successors for lifespan.  Sputniks and Explorers came and went.  Vanguards 2 and 3 shut off long ago.  Yet the grapefruit that the Naval Research Laboratory made kept going beep-beep, helping scientists on the ground measure the shape of the Earth from the wiggle and decay of Vanguard's orbit.

The satellite's cry had slowly become weaker as its solar cell-charged batteries failed.  Finally, some time last year, Vanguard could be heard no more, though NASA kept listening for several more months.  It's not all sad news, however: Vanguard 1 will remain in orbit for hundreds of years more, and it can still be optically tracked.  That means it still has a long, useful life ahead of it, even now that it is mute.

Whole World in its Eyes

Here's a little TIROS tidbit.  Remember TIROS 9?  The first weather satellite launched into a polar orbit so it can see the whole Earth once a day as the planet rotates underneath?

We now have the very first picture of the world's weather.  It won't be the last:

The joys of being regular

There was a time when space was a hit-and-miss affair.  Seemed every time I opened the paper, there was news of yet another rocket blowing up.  These days, we can practically take success for granted.  Ranger 7 broke a six mission losing streak, the first two Gemini launches went swimmingly, TIROS has gone nine for nine.

Similarly, the Saturn 1 rocket, the biggest booster ever made, has had an impeccable launch record.  The lift-off on February 16 kept the streak going; the eight engine monstrosity delivered what I believe is the biggest satellite ever to be put into orbit.

Called Pegasus, it is an enormous cylinder with giant panels affixed to either side.  The panels occupy some 2300 square feet, and their job is to measure the density of micrometeoroids in orbit over the course of a many-year lifespan.

It sounds pretty mundane when you reduce the mission to its bare essentials.  Pegasus is like a big fly-catcher, spending its orbit running into space rocks.  But it's not the experiment that's so exciting, but the idea that we can now loft giant structures with a single launch.  Imagine that Pegasus was actually a space station module, and that it's wings were solar panels.  Now imagine assembling a few of them together using a maneuverable spacecraft, perhaps a Gemini derivative…

Yes, America is just on the edge of being in the space construction business.

Scenes to Come

Yesterday (February 17, 1965), the eighth Ranger blasted off from Cape Kennedy, destination: Moon.  If we've truly reached an era of reliability, we can expect the craft to hit its target on the morning of the 20th.  Stay tuned — you'll read about it here first!




[January 28, 1965] Castor, Pollux, and TIROS (Gemini 2 and TIROS 9)

January's been exciting, space-wise.  Read on about two of the month's biggest developments!


by Gideon Marcus

Up and Down

Almost two years ago, Gordo Cooper orbited the Earth for a full day in his spacecraft called Faith 7.  This marked the end of the Project Mercury, America's first manned space program.  Work was already apace on Project Apollo, a three-seat spaceship scheduled to land on and return from the Moon before 1970.  However, with the Soviets launching spectacular Vostok flights with discouraging regularity, President Kennedy was not about to let several years go by while the Communists continued to rack up a lead in the Space Race.

Plus, it's important to walk before running.  Mercury was barely a crawl — we provided a minimum capsule for a single human to spend no more than a day in space.  The craft was a technological dead end (though there is some talk of turning the surplus four capsules into space telescopes). 

Meanwhile, the Apollo system consists of four components: the Command Module where the astronauts sit, the Service Module with engines and life support, the Lunar Module that will land on the Moon (itself comprising two parts!) and the trans-stage that will boost the whole stack from the Earth.  To successfully get this unwieldy affair safely across half a million miles of space will require the ability to change orbits, rendezvous, dock, and other complicated maneuvers.

Some kind of bridge is necessary.  It now exists, and it's called Gemini.

The two-seat Gemini is a real spacecraft, literally able to fly rings around a Mercury…or a Vostok for that matter.  In the ten or so planned flights, its pilots will not only learn the skills necessary for Apollo missions (and thus become the prime candidates when those missions happen), but they will also be in space far longer than anyone has been before.  Missions of up to two weeks are possible with Gemini!

As with Mercury, uncrewed test missions are necessary to make sure Gemini is up for human use.  Unlike Mercury, there were only two such Gemini missions planned — a dividend of Project Mercury (and there may have been a chimponaut strike, too).

