Tag Archives: space

[August 29, 1963] Why we fly (August Space Round-up)


by Gideon Marcus

We've become a bit spoiled of late, what with space spectaculars occurring on a fairly regular basis.  So, I was not too surprised when a friend buttonholed me the other day and exclaimed, "When is the Space Race gonna get interesting again?"  After all, it's been a whole two months since the Vostok missions, three since the last Mercury mission, and even satellite launches have been few lately.

Oh ye of little faith.  The real work doesn't happen when the rockets go up, but after their payloads are aloft.  A lot happened in the arena of space this month — you just have to dig a little to learn about it.  Here are the exciting tidbits I gleaned (and the journos missed) in NASA's recent bulletins and broadcasts:

Bridging the Continents

Communication satellites continue to make our world a smaller place.  Syncom, built by Hughes and launched by NASA late last month, is the first comsat to have a 24-hour orbit.  From our perspective on the Earth's surface, it appears to do figure eights around one spot in the sky rather than circling the Earth.  This means Syncom can be a permanent relay station between the hemispheres.

It's already being used.  On August 4 the satellite allowed Nigerian journalists and folks from two U.S. services to exchange news stories as well as pictures of President Kennedy and Nigerian Governor General Dr. Nnamdi Zikiwe.  Five days later, voice and teletype was exchanged between Paso Robles, California and Lagos, Nigeria.  This 7,700 mile conversation represents the longest range real-time communication ever made.

And, on the 23rd, Syncom carried its first live telephone conversation — between President Kennedy and Nigerian Prime Minister Sir Abubaker Tafawa Balewa, as well as several other official conversations.  One has to wonder if the whole scheme wasn't hatched just so Jack could expand his pen pal list to West Africa…

More comsat news: RCA's Relay 1 is still alive and kicking, having been used in 930 wideband experiments, 409 narrowband transmissions, and 95 demos of TV and narrowband broadcasts.  And in a stunning imitation of Lazarus, AT&T's Telstar 2 came back on-line after having been silent since July 16.  I understand there will be an unprecedented experiment next month: NASA is going to use Relay and Syncom to bounce a message from Brazil to Africa.  Expect that kind of satellite ping-pong to become common in the future.

Finally, NASA's passive comsat, Echo 1, continues to be used for tests.  Come winter, it will be joined by Echo 2.  Because if there's anything space needs, it's more balloons.


First pass of Echo 1 satellite over the Goldstone

Predicting the Weather

Mariner 2, the Venus probe that encountered the Planet of Love last December, went silent early this year.  Yet its reams of data are still yielding discoveries.  During the spacecraft's long flight toward the sun, it took continuous measurements of the solar wind — that endless stream of charged particles cast off from the roiling fusion reactor of our nearest star.  These measurements were then compared to readings made on Earth and in orbit.  Scientists have now determined that the sun's radioactive breeze blows in gusts from 500 to 1350 kilometers per second, the bursts correlated with expansions in the solar corona.  When a particularly strong stream of electrons and protons, sizzling at a temperature of 500,000 degrees F., slams into the Earth's magnetic field, it causes disruptions in broadcasts and communications.

Closer to home, Explorer 12 soared far from Earth in its highly eccentric orbit, charting long-lived solar plasma streams in interplanetary space.  The satellite determined that these gouts of plasma caused geophysical disturbances more than twenty days after their creation.

One can imagine a constellation of satellites being deployed to provide solar system-wide space weather reports.  Not only would they help keep astronauts safe as they journeyed from planet to planet, but they'd also let radio operators on Earth know when to expect static in their broadcasts.

And speaking of weather forecasts, Tiros 6 and 7 continue to be our eyes in the sky, tirelessly shooting TV of Earth's weather.  They've already tracked the first hurricane of the season, Arlene.  Who knows how many lives and dollars they will save with their early warnings?

Previews of Coming Attractions

The ill-starred lunar probe, Ranger, has failed in all five of its missions.  In fact, NASA is 0 for 8 when it comes to moon shots since 1959.  Perhaps Ranger 6, set for launch around Thanksgiving, will break this losing streak.  It will be the first of the Block 3 Rangers, lacking the sky science experiments that flew on Rangers 1 and 2, and the big seismic impactors carried on Rangers 3-5.  The new Rangers will just shoot TV pictures of potential Apollo landing sites.  This sacrifice of science in deference to the human mission has not gone without protest, but given the dismal track record of the program, the labcoat crowd will have to take what they can get.

A full year after Ranger (hopefully) reaches the Moon, a pair of Mariners will set sail for Mars.  Unlike last year's Mariner 2, Mariners 3 and 4 will carry cameras to provide our first close-up view of the Red Planet.  Let's just hope neither of these upcoming probes meet the same fate as Russia's Mars 1, which died last March.

At some point in the mid-60s, even bigger Mariners will fly to the planets, carried by the big liquid oxygen "Centaur" second-stage.  The first successful test fire took place on August 17 just down the way from my house — at General Dynamics/Astronautics San Diego

And finally, another 271 space candidates applied to NASA this year.  They have been screened to 30, and out of them, 10-15 will be selected in late October to comprise the third group of astronauts.  None of them are women yet, but perhaps there will be some in time for Group Four.


Pilots Jerrie Cobb and Jane Hart testify before the Subcommittee of the House Committee on Science and Astronautics, July 1962.  That's an Atlas Centaur model next to them.

Who knows?  Maybe you'll be one of them!

[Want to talk to the Journey crew and fellow fans in real-time?  Come join us at Portal 55! (Ed.)]




[July 4, 1963] Down Under to the Worlds of Men (Woomera, Part 2)


by Ida Moya

There’s been some great (and terrible) science fiction writing in the journey last month. I so appreciate these reviews, which help me find interesting things to read, and bring me up to date on the preoccupations of science fiction authors. The illustrations from the magazines that The Traveler includes are so compelling in style and subject matter. I think that they are an under-appreciated art form that, perhaps, sometime in the future, could become appreciated and highly collectible.

A few months ago I wrote about my friend Mary Whitehead, who works as an Experimental Officer in Australia. She recently wrote me back with some corrections, that I will pass on to you, in order not to mar the historical record.

For example, I said that Mary lived at Woomera, which was not the case. I was conflating the rocket testing range with the place where most of the computing work got done. She actually lives near the Weapons Research Establishment (WRE), which is located in Salisbury, a small town about 15 miles north of the big city of Adelaide. Woomera Rocket Range is in the isolated outback another 300 miles north of that.

