Tag Archives: mercury

[September 28, 1969] Apollo’s New Muses (Women Behind the Scenes in the Apollo Programme)

Seven years ago, the Journey published an article on the Women Pioneers of Space Science.  At long last, Kaye offers a much-needed update, this time focusing on the women who helped make Apollo 11's trip to the Moon possible…


by Kaye Dee

Classical literature tells us that the god Apollo was associated with the Nine Muses, the goddesses who inspired the arts, literature and science.

Our modern Apollo program also has its Muses – trailblazing women working behind the scenes in critical areas of the programme. They deserve to be better known, not just for their own impressive careers to date, but also as role models, inspiring girls and young women who might be interested in science, technology, engineering, mathematics or medicine, but are diverted away from them by the prevailing view that careers in these areas are for men, not women.

The famous ‘Dance of Apollo and the Muses’ by the Italian architect and painter, Baldassare Tommaso Peruzzi

As someone who has had to contend with these stereotypes myself, trying to establish a career in the space sector in Australia, I thought it might be interesting this month to delve into the stories of four of the women working behind the scenes in the Apollo programme: modern-day daughters of Urania, the Muse of Astronomy, Mathematics and the “exact sciences”.

The “Return to Earth” Specialist: Frances “Poppy” Northcutt

Every aspect of a lunar voyage involves moving objects – the Apollo spacecraft, the Earth and the Moon. Calculating the trajectories required for an Apollo mission to meet and go into orbit around the Moon at a particular date and time, is a mind-bending feat. But getting astronauts safely home from the Moon is even more important!

NASA’s specialist in the incredibly complex and precise calculations required to determine the optimal trajectories for the return to Earth from the Moon, minimising fuel and flight time, is Miss Frances Northcutt, who goes by the nickname “Poppy”. She is, perhaps, the only one of these ladies that you might have heard of (at least those of you in the United States), as she was such a “curiosity” during the press and television coverage of the Apollo-8 mission that she has been interviewed many times (and more on this below).

Born in 1943, Miss Northcutt earned a mathematics degree from the University of Texas, then commenced working at TRW in 1965 as a “computress”! Yes, that was her actual job title, although in Australia we’d have just called her a "computer" (a term applied here and in Britain to both men and women doing this kind of intensive calculating work). Miss Northcutt was placed at NASA’s Langley Research Centre, calculating spacecraft trajectories for the Gemini missions. She proved to be so talented in this area that within just six months TRW promoted her to engineering work with its Return to Earth task force, helping to design the computer programmes and flight trajectories to return an Apollo spacecraft from lunar orbit to Earth.

A simplified version of the Apollo lunar free return flight trajectories

Poppy Northcutt became the first woman to work in this type of role and was soon undertaking the intricate calculations involved in enabling the Apollo astronauts to travel around the Moon and come safely home. The Moon’s lower gravity changes parameters such as fuel usage, as well as the timing of manoeuvres, so the calculations are particularly tricky. Poppy identified mistakes in NASA’s original trajectory plan, performing calculations that reduced the amount of fuel used to swing around the Moon.

When NASA decided that Apollo-8 would become a lunar orbiting mission, the task force team, including Miss Northcutt, moved to Mission Control to instruct the flight controllers on the trajectory calculations and be available to make real-time calculations and course corrections in the event of unexpected incidents during the flight. Assigned to Mission Control's Mission Planning and Analysis room, Miss Northcutt and her team have been an integral part of Apollo-8, 10 and 11 and are now preparing for Apollo-12. She is the only female engineer in the teams that work in the backrooms of Mission Control in Houston, providing support to the flight controllers.

Poppy Northcutt working in the Mission Control support room during Apollo-8

Working Like a Man (but not being paid like one!)

“Computresses” in Miss Northcutt’s original position are classed as “hourly workers”, with their wages capped at working 54 hours per week (in other words, five nine-hour days). Their male counterparts were not only paid more (as we all know, female workers are generally paid between about half and two-thirds of the wages for a man doing the same job), they were also on salaries and paid overtime.

As an ambitious young woman, Miss Northcutt quickly realised that to earn the respect of her male colleagues and be considered a peer, she would have to work the same long hours they did – even if this meant that she was essentially working 10 or more hours a week for no pay!