Mission One was an orbital test, mostly to make sure the new Titan II missile worked properly as a spaceship booster.  Launched almost a year ago, on April 8, 1964, the mission went exactly as planned: Gemini 1's instrument pallets went silent after three hours of battery-powered transmission, the craft burned up a few days later upon reentry, and the holes drilled into the heat shield that adorned its hind end ensured its fiery doom.

Of course, it's all very nice that Gemini goes up, but could it come down?  That was the goal of the Gemini 2 mission.  Like Alan Shepard's flight into space back in May 1961, Gemini 2 was a suborbital jaunt planned to last all of 19 minutes. 

At four minutes after 9 AM, Eastern Time, the Gemini-Titan booster staged at Cape Kennedy's Launch Complex 19 flared to life.  Twin Aerojet engines blasted 215,000 pounds of thrust, hurling the rocket into the air at ever increasing speed as the red launch tower swung down from vertical to horizontal.  152 seconds after lift-off, the engines went silent, and the second stage cast off the first with an explosive disdain.  Just three minutes after that, stage two also went silent, and the Gemini capsule was cast off to fly freely. 

Gemini 2 wasted no time in turning itself around, and just seven minutes after launch, at T +415 seconds, the spacecraft fired its retrorockets, sending the ship on a collision course with the Earth.  It was a steep landing, designed to burden the heat shield with a load higher than what any human crew might experience.  But the little ship that Douglas built was up to the task, crashing through the layers of the atmosphere without incident, unfurling its parachutes and landing in the Atlantic Ocean almost three thousand miles downrange.

It had not quite been a perfect flight: a fuel cell that would have been the spacecraft's electricity supply during a long flight failed before lift-off, and the ship's cooling system ran hot.  But it was good enough for government work.  Astronauts Gus Grissom and John Young, the former already a space veteran, are scheduled to go up on Gemini 3 come spring.  With luck, we could see as many as three more launches before year's end.

I in the Sky

Since 1960, TIROS TV satellites have been keeping tabs on Earth's weather.  Zooming around the Earth every couple of hours, they have snapped shots of incipient hurricanes, raging storms, and swathes of clear skies in a way that was pure science fiction just half a decade before.

Scheduled to be superseded by the advanced NIMBUS satellites, NASA decided that there's no reason to stop using what works!  So TIROS just got upgraded, and the first of a new line was launched on January 22, 1965.

The ninth in the series, also called "TIROS I", is special for a number of reasons.  Firstly, it is the first TIROS to be launched into a polar orbit.  Instead of cruising East to West like most satellites, it circles North to South, with the Earth rotating underneath it.  This allows TIROS to photograph every part of the planet once a day.

Moreover, the TIROS I is of a new "cartwheel" design, spinning in space for stabilization with its axis perpendicular to Earth.  From the ground, it appears to roll around in the sky, its twin TV cameras mounted on the spinning rim to snap a shot once every three seconds.

Everyone complains about the weather.  Thanks to the new TIROS, now we can do more about it (or at least react with warning!) than ever before.  Sure, Gemini and Apollo will grab the headlines over the next few years, but it's the hard-working robotic satellites that are really ushering in the future.

[If you have a membership to this year's Worldcon (in New Zealand) or did last year (Dublin), we would very much appreciate your nomination for Best Fanzine!  We work for egoboo…]






[September 6, 1964] New Stars in the Sky (Explorer 20, Nimbus, and OGO-1)

[We have exciting news!  Journey Press, the publishing company founded by the team behind Galactic Journey, has just launched its first book.  We know you will enjoy Rediscovery: Science Fiction by Women (1958-1963), a curated set of fourteen excellent stories introduced by the rising stars of 2019. 

If you enjoy Galactic Journey, you'll want to purchase a copy today — available physically and virtually!]


by Kaye Dee

I love watching satellites — and it seems like every week now there are new stars in the sky as more satellites are launched to help us learn more about outer space and the Earth itself. Just in the past two weeks, we’ve seen three new satellites dedicated to discovering more about the Earth’s atmosphere and the way it works.

Explorer-XX: Topside Down

The first of the recent launches was Explorer-XX, finally orbited on 25 August from Vandenberg Air Force Base in California after problems with its Scout X-4 booster that took many months to resolve. Explorer-XX has a string of aliases: it’s also known as Ionosphere Explorer IE-A, Ionosphere 2, Science S-48, Topside-sounder, TOPSI and Beacon Explorer BE-A! Underneath all those monikers, it’s the latest in the series of scientific research satellites that began with America’s first satellite, Explorer-I, back in 1958.