In 1949, Mary, who studied mathematics in college, got a job in the Bomb Ballistics Section of the WRE. At that time, Mary was the only professional woman at Salisbury. Her first work was to lead a team of female Computers. At first, they used mechanical calculators like the noisy Friden’s and then Marchant’s like we used at Los Alamos Scientific Laboratory.


Bomb Ballistics Group Computer Judith Ellis recording data with pencil and paper from film, in 1949. (Courtesy of Defense Science and Technology Group)

In 1956 British company Elliott Brothers developed a custom-designed digital computer called WREDAC (Weapons Research Establishment Digital Automatic Computer) for WRE; one of but four digital computers in Australia at that time. This was a very sophisticated vacuum tube machine, a one off made a few years later than the ENIAC-style MANIAC we used at Los Alamos. In 1960 the WRE acquired the modular, somewhat mass-produced IBM 7090 mainframe computer, which is so valuable that they run it constantly, in three shifts.

Mary and some of her crew do go every once in a while to stay for a week at Woomera Village, next to the test range. She insisted that the Computers be able to observe the actual launches of rockets and missiles, and be trained in the operation of the data collection equipment — kinetheodolites, high-speed cine-cameras, radars, radio missile tracking systems, Doppler and telemetry reception equipment — in order to better interpret the results when they get back to Salisbury.


Two Computers wearing their army gear operate a kinetheodolite at Woomera around 1949.

Early on, it was quite a battle with the Range Superintendent to get her team to Woomera. He was concerned that it was an unsuitable and morally dangerous place for unattached young women. The compromise was that the women wear army gear – hat, khaki shirt and slacks, heavy brogues and leather jerkins for cold weather.


A team of computers visiting Woomera in 1950, wearing the army dress required by the Range Superintendent. Experimental Officer Mary Whitehead, Chaperone for the group, is second from the left. (Courtesy of Defense Science and Technology Group)

Back then, Woomera also did not have facilities for women, so they returned early from the range to have their showers from 4 to 5, before the men returned. The female Calculators also ate in the Officer’s Mess, so that they did not have to consort with the rougher men in the Other Ranks Mess. Today, though, the women working at Woomera have their own hostel and mess and no longer have to wear that army gear.

One part of Woomera range is a row of carefully calibrated cameras that take a series of photographs of a test launch. Her team also calibrates the cameras, which involves taking photographs of the starfield and getting the framing exactly right; a project that can take several weeks. Once calibrated, the tests commence and the launch photographs go back to the analysts, who use an overhead projector and other specialized equipment to translate each piece of film into location and time data. It’s really an amazingly detailed process involving a lot of cooperation. Now, what once took her team 4 weeks to calculate using Marchants, can be done in just a day on the IBM.


Long range Baker-Nunn camera for tracking satellites and photographing rockets, Woomera

Another mistake in my article that Mary pointed out to me was that she had never visited Los Alamos Scientific Laboratory. When she visited America, she went to the Smithsonian Astrophysical Observatory to get a better star catalogue. She also went to Patrick Air Force Base in Florida, and then the Aberdeen Proving Ground in Washington State, where she consulted with some men who had devised the mathematics for using stars as background markers for measuring the trajectories. Mary also went to White Sands Missile Range in New Mexico, which must be where we met. She didn’t get to observe any missile tests at White Sands, but spoke with a man there who studies the refraction of light.

The project Mary is working on now is called Black Knight. It is a research ballistic missile, a test vehicle being used to get data to better design and build missiles, develop launch techniques, and learn how to handle such a big item. Mary’s group examines the Black Knight’s trajectory and re-entry into the atmosphere. So it’s important to get those measurements right, so these ballistic missiles can be better designed.


Blue Streak, one of many missiles tested at the Range, on its launcher at Lake Hart, Woomera, 1963

Mary, like me, is working for her government. In Australia and Britain, like the United States, there are careful bureaucracies that establish titles and pay rates. As a female Experimental Officer, Mary is paid the standard women’s rate of two-thirds of the male wage. Most of Mary’s female Computers are right out of school, and are expected to stay for only a few years, until they are married, when it is mandatory that they retire. Miss Mary Whitehead is not married, perhaps because of this system. Mary has even joined the Professional Officer’s Association to try to lobby for equal pay for equal work, but she is frustrated because the rest of the members are men so they don’t think too much of her appeals. Right now she trains new recruits, who start at the men’s base pay, which is more than she makes as an experienced officer. This Programmed Inequality that includes discarding of skilled Calculators and discouraging of skilled female technical workers is a great loss to the accuracy of this trajectory work in particular, and the development of computing technology in Australia and the United Kingdom in general.

I won’t tell you yet how much I make, but I too am stuck in a similarly unfair and enraging bureaucratic system. But, like me, Mary finds the work and constant learning so stimulating that it is almost worth it. Fortunately, the national push for equal rights among the races and sexes is beginning to change this awful standard. The 1960s is opening with turbulence; some people agitating for change, while other forces oppose this change, as the Traveler keeps pointing out. It’s a confusing time and hard to know what is real anymore. Perhaps a little science fiction and fantasy will ease this pain, and give us some insight into the potentials that we can build into our tomorrows.




[June 20, 1963] Crossing stars (the flights of Vostoks 5 and 6)


by Gideon Marcus

Gordo Cooper's 22-orbit flight in Faith 7 afforded America a rare monopoly on space news during the month of May.  Now, a new Soviet spectacular has put the West in the shade and ushered in a new era of spaceflight.

On June 14, Lt. Colonel Valery Bykosky zoomed into orbit atop the same type of rocket and in the same type of Vostok capsule that took his four predecessors to space.  Call signed "Hawk," he circled the Earth for just a hair shy of five days, beating the previous record set by Andrian Nikolayev in Vostok 3 by a few minutes.  Bykovsky conducted experiments, floated unstrapped from his seat a few times, ate, slept, and otherwise did the normal things one might expect of a cosmonaut.  He landed early yesterday morning.

That's not the exciting bit.

Two days after Hawk's flight began, he was joined by "Seagull" in Vostok 6.  As with the twin flights of Vostoks 3 and 4, Hawk and Seagull's trajectories were tailored to overlap so that the two spacecraft could get within hailing distance.  They shared radio transmissions and reported observing each other.  Vostok 6 landed around the same time as Vostok 5.  In most ways, the mission of Hawk and Seagull marked no new ground over the previous joint mission.

Except one: Vostok 6 was crewed by Valentina Tereshkova, a textile worker from Moscow.  She was the first woman and the first civilian in space. 

Let that settle in.  There are a lot of ramifications. 

When Project Mercury was established, NASA solicited applicants with a specific set of talents.  They had to be male military test pilots with thousands of hours of jet experience.  Seven were ultimately chosen, six of whom have flown.

Six Soviets have also flown.  Five were male military test pilots, but the sixth had never enlisted.  Tereshkova's closest relevant experience is that her hobbies included parachuting.  That the Soviet space program anticipated and insisted on including a civilian woman is significant.  Moreover, in her sole space flight, she logged more hours than all previous American astronauts combined.

You can call it a media stunt.  You can sneer that the Vostok capsules are bigger and more automated and therefore Tereshkova's role was limited to that of a passenger, not a pilot.  That's cold comfort, though.  The fact is, the Russians are thinking long-term.  They want to know how space affects men and women because they intend on not just conquering space but settling it.  Furthermore, they are demonstrating that Communism is an equal-opportunity business.  For all of our touting of democracy, America has no plans to let women join the space corps. 

So let's tally where we are in the "manned" space race as of June 1963.  The Americans have just finished the Mercury program, which had six flights, two of them suborbital.  The longest mission lasted a day-and-a-half.  There won't be another crewed flight until late '64, when the two-manned Gemini goes up.

Meanwhile, the Soviets launched six crewed Vostoks over roughly the same period.  But, they got there "fustest with the mostest," (Gagarin went up a month before Shepard), all of the flights were orbital, Vostok has an endurance at least three times that of Mercury, the Soviets mastered the art of double-launching, and, of course, their program is sophisticated enough to accommodate a non-pilot.  America may have been the first to break the sound barrier, but the Communists were the first to break the space gender barrier.

Our one consolation is that the near real-time appreciation of the Vostok flights was made possible by the existence of American communications satellites.  The TV transmissions from Vostoks 5 and 6 were relayed across the Atlantic via Telstar.  That's a pretty weak "yeah, but." 

Here's a better one.  Let's bring women into the astronaut corps.  In fact, there is already a reserve of thirteen woman pilots who have voluntarily subjected themselves to and passed the same test regimen as the Mercury 7.  Led by NASA consultant, Jerrie Cobb, they've been waiting in the wings for three years now.  They are eager and fit to fly — all they need is the green light from the space agency.  Given that the next class of astronauts will include civilians, there should be no barrier to letting one of these qualified women fly in Gemini and/or Apollo.

There shouldn't be…

[May 16, 1963] Going out with style (Gordo Cooper's Faith 7 Mercury flight)


by Gideon Marcus

Nearly six years ago, the Russians threw down the gauntlet with Sputnik.  Then they upped the ante with the orbit of Yuri Gagarin in April 1961.  It's hard to believe that, in just two years, America has not only answered the Soviet challenge but completed its first manned space program.

For those of us well-heeled in science fiction, the Mercury spacecraft is hardly impressive-looking.  Barely big enough to hold a person (and not a tall one, at that), it is little more than a second space suit with a heat shield and a retrorocket.  And yet, as a first step for America into outer space, its importance cannot be overstated.

For it was those first two Mercury-Redstone flights, Alan Shepard's and Gus Grissom's, which showed that one could survive both the crushing weight of acceleration and the exhilarating freedom from gravity, in close succession, no less.  John Glenn proved an astronaut could orbit repeatedly, and Scott Carpenter demonstrated that spacemen are unflappable when things don't go just right.  Wally Schirra doubled the mission length of his predecessors and perfected fuel conservation and landing accuracy. 

But it was this latest and last Mercury mission, flown by the youngest of the Mercury 7, 36-year old Gordo Cooper, that showed what an astronaut and his spacecraft could really do. 

The original Mercury configuration only allowed for short flights — no more than Schirra's six orbits (nine hours).  Cooper's mission was to get into the endurance range that the Soviet Vostok enjoys — a day and beyond.  That meant more batteries, more water, more oxygen, and more maneuvering fuel.  Some items had to be trimmed, weight being at a premium.  For instance, the largely irrelevant periscope was deleted, saving a precious 76 pounds.  The result was a stocked up, stripped down version of Mercury that Cooper called Faith 7.  NASA was not too happy with this choice, worried about the inevitable headline in the event of mission failure: America Loses Faith.

The flight of Faith was scheduled for April but weather and other considerations pushed the launch back to May.  Finally, early on the 14th, the astronaut suited up and entered his spacecraft.  After many hours of waiting, the flight was delayed until the next day.  There had been a problem with the Bermuda tracking radar.  It does one well to remember that an astronaut is just one of thousands of participants in any given mission, the failure of any one of whom can cause a scrub. 

All systems were go the next morning, however.  After a pleasant two-hour nap in his capsule while the countdown rolled and held without him, Cooper was then pressed into his seat with several times his weight come liftoff time, 8:04 A.M. Eastern Daylight Time.  Less than fifteen minutes later, he became the sixth American to enter Earth orbit.

The flight called for 22 orbits, with go/no-go opportunities after seven and seventeen.  Cooper was the first astronaut who got to sleep in orbit, though he spent the first hour of his designated slumber time snapping pictures of the Himalayas — and astonishing folks on the ground with his visual acuity.  According to the astronaut, he could pick out individual houses and vehicles from orbit. 

Orbit 17 came and went, and Cooper declared himself and his metal steed A-Okay to finish the mission.  But perhaps he had spoken too soon.  Come the 19th orbit, Faith 7 began to fall to pieces.  The cabin temperature rose, instrument readouts became erratic, and the automatic pilot failed completely.  As Cooper approached the end of the mission, he was confronted with a situation no one had ever had to face before: he would return himself from orbit manually.

Of course, that's why NASA hired test pilots for the job.  Cooper was delighted at the opportunity to show his stuff.  His aim and timing of his retrorocket fire was so precise that not only did he make it safely back to Earth, but he came down just a couple of miles from the recovery fleet off Midway Island.  Astronaut Cooper had flown longer and better than an American before him, ending is mission just before 4 P.M. EDT (11 AM local time).

Better still, Cooper had shared none of the deterioration of his spaceship.  Aside from a little pooling of blood in the legs, the astronaut was in good health.  Moreover, he experienced none of the disassociation from reality that psychologists worried would afflict long-term space travelers.  Faith 7 was, despite the breakdowns, a complete success.