Explorer-XX under construction

Explorer-XX’s main purpose is to act as a topside sounder, which means that it takes measurements of the ion concentration within the ionosphere from orbit above it. This data can then be compared with measurements taken from the ground. Since the ionosphere is what makes global radio communications possible, understanding its composition and characteristics is important to scientific and defence research, as well as international radio telecommunications operators.

Unlike some satellites, Explorer-XX doesn’t have an onboard tape recorder, so it can only transmit data when it’s in range of a ground station. One of those ground stations happens to be just outside the Woomera Rocket Range, at NASA’s Deep Space Instrumentation Facility at Island Lagoon. Island Lagoon is actually a dry salt-lake (and not a bad picnic spot for a nice Sunday outing from Woomera Village), and its shores proved to be an ideal location for NASA’s first deep space tracking station outside America. Last year, the Minitrack radio-interferometry tracking system that was originally installed on Woomera’s Range G to support satellite tracking during the International Geophysical Year, was moved to the Island Lagoon site. Minitrack is part of NASA’s Satellite Tracking and Data Acquisition Network and it can receive the Explorer-XX data. Some of the sounding rocket work out at Woomera also involves taking ionospheric soundings for defence and civilian scientific research, so I’m sure my colleagues at WRE will soon be incorporating the data from Explorer-XX into their research as well.


NASA's Minitrack station at Island Lagoon, near Woomera – one of the data receiving stations for Explorer-XX

Following in Canada's Footsteps

Explorer-XX is only the second topside sounder ever launched. The first was Alouette-1, Canada’s first satellite, which went into orbit almost exactly two years ago and is still in operation. Alouette-1, by the way, was part of a program in which the United States generously offered to launch satellites for other countries. Great Britain and Canada have already had their first satellites launched this way, and Italy will soon have a satellite launched by NASA as well. Australia had an invitation to take part in this project, too, but while I was working for the WRE, I heard that our government had rejected the offer on the basis that the country couldn’t afford it — which is pretty short-sighted thinking, if you ask me!

Canadian scientists celebrating the launch of their first satellite-Alouette-1. Wish there was a picture of Australian scientists doing the same.

Nimbus-1: Second-Generation Weather Satellite

Even if the Australian Government lacked the vision to take up America’s offer of a satellite launch, it is interested in taking advantage of the practical ways in which satellite can benefit the country. Last month, I mentioned Australia’s intention to be part of the INTELSAT communications satellite consortium, and our Bureau of Meteorology is fast becoming a major user of weather satellites. Its ground station was one of 47 outside the United States to receive live weather images broadcast directly from space from the TIROS-8 weather satellite launched last December. Some test transmissions were received from TIROS-8 on Christmas Day, just a few days after its launch, and images have been regularly received since January 7 this year.

Now, the first of a new weather type of weather satellite is in orbit, from which Australia is also receiving data. Nimbus-1 (aka Nimbus-A) was launched from Vandenberg just a few days after Explorer-XX, on August 28. It’s now in polar orbit, more eccentric than desired because of a short second-stage burn, but all its instruments are functioning and ground stations are receiving regular data.


Some people think Nimbus-1 looks like a butterfly, though it reminds me of an ocean buoy with solar panels attached either side!

Like TIROS-8, Nimbus-1 can transmit live cloud images from orbit using the Automatic Picture Transmission instrument. This television system is designed to photograph an area of 800 miles square, which is the largest field of view to date. The pictures are transmitted using a slow-scan system of four lines per second, similar to the way radio photographs are sent. Each ground station is designed to receive three pictures per orbit. Nimbus can also store data on board and retransmit it later if it is not in range of a ground station. But what makes Nimbus-1 different from TIROS-8 is that its High-Resolution Infra-red Radiometer enables it to take images at night and measure the night-time radiative temperature of cloud tops and the Earth’s surface, so that data is being acquired all day, every day.


Here's a diagram of Nimbus-1 showing its main components and instruments.