In that success, Mercury has signed its own death warrant.  While some have clamored for a multi-day Mercury flight (particularly first astronaut Alan Shepard), the fact is, there just isn't much more to learn with such a minimal craft.  The longer, more involved missions are going to need a more sophisticated spacecraft.  A two-person ship with the ability to maneuver and dock.

It's in development right now, and it's called Gemini.  It flies next year.




[Apr. 29, 1963] When a malfunction isn't (the flight of Saturn I #4 and other space tidbits)


by Gideon Marcus

Baby's first step… Take Four

Out in Huntsville, Alabama, Von Braun's team is busy making the biggest rockets ever conceived.  The three-stage Saturn V, with five of the biggest engines ever made, will take people to the Moon before the decade is out.  But NASA's is justifiably leery of running before walking.  Moreover, there is use for a yet smaller (but still huge!) rocket for orbital Apollo testing and, also, practice building and launching Saturn rocket components.

Enter the two-stage Saturn I, whose first stage has eight engines, like the Nova, but they are much smaller.  Still, altogether, they produce 1.5 million pounds of thrust — that's six times more than the Atlas that will put Gordo Cooper's Mercury into orbit next month.  The Saturn I's second stage will likely also be the third stage on the Saturn V.

The Saturn I has had the most successful testing program of any rocket that I know of.  It's also one of the most maddeningly slow testing programs (I'm not really complaining — methodical is good, and it's not as if Apollo's ready to fly, anyway). 

The fourth in the series lifted off March 28, and they still aren't fueling the second stage.  They've essentially all been tests of stage #1.  This particular test was interesting because they shut off one of the engines on purpose during the flight to see if the other engines could compensate for the loss.  SA-4 continued to work perfectly, zooming to an altitude of 129 kilometers.

SA-4 was the last of the first-stage-only tests.  Henceforth, we'll get to see what the full stack can do. 

A breath of very thin fresh air

We tend to ignore most of the atmosphere.  After all, the air we breathe and most of the weather are confined to the first few kilometers above the Earth.  But the upper regions of the atmosphere contain the ozone layer, which shields us from deadly radiations; the ionosphere, which bounces radio waves back to Earth; beautiful and mysterious noctilucent clouds, only visible after sunset; and of course, spacecraft have to travel through it on their way up and down.  Knowing the makeup of our atmosphere gives us clues to understand climate, the history of the Earth, the interaction of our planet and the sun, and much more.

And yet, aside from the TIROS weather satellites, which only study the lowest level of the atmosphere, there has never been a dedicated atmospheric study satellite.  Sure, we've launched probes to detect radiation and charged particles and the Earth's magnetosphere.  Some have investigated the propagation of radio waves through the ionosphere.  But none have gone into space just to sample the thin air of the upper atmosphere and find out what's up there and how much.

Until now. 

Explorer 17 is a big, sputnik-looking ball loaded with a bunch of pressure gauges and other instruments.  Its sole purpose is to measure the the pressure and make-up of the upper atmosphere, from about 170 kilometers up. 

Launched on April 3rd, in its first few days of operation, the probe has more than tripled all previous measurements of neutral gases in Earth's upper atmosphere to date.  For instance, the satellite has discovered that the earth is surrounded by a belt of neutral helium at an altitude of from 250 to 1000 miles, a belt no one was sure it existed.  We suspected it, of course — helium, produced in the Earth's crust by the natural radioactive decay of heavy elements, is very light.  Just as helium balloons go up and up, free helium's normal fate is to eventually escape Earth's gravitational influence, leaving behind the heavier gasses. 

This is the first time this hypothesis had a chance to be proven, and by measuring the density of this helium, we should be able to get an idea of how much helium is generated by the Earth each year.  This, in turn, will tell us something about how much radioactive material is left on Earth.  Isn't that neat?  We send a probe far up into space to learn more about what's going on down here.  Your tax dollar hard at work.

The Cosmos opening up for Kosmos

Pop quiz — what did the Soviets accomplish last year in the Space Race?  Right.  The Soviets made big news with the flashy dual mission of Vostoks 3 and 4.  Anything else?  Can you recall a single space accomplishment for the Communists?  In 1962, the United States launched Telstar, the Orbiting Solar Observatory (OSO), three Explorer science probes, three Ranger moon probes, Mariner 2 to Venus, and a couple dozen military satellites, not to mention the orbital Mercury flights of John Glenn, Scott Carpenter, and Wally Schirra.

This year is a different story.  We Americans haven't slackened our pace, but the Russians have finally picked up theirs.  They've got a probe on its way to Mars, as well as a new series of satellites called Kosmos.  This month, they launched three, getting up to Kosmos 16.  They are touted as science satellites, but there has been precious little data from them made public or that's worked its way into scientific papers.  This suggests that the Kosmos program is really a civilian front for a military program.  That's the fundamental difference between the Western and Eastern space efforts.  While the American military takes up its share of the national space budget, we still make sure there's room for pure science.  The Soviets have chosen between guns and science in favor of the former (though, to be fair, if we could only afford one option, would we have made the same choice?)

So why did it take so long for the Soviets to get into the groove after having such a seemingly commanding lead in the Space Race?  And just what are the Kosmos satellites really doing up there? 

According to a NASA scientist, the lack of announced flights doesn't mean the Russians didn't try.  Our Communist friends are notorious for talking only about their successes.  In fact, the Soviets were trying a new four-stage version of the booster that launched Sputnik and Vostok, and the fourth stage kept failing.  There might have been a few failed moon missions in there, too, that we never heard about.  We probably only learned about Luna 4, launched April 2, because it took off just fine — it just missed its target (the Soviet reporting after lunar flyby was notably subdued). 

As for what Kosmos is, Aviation Weekly and Space Report suggests the series is really two types of satellites based on weight and orbital trajectory.  One is a small class of probe that stays up for months.  They could be akin to our Explorers, but again, they don't produce science (whereas ours have revolutionized our knowledge of near-Earth space).  More likely, they are engineering satellites designed to test various components for future missions: communications, cameras, navigation.

The other class is big — as big as the manned Vostoks.  They only fly a few days, too, and their orbits cover most of the globe.  These could be unmanned tests of the next generation of Soviet manned spacecraft.  But they also could be repurposed Vostoks designed to conduct spy missions.  Perhaps the Soviet Union is sending up cosmonauts with camera in hand (as we have done on the Mercury missions).  Sure, it's more expensive than our Discoverer spy sats, but everything's free in a command economy, right?

In any event, the world once again has two active space superpowers.  What happens next is anyone's guess…




[Mar. 30, 1963] Mercury waltzes Matilda (the tracking and research station at Woomera, Australia)


by Ida Moya

I’m back from a whirlwind of helping the data analysts at Los Alamos get their FORTRAN formulas running on that balky old IBM Stretch computer. I can see why IBM only made 8 of these things. It is miraculous to have a computer that can fit into a single room, but this stretch (pardon the pun) in computing technology still averages only 17 hours uptime a day — and that’s also a stretch (no more, I promise).

When it breaks, this swarm of white-coated men in ties comes in and fusses around with it with a bunch of special tools, as well as the set of ALDs (Automated Logic Diagrams) that come with every IBM computer. The way those diagrams are produced and updated with punch cards and special line printers is an amazing story, but for another time.

Although we at Los Alamos Scientific Laboratory can comfort ourselves that the Stretch is the fastest computer in the world, I’m still envious of the institutions that have the better-engineered IBM 7090 computers. These are being used for calculations for the exciting Mercury program.


IBM 7090 at the Weapons Research Establishment's headquarters at Salisbury, on the northern outskirts of Adelaide in South Australia.

The Mercury spaceships do not have a computer on board – computers are far too heavy – so for figuring out how to re-enter the earth’s atmosphere the astronauts rely on computations sent by radio from the pair of IBM 7090 computers at the Mercury Control Station at Cape Canaveral. It’s an incredible amount of faith to put in one site, so Mercury control has those two redundant IBM computers, plus another set of computers in New Jersey. A third computer gathering information from the flight is on the other side of the globe — in Adelaide processing tracking data collected at at Weapons Research Establishment in Woomera, Australia. There is also another control center at Muchea, in Western Australia.


Control room of the astronaut tracking station at Muchea in Western Australia, part of US Project Mercury

A lot of people haven’t heard of Woomera, so let me tell you a little bit about it. At Woomera, more is being done than track Mercury astronauts. This part's an open secret, but the Brits and the Aussies are working together there on testing (or doing “trials” as they say) on rockets, missiles, and even atomic weapons. That's why they built this testing range in the middle of nowhere, in the outback of Australia.


Woomera Research Establishment Officer’s mess

A few years ago we had a visit from Bill Boswell, the Woomera director, along with a team from Maths Services, and Mary Whitehead, the leader of the Planning and Data Analysis Group. They were visiting various computer installations at Point Mugu, White Sands, and Cape Canaveral. These are all larger-than life place-names, but they really just represent groups of men and women madly making observations, coding the photographs in a way the computer can understand, and using these results to steer the manned spaceships. Mary and I had time to talk about more prosaic things, like her new apartment (or “flat” as they call it down under) in Woomera village, and the troubles of living so far from civilization.


Mary’s new flat at Woomera

Woomera reminds me a lot of Los Alamos. It is a similar purpose-built town, isolated from the surrounding population by remoteness and security. Entire families live there, with houses, apartments, and schools for the kids. There are clubs and mess halls; a bowling alley and community grocery store. The store sells just canned and packaged food; if you want something fresh the closest produce is 50 miles away. The planners made a lot of efforts to plant trees, most of which failed. Honestly, it sounds awful to me. I love the "Land of Enchantment" (New Mexico), where things actually grow. The two science towns also have odd mixed populations – for Los Alamos, it is the influx of American and foreign scientists, local Hispanos, and the San Ildefonso tribe. In Woomera, it is the influx of British scientists, local Aussies, and the aboriginal people. Personally I think Los Alamos does a better job of integrating the native population.


Community store in Woomera

There’s something about space that is so exciting. Space has it all: exploration, discovery, danger, and destiny. There’s so much more to it than my dry work of computers, trajectory calculations, and strangely named groups that I am so mired in. That’s why I am so excited to find science fiction and Galactic Journey’s reviews, which is opening my mind to our real future in space that this work makes possible.




[March 24, 1963] Bumper Crop (A bounty of exciting space results)


by Gideon Marcus

February and March have been virtually barren of space shots, and if Gordo Cooper's Mercury flight gets postponed into May, April will be more of the same.  It's a terrible week to be a reporter on the space beat, right?

Wrong!

I've said it before and I'll say it again.  Rocket launches may make for good television, what with the fire, the smoke, and the stately ascent of an overgrown pencil into orbit…but the real excitement lies in the scientific results.  And this month has seen a tremendous harvest, expanding our knowledge of the heavens to new (pardon the pun) heights.  Enjoy this suite of stories, and tell me if I'm not right…

How hot is it?

Mariner 2 went silent more than two months ago, but scientists are still poring over the literal reams of data returned since its rendezvous with Venus.  The first interplanetary mission was a tremendous success, revealing a great deal about the Planet of Love, whose secrets were heretofore protected by distance and a shroud of clouds. 

Here's the biggie: Preliminary reports suggested that the surface temperature of "Earth's Twin" is more than 400 degrees Fahrenheit.  It turns out that was a conservative estimate.  In fact, the rocky, dry landscape of Venus swelters at 800 degrees — possibly even hotter than the day side of sun-baked first planet, Mercury.  It's because the planet's dense carbon dioxide atmosphere acts like a heat blanket.  There's no respite on the night side of the hot world either; the thick air spreads the temperatures out evenly.

Thus, virtually every story written about Venus has been rendered obsolete.  Will Mariner 3 destroy our conception of Mars, too?

Just checking the lights

On February 25, the Department of Defense turned little Solrad 1 back on after 22 months of being off-line.  The probe had been launched in conjunction with a navigation satellite, Transit, back in June 1960.  For weeks, it had provided our first measurements of the sun's X-ray output (energy in that wavelength being blocked by the Earth's atmosphere and, thus, undetectable from the ground).  DoD has given no explanation for why the probe has been reactivated, or why it was turned off in the first place.  Maybe there's a classified payload involved?

Radio News from the Great White Spacecraft

Last September, the Canadians launched their first satellite — the "top-sounder," Alouette, whose mission was to measure the radio-reflective regions of our atmosphere from above.  The results are in, and to any HAM or communications buff, its huge news.

It turns out that the boundaries of the ionosphere are rougher at higher latitudes than at lower latitudes.  Moreover, Alouette has determined that the Van Allen Belts, great girdles of radiation around our planet, dip closer to the Earth at higher latitudes.  This heats up the ionosphere and causes the roughness-causing instability. — the more active the electrons, the poorer the radio reflection.  Now we finally know why radio communication is less reliable way up north.  The next step will be learning how to compensate for this phenomenon so that communication, both civil and military, can be made more reliable.