On its first day in orbit, Nimbus took a picture of Hurricane Cleo as it travelled north along the US east coast after devastating parts of the Caribbean and Florida. This really demonstrates that with the data and images from the TIROS and Nimbus satellites, the Bureau of Meteorology will now be able to reliably track the development of conditions over the Pacific, Southern and Indian Oceans that determine the weather across different parts of Australia. The poet Dorothea Mackellar didn’t call Australia the “land of droughts and flooding rains” for nothing, but weather satellites will undoubtedly improve the forecasters’ abilities to see when these weather conditions are coming!


Hurricane Cleo imaged by Nimbus-1. Its strike on Florida delayed the launch of the Gemini-2 unmanned test flight.

Orbiting Geophysical Observatory-1: A New Design Paradigm

Just two days ago, 5 September (Australia time), NASA’s third recent satellite was launched. This time it was the Orbiting Geophysical Observatory, or OGO-1, the first of a series of satellites that is intended to study the atmosphere, magnetosphere and the space environment between the Earth and the Moon, making sure that it will be safe for the Apollo astronauts to traverse this region of space.


This philatelic cover marking the launch of OGO-1 highlights its role in manned spaceflight safety.

OGO-1 is the largest and most complex scientific satellite that NASA has launched to date. With the OGO series, NASA is taking a new approach to satellite design. Until now, each satellite has been designed to accommodate the instruments and experiments that it would carry. However, with OGO, the satellite design is fixed and the experiments are tailored to fit the satellite. Each satellite will carry about 20 experiments.


Diagram of the universal OGO bus that will be used for all the satellites in the series.

OGO-1 has been placed into a highly elliptical orbit with an apogee of almost 93,000 miles, and the plan is for future OGO missions to alternate between this type of orbit and low polar obits. At 31° inclination (its angle with respect to the equator), the OGO series needs additional tracking stations to supplement NASA’s STADAN network. One of these support stations will be established next year in Darwin, in the Northern Territory, as an outstation of the STADAN station at Carnarvon. This facility is part of the NASA Carnarvon tracking station that I mentioned in my last article, which is a prime tracking station for the upcoming Gemini missions.

Unfortunately, one of OGO-1's long booms and one of its short booms did not properly deploy. As a result the satellite used up most of its stablisation-thruster fuel attempting to lock the satellite into its Earth-stabilised orbit. For the moment, scientists have decided not to turn on any of OGO-1's instruments while they work out ways to operate it as a spin-stablised satellite. Let's hope they succeed as this satellite and its successors promise a wealth of new data on the near-space environment.


OGO-1's deployment from its folded launch configuration to its operational configuration is rather complex. I guess it's not surprising that this new satellite has had some problems in properly unfolding!

It’s exciting to see so many new space missions occurring and knowing that, through the tracking stations around the country (managed by the WRE on NASA’s behalf and operated by local engineers and technicians) Australia is playing its part in the exploration and peaceful use of outer space. I can scarcely wait to see what goes up next month!




[August 29, 1963] Why we fly (August Space Round-up)


by Gideon Marcus

We've become a bit spoiled of late, what with space spectaculars occurring on a fairly regular basis.  So, I was not too surprised when a friend buttonholed me the other day and exclaimed, "When is the Space Race gonna get interesting again?"  After all, it's been a whole two months since the Vostok missions, three since the last Mercury mission, and even satellite launches have been few lately.

Oh ye of little faith.  The real work doesn't happen when the rockets go up, but after their payloads are aloft.  A lot happened in the arena of space this month — you just have to dig a little to learn about it.  Here are the exciting tidbits I gleaned (and the journos missed) in NASA's recent bulletins and broadcasts:

Bridging the Continents

Communication satellites continue to make our world a smaller place.  Syncom, built by Hughes and launched by NASA late last month, is the first comsat to have a 24-hour orbit.  From our perspective on the Earth's surface, it appears to do figure eights around one spot in the sky rather than circling the Earth.  This means Syncom can be a permanent relay station between the hemispheres.

It's already being used.  On August 4 the satellite allowed Nigerian journalists and folks from two U.S. services to exchange news stories as well as pictures of President Kennedy and Nigerian Governor General Dr. Nnamdi Zikiwe.  Five days later, voice and teletype was exchanged between Paso Robles, California and Lagos, Nigeria.  This 7,700 mile conversation represents the longest range real-time communication ever made.