Sun Stroke Warning

After a year in orbit, NASA's Orbiting Solar Observatory is still going strong, with 11 of 13 experiments still functioning.  The satellite has probably returned more scientifically useful data than all of the ground-based solar observatories to date (certainly in the UV and X Ray spectra, which is blocked by the atmosphere).

Moreover, OSO 1 has returned a startling result.  It turns out that solar flares, giant bursts of energy that affect the Earth's magnetic field, causing radio storms and aurorae, are preceded by little microflares.  The sequence and pattern of these precursors may be predictable, in which case, OSO will give excellent advance warning of these distruptive events.

Tax money at work, indeed!

Galaxy, Galaxy, Burning Bright

In the late 1950s, astronomers began discovering some of the brightest objects in the universe.  It wasn't their visible twinkle that impressed so much as their tremendous radio outbursts.  What could these mysterious "quasi-stellar sources" be?

Now we have a pretty good guess, thanks to a recent scientific paper.  Cal Tech observers using the Mt. Wilson and Mt. Palomar observatories turned their gaze to object 3C 273, a thirtheenth magnitude object in the constellation of Virgo.  It turns out that 3C 273's spectrum exhibits a tremendous "red shift," that is to say, all of the light coming from it has wavelengths stretched beyond what one would expect.  This is similar to the decrease in pitch of a railroad whistle as the engine zooms away from a listener.

The only way an object could have such a redshift is if it were of galactic proportions and receding from us at nearly 50,000 km/sec.  This would place it almost 200,000,000 light years away, making it one of the most distant (and therefore, oldest) objects ever identified.

At some point, astronomer Hubble's contention that the universe is expanding is likely to be confirmed.  These quasi-stellar objects ("quasars"?) therefore represent signposts from a very young, very tiny universe.  What exciting times we live in!

Five years of Beep, Beep

St. Patricks Day, 1958 — Vanguard 1 was the fourth satellite in orbit, but it was the first civilian satellite, and it is the oldest one to remain up there.  In fact, it is the only one of the 24 probes launched in the 1950s that still works.

What has a grapefruit-sized metal ball equipped with a radio beacon done for us?  Well, plenty, actually.  Because it has been tracked in orbit so long, not only have we learned quite a bit about the shape of the Earth (the variations in Vanguard's orbit are due to varying gravities on the Earth, the measurement of which is called "geodetics"), but the satellite's slow decay also tells us a lot about the density of the atmosphere several hundred miles up.

So, while Sputnik and Explorer might have had the first laughs, Vanguard looks likely to have the last for a good long time.

Telstar's little brother does us proud

RCA's Relay 1, launched in December, is America's second commercial communications satellite.  It ran into trouble immediately upon launch, its batteries producing too little current to operate its transmitter.  Turns out it was a faulty regulator on one of the transponders; the bright engineers switched to the back-up (this is why you carry a spare!), and Relay was broadcasting programs across the Atlantic by January.  660 orbits into its mission and 500 beamed programs later, NASA announces that Relay has completed all tests. 

Nevertheless, why abandon a perfectly good orbital TV station?  Relay will continue to be used to transmit shows transcontinentally, especially now that Telstar has finally gone silent (February 21).  There is even talk that Relay could broadcast the Tokyo Olympics in 1964, if it lasts that long!

In a sea of Blue, a drop of Red

On March 12, 3-12 at the Spring Recognition Dinner of Miracle Mile Association, in Los Angeles, Cal Tech President, Lee DuBridge, noted that the United States has put 118 probes into space, while the Russians have only lofted 34 (that we know of).  He also pointed out that virtually no scientific papers have resulted from the Soviets' "science satellites." 

As if in reply, on March 21 the Soviets finally, after 89 days without a space shot, launched Kosmos 13.  (To be fair, it's been kind of quiet on the American side, too).  The probe was described as designed to "continue outer space research."  No description of payload nor weight specifications were given.  Its orbit is one that allows it to cover much of the world.  While it may be that some of the Kosmos series are truly scientific probes, you can bet that, like America's Discoverer program, the Kosmos label is a blind to cover the Russians' use of spy satellites.  Oh well.  Turnabout is fair play, right?

[Next up, don't miss Mark Yon's spotlight of this month's New Worlds!  And if I saw you at Wondercon, do drop me a line…]




[January 15, 1963] Venus' true face (Scientific Results of Mariner 2)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Remember five years ago, when Explorer 1 was launched?  At first, the big news was that America had answered Sputnik and joined the Space Age, but it soon became clear that the flight had larger significance.  For Explorer discovered the giant bands of hellish radiation that girdled the Earth, particles trapped by the Earth's magnetic field.  Until 1957, these "Van Allen Belts" had been virtually unsuspected.  With one flight, our conception of the universe had drastically changed.

It's happened again.

Mariner 2 is humanity's first successful mission to another planet, and the scientific harvest is absolutely enormous.  Moreover, thanks to recent changes in policy, the initial results of this harvest were released unprecedentedly quickly (scientists are now reporting upon submission and acceptance of papers rather than publication).  Just one month since the probe's encounter with Venus, the flood of information has been almost too much to parse; nevertheless, I think I've gotten the broad strokes:

Getting there is half the fun

Before I talk about Mariner's encounter with Venus, it's important to discuss what the spacecraft discovered on the way there.  After all, it was a 185 million mile trip, most of it in interplanetary space charted but once before by Pioneer 5.  And boy, did Mariner learn a lot!

For instance, it has finally been confirmed that the sun does blow a steady stream of charged particles in a gale known as the "Solar Wind."  The particles get trapped in Earth's magnetic field and cause, among other things, our beautiful aurorae. 

Mariner also measured the interplanetary magnetic field, which is really the sun's magnetic field.  It varies with the 27-day solar rotation, and if we had more data, I suspect the overall map of the field would look like a spiral. 

Why is all this important?  Well, aside from giving us an idea of the kind of "space weather" future probes and astronauts will have to deal with, these observations of the sun's effect on space give us a window as to what's going on inside the sun to generate these effects. 

One last bit: along the way, Mariner measured the density of "cosmic dust," little physical particles in space.  It appears that there's a lot of it around the Earth, perhaps trapped by our magnetic field, and not a lot in space.  It may be that the solar wind sweeps the realm between the planets clean.