And, on the 23rd, Syncom carried its first live telephone conversation — between President Kennedy and Nigerian Prime Minister Sir Abubaker Tafawa Balewa, as well as several other official conversations.  One has to wonder if the whole scheme wasn't hatched just so Jack could expand his pen pal list to West Africa…

More comsat news: RCA's Relay 1 is still alive and kicking, having been used in 930 wideband experiments, 409 narrowband transmissions, and 95 demos of TV and narrowband broadcasts.  And in a stunning imitation of Lazarus, AT&T's Telstar 2 came back on-line after having been silent since July 16.  I understand there will be an unprecedented experiment next month: NASA is going to use Relay and Syncom to bounce a message from Brazil to Africa.  Expect that kind of satellite ping-pong to become common in the future.

Finally, NASA's passive comsat, Echo 1, continues to be used for tests.  Come winter, it will be joined by Echo 2.  Because if there's anything space needs, it's more balloons.


First pass of Echo 1 satellite over the Goldstone

Predicting the Weather

Mariner 2, the Venus probe that encountered the Planet of Love last December, went silent early this year.  Yet its reams of data are still yielding discoveries.  During the spacecraft's long flight toward the sun, it took continuous measurements of the solar wind — that endless stream of charged particles cast off from the roiling fusion reactor of our nearest star.  These measurements were then compared to readings made on Earth and in orbit.  Scientists have now determined that the sun's radioactive breeze blows in gusts from 500 to 1350 kilometers per second, the bursts correlated with expansions in the solar corona.  When a particularly strong stream of electrons and protons, sizzling at a temperature of 500,000 degrees F., slams into the Earth's magnetic field, it causes disruptions in broadcasts and communications.

Closer to home, Explorer 12 soared far from Earth in its highly eccentric orbit, charting long-lived solar plasma streams in interplanetary space.  The satellite determined that these gouts of plasma caused geophysical disturbances more than twenty days after their creation.

One can imagine a constellation of satellites being deployed to provide solar system-wide space weather reports.  Not only would they help keep astronauts safe as they journeyed from planet to planet, but they'd also let radio operators on Earth know when to expect static in their broadcasts.

And speaking of weather forecasts, Tiros 6 and 7 continue to be our eyes in the sky, tirelessly shooting TV of Earth's weather.  They've already tracked the first hurricane of the season, Arlene.  Who knows how many lives and dollars they will save with their early warnings?

Previews of Coming Attractions

The ill-starred lunar probe, Ranger, has failed in all five of its missions.  In fact, NASA is 0 for 8 when it comes to moon shots since 1959.  Perhaps Ranger 6, set for launch around Thanksgiving, will break this losing streak.  It will be the first of the Block 3 Rangers, lacking the sky science experiments that flew on Rangers 1 and 2, and the big seismic impactors carried on Rangers 3-5.  The new Rangers will just shoot TV pictures of potential Apollo landing sites.  This sacrifice of science in deference to the human mission has not gone without protest, but given the dismal track record of the program, the labcoat crowd will have to take what they can get.

A full year after Ranger (hopefully) reaches the Moon, a pair of Mariners will set sail for Mars.  Unlike last year's Mariner 2, Mariners 3 and 4 will carry cameras to provide our first close-up view of the Red Planet.  Let's just hope neither of these upcoming probes meet the same fate as Russia's Mars 1, which died last March.

At some point in the mid-60s, even bigger Mariners will fly to the planets, carried by the big liquid oxygen "Centaur" second-stage.  The first successful test fire took place on August 17 just down the way from my house — at General Dynamics/Astronautics San Diego

And finally, another 271 space candidates applied to NASA this year.  They have been screened to 30, and out of them, 10-15 will be selected in late October to comprise the third group of astronauts.  None of them are women yet, but perhaps there will be some in time for Group Four.


Pilots Jerrie Cobb and Jane Hart testify before the Subcommittee of the House Committee on Science and Astronautics, July 1962.  That's an Atlas Centaur model next to them.

Who knows?  Maybe you'll be one of them!

[Want to talk to the Journey crew and fellow fans in real-time?  Come join us at Portal 55! (Ed.)]