Unattractive planet

Given how magnetically busy the Earth is, and since Jupiter fairly crackles on the radio band thanks to its (likely) magnetic dynamo, one would expect Venus to impact its local space environment.  Nope.  In fact, Mariner 2 flew past the second planet without detecting a trace of Venusian magnetic field, nor any concentration of space dust around the planet.  Now, it's possible that Venus has a weak field, or that its field is so oddly shaped that Mariner just hit a low patch, but the simplest explanation is usually the right one — Venus has no magnetic field.

Taking her temperature

Right up until December 14, some scientists (and many writers!) had held out hope that the thick clouds of Venus hid a reasonably hospitable surface, potentially teeming with life.  Earth-based sensors had indicated that the Venus was unbearably hot, but such could be explained by an unusually active Venusian ionosophere.  But as Mariner 2 turned its microwave and infrared radiometers across the face of Venus, it was clear that the edges of the planet were cooler than the center.  This is what one would expect from a hot surface, cooler atmosphere; the reverse would be expected of the "hot ionosphere" model.

So how hot is Venus?  At least 400 degrees Kelvin (260 degrees Fahrenheit), and probably a lot more.  There's no way there is any liquid water under that hellish greenhouse of carbon dioxide.  Moreover, it's not any nicer at night time.  There appears to be no real difference in temperature between the illuminated and dark halves of Venus, probably for the same reason the Earth's oceans run a fairly consistent temperature – Venus' atmosphere is thick enough for efficient distribution of warmth. 

Amtor dispelled

Mariner 2 and terrestrial radar have determined that the Venusian day incredibly long (~250 days, backward with respect to the other planets), but the Venusian winds blow across the planet far faster than the planet rotates; clouds have been seen racing around the disk of Venus in just 4-5 days.  Recent radar observations indicate that Venus's surface is smoother than that of the Earth or the Moon. 

This, then, is our new picture of Venus.  It is a truly hellish place, more worthy of its less common moniker, Luciferos — a bleak, half-lit world scoured by hurricane-strength sandstorms hot enough to melt lead.  Bradbury's All Summer in a Day, not to mention Burroughs' "Venus" series', will need some serious revision. 

Details, details

One of the nice things about sending a probe far from Earth is it allows for more accurate measurement of basic units – like the distance of the Earth and Venus from the sun.  This will help in future expeditions, manned and unmanned.  Another bit of bounty from Mariner's flight is a refinement of the mass of Venus.  It is 81.485% that of Earth – one of the few ways Venus remains "Earth's Twin."

What's next?

Opportunities to explore Venus occur every 19 months, when the second and third planets of the solar system are aligned in their orbits for easy travel.  Mariner 2 was so successful in its mission that NASA has canceled plans for a repeat flight in 1964.  Rather, the space agency will focus on Mars that year and follow up with Venus later, perhaps 1965. 

One reason to launch a new probe to Venus sooner rather than later is, despite the wealth of information passed back by Mariner 2, we did not get a single photograph of the planet.  That's because the spacecraft was too small to carry the transmitting equipment required to send back pictures from so far away.  But by '65, the new Centaur booster stage will have replaced the weaker Agena, which will allow a beefier payload. 

In the meantime, telemetry is worth a thousand pictures.  For now, let us revel in this scientific bonanza. Venus may not be a great place to live, but visiting has paid off tremendously.


(that's rolls of data, not paper towels)

[P.S. If you registered for WorldCon this year, please consider nominating Galactic Journey for the "Best Fanzine" Hugo.  Check your mail for instructions…]




[December 14, 1962] Hot Stuff (Stop Press report on Mariner 2)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

The Space Race has given us a lot of firsts to report on in the last five years.  Today marks perhaps the most significant: for the first time, a spacecraft is reporting back to Earth on another world.  Mariner 2, launched on August 27, has traveled 182 million miles to fly by the second planet out from the sun, Venus.

It has been a perilous trip the entire way — even before the spacecraft ever left the ground!  Firstly, the mission almost didn't leave the drawing board.  The original Mariner probe was a robust and heavy craft with a huge panoply of experiments.  But the beefy Atlas-Centaur booster wasn't going to be ready in time for the next favorable orbital alignment of Earth and Venus, such occurring every 19 months.  Unless NASA wanted to wait until 1964…and risk being beat by the Russians, an alternative had to be found.

Luckily, the Ranger series of moon probes, half the size of the original Mariner and designed to fit on the smaller Atlas-Agena, was available.  Two new Rangers were adapted into "Mariner Rs" posthaste to meet the Summer 1962 deadline.  By July, Mariner 1 was on the launchpad.  This is where the second hurdle was met.

On July 22, Mariner 1's Atlas soared into the sky.  93 seconds into the flight, the guidance antenna on board the rocket stopped hearing commands from ground control.  This was not immediately fatal; after all, the Atlas has its own computer with a program designed to keep the booster on course even without external direction.  Unfortunately, something was wrong with the program, too — probably a misprogrammed equation led the Atlas to make increasingly jerky maneuvers on its yaw axis.  Five minutes into the mission, ground control had to send a destruct order, blowing the rocket up in midflight.

A tense month went by.  Would the Russians beat us to the punch?  We'd gotten a reprieve the year before, when the Soviet probe Venera 1 sailed silently past the Planet of Love, its systems having died in flight.  On August 25, there were reports of a Soviet launch but no subsequent announcement of a new Venus mission.  Was it just a false alarm?  Or had our adversaries had troubles of their own?

Then Mariner 2 successfully launched, on August 27.  It made it through a mid-course correction on September 4 that put it on a course with destiny.  Now it just had to survive the journey, longer than any that had been managed before.  Given the track record of the Rangers (0 for 5), the odds weren't good.

In fact, Mariner almost didn't make it.  On Halloween, one of Mariner's solar panels shorted out.  It came back on a week later only to short out for good on November 15.  Still, the crippled ship soldiered on closer to the sun, its remaining panel absorbing sufficient energy to power all instruments.  Mariner 2 set a record en route, continuing to send data past the point that Pioneer 5's transmission faded away two years ago.  As the craft approached Venus, the temperature inside was close to boiling.

Nevertheless, little Mariner pulled through!  Passing just over 20,000 miles over the surface of Venus, Mariner 2 is sending back information, all experiments functioning.  As we speak, JPL engineers are poring through the data.  In just a few short weeks, we will finally have answers to some big questions: Is Venus really a roiling inferno?  How long is a Venusian day?  What is the nature of Venus' magnetic field? 

Humanity has waited 100,000 years to learn the answers.  By January, we should have them.