[March 7, 1962] Sunny side up!  (Orbiting Solar Observatory (OSO) #1)


by Gideon Marcus

Look up at the night sky, and what do you see?  Darkness and countless points of light.  Maybe a planet or two, brightly untwinkling in the black.  It is interesting that the sky should be black – after all, there are lots of photons (light particles) buzzing around the sky even after the sun has gone down.  You've got radio waves and x-rays.  Gamma rays, microwaves, and the shimmering veil of infrared – heat.  And yet, we can't see any of it.  Just the pinpricks of stars on the night's sheet.

Part of that is a biological limitation.  Our eyes only see a tiny window of the electromagnetic spectrum: from purple to red, the colors of the rainbow.  Some species of life see a bit further, into the ultraviolet or the infrared.  Only one species has crafted the ability to see beyond this range: humanity.  With our scintillators and geiger tubes and giant dishes, we can see waves of all kinds. 

Well, not quite.  You see, even with these detectors, we are still half blind.  The blanket of air covering the Earth blocks many wavelengths of photons from outer space: X Rays, Cosmic Rays, many wavelengths of Ultraviolet.  To see the truly unseeable, you have to go into orbit.

That's when we really can look at those points of light.  These are the stars, those busy factories of nuclear fusion, busily turning hydrogen into helium.  There are 100 billion in our galaxy, alone!  And we happen to have a lovely example just 93 million miles away, orders of magnitude closer than Alpha Centauri, the second nearest system.  While we have been observing the sun with our eyes for thousands of years, and with instruments for several hundred, these observations have always been hampered by the screening interference of the atmosphere.

Enter OSO – the Orbital Solar Observatory.  This 200kg spacecraft is the heaviest American science satellite to date, dwarfing all of the Explorer series of probes.  It is the first satellite launched devoted to the long-term study of the sun, in wavelengths you can't see from the Earth's surface.

There are 13 experiments on board the (appropriately) solar-powered craft including three X-Ray detectors, four Gamma Ray monitors, an ultraviolet sensor, several particle counters, and a dust sampler.  Not only will OSO be up in orbit for months, but it will be joined by successors in the series such that, for the next 11 years (a complete solar cycle of sunspot maximums and minimums), we will have continuous measurements of our star.  It is an unprecedented experiment, one which will tell us much about the nearest star and, by extension, the rest of the Galaxy's stars.

Not only that, but we will learn a great deal about solar storms and the hazards of radiation to human spaceflight.  This will give us a better idea of when and for how long it is safe for astronauts to travel in space, on the way to the Moon, for instance (NASA Director, James Webb, says he expects a landing by 1968!)

When will this ambitious project start?  Why…today, March 7, 1962, in fact!  It was launched from Cape Canaveral this morning, and to all indications, it is working flawlessly.  It is the kind of mission that won't get a lot of press, particularly when compared to the glory that cloaked Glenn's manned Mercury mission last month.  Nevertheless, I think OSO deserves attention and praise.  It constitutes a genuine leap in technology and it extends the eye of our race far above the clouds in a way no previous satellite has done. 

If they gave out Hugos for unmanned probes, this one would get my vote!

On the other hand, OSO-1 has plenty of competition for that award, and it's sure to get much more.  Tiros 4, the fourth weather satellite, joined its still-functioning older brother (#3) last month on the 8th, and there have been a few mystery military launches since then.  The President has clamped down on Air Force flights as of the beginning of the year, so I don't know much about them save that two were Discoverer film-based spy sats and one was a Samos live-TV spysat.  Another launch happened just today, but it was classified, and I know nothing else about it.  (It's ironic that the reason for the information clamp-down is that the Soviets accused us of employing surveillance satellites, and we're trying to hide it; I'm afraid the cat's already out of that bag!)

So stay tuned…there's more yet to come!

[July 12, 1961] Reaction time (The launches of MIDAS 3 and TIROS 3)

My brother, Lou, used to tell me that the only way to beat a bully is to not fight fair.  Jump the guy when he's not looking, and fight like there are no rules.  That'll teach him that you're nuts and not worth messing with.

He learned this lesson honestly.  When Lou was in the navy, he immediately got flak for being Jewish.  Someone tried to steal his bunk; Lou rammed the guy's head into the wall.  After that, whenever someone tried to take advantage of Lou, by cutting in the chow line, for instance, another sailor would restrain the miscreant.  "Don't do it!  That's Marcus.  He's crazy.  He'll kill you!"

The problem is that these days, there are just two kids on the block: The USA and the USSR.  Each one's the bully in the other's eyes.  If the Russians decide they can get in a sucker punch, they just might do it to get us out of the way, once and for all.

We have the same option, of course, but it is the avowed intention of our leaders that America will never start a nuclear war.  The Soviets have not made such a pledge.

That's why we have invested so much time and money in developing a strategic nuclear force.  We want the Russians to know that we can strike back if they launch an attack, so that any attempt at a preemptive blow would be an act of suicide.

But we can't retaliate if the first indication we have a Soviet attack is the sprouting of atomic mushrooms over our cities and missile fields.

To that end, we recently finished the construction of the Distant Early Warning (DEW) line, a string of radar installations along the northern coasts of Alaska and Canada.  These can detect a missile some ten minutes from target.  Still not a very good window of time in which to order a counter-strike.

Enter MIDAS.  The MIssile Defense Alarm System satellite has infrared sensors.  As it flies over the Soviet Union, it will be able to detect the heat off a rising ICBM (or space shot, presumably).  Operated in a constellation of low-orbiting craft, there will always be one or two whizzing over the vast expanse of our enemy superpower.  This will raise the window of decision to a more-comfortable 30 minutes.

That should give the Soviet Union pause.  If they can't wind up a punch without us seeing and countering, maybe they won't wind up at all.

I've written about MIDAS before.  The difference this time is that the launch of MIDAS 3 today was freely covered in the press, and it looks like this may have been the first operational vehicle in the series.  In any event, it's one more use of space that benefits all of humanity…hopefully.

In a similar, if more benign vein, today NASA got up the third in its TIROS weather satellite series.  It replaces TIROS 2, which went off the air in January.  TIROS 3 is an improvement on its predecessors, incorporating two wide-angle cameras (the narrow-angle cameras having been eliminated as not particularly useful) as well as five infrared sensors to measure the Earth's heat budget.  I cannot stress enough how revolutionary the TIROS series has been.  Not only has it provided the first full pictures of large-scale weather patterns, but we're getting global climatological data, too.  In concert with the super-powerful computers now at our disposal, meteorology has entered a new age.

For those who live in the Gulf area or Florida, TIROS 3 will be of particular interest: it will be spotting those pesky hurricanes long before they hit the shore.  Again, outer space provides a valuable window of decision for folks on the ground…in this case, the decision whether or not to evacuate!

See you in two with the rest of the latest Analog!

[Nov. 30, 1960] Back and Forth (a p/review)

November is done, and the first chill of winter is upon us (for the rest of you, that happened about a month ago—we San Diegans are a happy lot).  As we head into the Christmas shopping season, it's good to take a moment to reflect on where we've been and where we're going.  Then we can dive into 24 commercially hectic days.

November Review

After months of hard campaigning, we have a new president.  The mantle has been returned to the Democrats, who had it for so long before 1952 that Eisenhower seems like a small splice in the tape.  He was practically a compromise candidate anyway—perhaps the Republican party, as we know it, is dead.  Or maybe there's a new movement on the horizon, one that will surprise us. 

There was just one new book out this month, Store of Infinity by Robert Sheckley, and it was his best yet.  You definitely want to get yourself a copy.

On the magazine front, Analog took the prize for the first time since the July issue.  It garnered a solid 3.5 rating, a score it last secured in March.  Galaxy was in the middle of the pack, earning a decent 3 stars.  F&SF, made up of the turgid Rogue Moon and a mixed bag of vignettes barely merited 2.5 stars, a depth to which the normally fine magazine has never sunk (since I started charting it, anyway).  Well, there has to be a first time for anything.  Hopefully there won't be a second!

It was tough selecting a favorite story for this month; both R. A. Lafferty's Snuffles and Poul Anderson's The Long Voyage were quite good.  In the end, I gave the nod to the former, which came out in Galaxy because I felt it was more memorable and unusual.

Finally, out of 22 fiction pieces, only two were written by women.  9% is about par for the course.  Perhaps 1961 will be better.

December Preview

Coming soon, I'll be reviewing the next four episodes of The Twilight Zone–it's gotten better recently.  There are no new movies on the horizon but I did received an advance copy of a new book, Murray Leinster's The Wailing Asteroid, from the publisher in the mail this week.  I've been enjoying it thus far. 