[October 31, 1962] Trick and Treat! (A Halloween candy wrap-up of the Space Race)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Halloween is normally a time for scares — for us to invoke, dress up as, and tell stories of various ghosts, ghoulies, and goblins.  But let's face it.  We've had quite enough fright for one month, what with the Free and the Communist worlds just seconds from Midnight over the Soviet placement of nuclear missiles in Cuba.  Thankfully, that crisis has been resolved peacefully, with the Russians agreeing to dismantle their weapons and return them home (who knows what unreported concessions we may have made to assure that outcome).  Nevertheless, with our heart rates still elevated, I think the best remedy is to skip terror this time around and focus on the things that make us smile:

Candy and space missions!

Niña and Pinta sail the magnetic oceans

Last year, I gushed rhapsodically about the voyage of Explorer 12, a vessel designed to map the contours of the Earth's magnetic field.  The results did not disappoint; thanks to that little probe's journey, we now know that there is a sharp boundary between the our planet's magnetosphere and the magnetic emanations of our sun.  This, then, is the map of our unseen ocean, as of this year:

But how constant is this border, this magnetopause, between ours and the solar magnetic sea?  What are the mechanisms of its flow?  Moreover, what of the three charged "Van Allen" belts girdling the Earth?  And what impacts do our atmospheric atomic tests have on them, short and long-term?

That's the nature of science.  Early experiments tend to provide more questions than answers!  Explorer 12, which ceased operations in late '61, won't be answering any more of them; however, NASA launched two more Explorers just this month to pick up where the magnetic Santa Maria left off.

Explorer 14 was launched October 2.  Like Explorer 12, it has a highly eccentric orbit in which the 89 pound spacecraft zooms 60,000 miles into the sky before flying near the Earth.  This takes the probe through all of the layers of the Earth's magnetic field.  The experiment load is largely the same as Explorer 12's, with a couple of additional sensors. 

Explorer 15 is a different kind of ship.  It only goes up to about 10,000 miles, and its mission is more focused on the artificial particle fields created as the result of nuclear explosions.  Unfortunately, when the spacecraft launched on October 27, it did not extend its "arms" — little weight-bearing spars — to slow down the spin imparted to it by its rocket.  Like an ice skater with her arms tucked in, Explorer 15 is spinning much faster than intended.  Nevertheless, good data is being gotten from five of its seven experiments.

Watch this space for exciting updates.  Between the new Explorer twins and the Venus probe, Mariner 2, now several million miles from Earth, the age of space magnetic exploration is truly underway!

Chocolate Arms Race

Since early this century, two superpowers have faced off, each developing a physical and sociological arsenal designed to sway the world into one's camp or the other's.  I am not speaking of the mortal struggle between Communism and Democracy…but that of Pennsylvania's Hershey Company versus Minnesota's Mars, Incorporated.

On the one side, we have the eponymous Hershey Bar, the conical Hershey's Kisses, the peanut-infused Mr. Goodbar, the rice-included Krackel, etc.  On the other, the Milky Way bar, the Three Musketeers Bar, and most importantly (at least to this column's editor) the peanutty Snickers Bar.

Of course, this oversimplifies things.  There are plenty of "Third World" candy makers, including Nestle's (Crunch), Necco (Clark Bar), and Peter Paul (Mounds and Almond Joy).  In fact, my favorite chocolate-based candy is Reese's Peanut Butter Cups, made by Harry Burnett Reese Candy Co.  Harry died six years ago, but I think we can trust his six sons to carry on the independent tradition that has made these confections so delicious. 

In fact, I wholeheartedly support greater parity among the world's chocolatiers.  After all, we've just seen what crises can result in a bipolar world…

Canada joins the Space Race!

Typically, a Thor Agena B launch from Southern California means yet another Air Force "Discoverer" spy sat has gone up; such flights are now weekly occurrences.  But the flight that went up September 29 actually carried a civilian payload into polar orbit: Alouette 1, the first Canadian satellite. 

Alouette is designed to study the ionosphere, that charged layer of the atmosphere hundreds of miles up.  But unlike the sounding rockets routinely sent into the zone, Alouette will survey (or "sound") the ionosphere from above.  Canada is particularly interested in understanding how and when the sun disrupts the region, interrupting radio communications.  Our neighbor to the north is a big country, after all, and it is the Northern Hemisphere's first line of defense against Soviet missiles and bombers.  Radio is, therefore, vital to both defense and civilian interests.

According to early data, it looks like the highest "F2" layer of the ionosphere is as reflective to radio waves from the top as the bottom.  Alouette has also, by beaming multiple frequencies down to Earth, helped scientists determine what radio wavelengths aren't blocked by the ionosphere. 

Sometime next year, Alouette will be joined by an United States "sounder" mission with a different experiment load.  Then we'll have two sets of space-based data to corroborate with ground-based measurements.  Soon, one of the more mysterious layers of the atmosphere, one completely unknown to us a century ago, will be well understood.

Sweetly Sour

Some people love chocolate.  Strike that — most people love chocolate.  But I tend to favor fruit-flavored candies.  For instance, Smarties, Pixy Stix, the recent Starbust Fruit Chews, and brand new for this year: Lemonheads!

Made by Ferrara, the same folks who make Red Hots (which I also love), Lemonheads are a delicious hard candy mix of sour on the outside, sweet on the inside.  I have now made myself sick at least twice on these things, and I firmly intend to do so at least twice more.  I'm an adult, and no one can stop me.  Besides — it keeps me away from Candy Corn…

The Moon claims another Victim

Speaking of sour…first it was the three Air Force Pioneer missions launched in 1958 – none of them made it even halfway to the Moon.  Then the four Atlas Able Pioneer missions of 1959-60 didn't even got into Earth orbit.  Now five out of five Ranger probes launched over the last year have failed. 

Launched October 17, the fifth of the Rangers went on the fritz just a few hours after take-off.  On the way to the Moon, the solar power transformer went kaput, leaving the spacecraft on battery power, which rapidly depleted.  Two days later, the silent ship sailed 9,000 miles over the surface of the Moon, after which ground-based 'scopes quickly lost sight of it. 

Ranger 5 marked the last of the "Block II" line.  The two Block I spacecraft were supposed to stay in Earth orbit and do sky science, but neither of them lasted long enough.  None of the three Block IIs succeeded in their mission of smacking the Moon with their bulbous noses, filled with sensor equipment.  I suspect NASA is going to do a lot of work making sure the Block III craft, armed with cameras, reach their destination alive and snapping photos.  That is, if Congress doesn't cut their funding.

Happy Halloween, and don't let the news get you down.