Of course, there will be the Big Three: the January 1961 issues of F&SF, Analog, and IF (Galaxy and IF alternate months).  I'm sure there will also be some noteworthy space shots, too—the Mercury Redstone unmanned mission will likely be tried again, and there's one last Atlas Able moon shot planned.  Fingers and toes crossed!

Speaking of space shots, NASA got up another weather satellite, TIROS 2, on November 23.  I didn't mention it at the time for two reasons: 1) I couldn't figure out how to work it in, thematically, and 2) whether or not it had been a success wasn't known until the next day.  When the probe went up, it was initially pointed in the wrong direction, so all the Weather Bureau got was a lens full of blackness.  TIROS is now properly oriented, but it turns out there is some fuzz on the wide-angle camera blurring its pictures.  The other equipment, including a narrow-angle camera and sensors to measure Earth's heat budget (solar input vs. planetary heat radiation), seem to be working fine, however.  If this new satellite can last until TIROS 3 goes up next Summer, we'll have continuous weather pictures from outer space for the foreseeable future.  That'll be exciting!

[June 30, 1960] On a roll! (Space Race Wrap-up)

Something very exciting happened this week: Spaceflight became routine.

Remember just a couple of years ago?  The press was full of flopniks, grapefruit-sized spacecraft, and about a launch every other month.  Every mission was an adventure, and space was the great unknown.

All that has changed.  Not only are we launching more, and more advanced scientific satellites, but we are launching satellite systems.  Only two months ago, the Navy launched the first of the Transit satellites.  These satellites allow a ground-based observer to determine one's location to a fair degree of accuracy.  But since there's no guarantee any one satellite will be overhead at a given time, you need a constellation of Transits.

Number two was launched last week on June 22.  The age of reliable space utilization has dawned.

The news gets even more exciting: The launch of Transit also marked the first piggyback mission.  A little scientific probe called Solrad hitched a ride along with the navigation satellite.  How's that for efficiency?

Solrad is actually quite a neat little device.  For a while, scientists have been trying to study the Sun in the X-Ray spectrum, but the devices carried by Explorer 7 and Vanguard 3 were swamped by the charged particles swirling around the Earth in the so-called Van Allen Belts; thus no useful data was obtained. 

Navy scientists solved this problem in two ways.  First, they put the probe in a lower orbit, avoiding the worst of the Belt radiation.  Second, they employed the simple expedient of placing a large magnet on the front of the detector.  This swept out the unwanted electrons leaving the satellite's sensors clear for observing the Sun.

Solrad doesn't take pictures, mind you.  It just measures the raw value of solar X-ray flux.  But already, the probe has contributed significantly to science–in a rather unexpected field. 

Long distance communications on Earth are largely conducted via radio.  Sometimes, signals will fade out for no (hitherto) discernible reason.  Solrad has found out why–the level of solar X-ray emissions directly affects the radio-reflective properties of the Earth's ionosphere, that upper atmospheric layer of charged particles that causes radio waves to bounce across the planet rather than simply flying off into space.  Thanks to Solrad, and probes like it, I can imagine a time in the near future when we'll not only have a daily weather report, but also a radio reception report.

Speaking of communications, the Air Force reports that, in about a month, it will be launching a real communications satellite (unlike SCORE which just broadcast a prerecorded message).

It's not all good news on the Space Front, however.  I present to you the Galactic Journey obituaries for the month of June:

The Air Force has lost yet another Discoverer satellite: Discoverer 12 never made it to orbit; its booster suffered a second stage failure and crashed into the Atlantic.  Better luck next time.

Transit 1 went offline the day before Transit 2 launched.  I don't know if that was intentional or coincidental.

TIROS 1, the world's first weather satellite, threw in the towel on June 18, 1960.  It is my understanding that the probe did not perform as reliably as had been hoped, but we should see a TIROS 2 in the near future.

Pioneer 5, the first deep space probe, appears to have passed beyond the range of radio reception.  My sources inform me that the last telemetry was received on June 27.  STL engineers will continue to try to resume contact, however.

Services will be held next Sunday at 12:00 PM.  In attendance will be the currently functioning satellites: Vanguard 1, Explorer 7, Transit 2, and Solrad 1.