A NASA promotional photo of Miss Northcutt at work in March this year. She presents herself as a diligent professional

Her talent and diligence paid off with her promotion to engineer, but, ironically, even though she was still being paid less than her male colleagues, Miss Northcutt tells the story that there was no normal mechanism to approve the pay rise she received with this jump from Computress! Her manager had to keep scheduling the highest possible raise as frequently as he could to bring her up to the full female rate of her new salary. 

During Apollo missions, when shifts last around 12 to 13 hours a day in Mission Control, Miss Northcutt usually commences her duty shifts for each mission around the time that the Apollo spacecraft, coasting towards the Moon, prepares to enter the lunar sphere of gravitational influence. During lunar orbit insertion she stands by to assist with new calculations, in the event of an emergency abort, and she reports for duty at Mission Control every day of the lunar phase of the mission and until the astronauts have returned safely to the Earth's sphere of influence. No one can say Poppy Northcutt isn’t pulling her weight, just like a man!

Sexism, Celebrity and Activism

As the only female engineer in Mission Control during the Apollo-8 mission, Miss Northcutt was such a “curiosity” that she received a lot of attention from journalists. While much of this coverage was not seen in Australia, from what I have heard from friends in America, I understand that many of the questions that she received were quite sexist – and even silly.

Miss Northcutt is a very pretty woman and dresses fashionably, so apparently ABC reporter Jules Bergman thought it was more important to ask about her potential to distract her male colleagues from the mission, than to ask about her crucial role: “How much attention do men in Mission Control pay to a pretty girl wearing miniskirts?” Would they have asked a male flight controller if the suit he was wearing turned the heads of the typing pool?! I gather that she gave him a polite brush off response.

A friend in the US took this photo from her television screen, giving me a glimpse of Mr. Bergman's interview with Miss Northcutt

It is bad enough when reporters focus on her appearance and ask her such inane questions, while she operates at the level of her male colleagues, for far less monetary reward. But Miss Northcutt has also reported an instance in which she discovered that the other flight engineers were covertly watching her on a video feed, from a camera trained on her while she was conducting equipment flight tests.

As a result of her personal experiences with sexism, Miss Northcutt has become a strong advocate for women’s rights, and has joined the feminist National Organisation for Women. Even in her early days at TRW, she worked to improve the company’s affirmative action and pregnancy leave policies. “As the first and only woman in Mission Control, the attention I have received has increased my awareness of how limited women’s opportunities are”, she has said. “I’m aware of the issues that are emerging. Working in this environment I can see the discrimination against women.”

TRW is happy to use Miss Northcutt's minor celebrity to promote itself, but not happy enough to pay her the same salary as her male colleagues!

However, while she is not pleased that much of the attention she has received has been focussed on her appearance, or treating her as a rare exception to the male-dominated world of spaceflight, Miss Northcutt has said that she recognises that being a woman visibly occupying a critical position in the space programme does send a very positive message to women and girls: a career in science and technology is possible if you want it – and are prepared to work for it!

Miss Northcutt has received letters and fan mail from around the world (including several marriage proposals, it seems!) She has said that she is motivated to continue to advocate for women’s rights in the workplace by the letters she has received from young women, who have said how much she has inspired them. 

Whoever Heard of a “Software Engineer”? Margaret Hamilton

The Apollo missions not only need precise trajectories for their lunar voyages – they also need software for their onboard flight computers, which control so many aspects of the flight. If you’re not familiar with this term, “software” describes the mathematical programmes that tell a computer how to carry out its tasks, and a “software engineer” applies the engineering design process to develop software for those different tasks.

The Director of Apollo Flight Computer Programming is Mrs. Margaret Hamilton Lickly, who prefers to be known professionally as Margaret Hamilton.I've heard that women in the United States who prefer not to be categorised by their marital status, are now starting to use the designation "Ms.". I don't know if Margaret Hamilton is using this new honorific, but it seems to me appropriate to apply it to her in this article. 

33-year-old Ms. Hamilton is another woman playing a crucial role in NASA’s lunar program. Not only is she a pioneer in software engineering, she even coined the term!


Like Miss Northcutt, Ms. Hamilton is also a mathematician, having studied at the University of Michigan and Earlham College. Shortly after graduating in 1958, she married her first husband, James Hamilton, and taught high school mathematics and French, before taking a job in the Meteorology Department at the prestigious Massachusetts Institute of technology (MIT) in 1959, a few months before the birth of her daughter.

Ms. Hamilton developed software for predicting weather, and in 1961 she moved to MIT’s Lincoln Lab for the Semi-Automatic Ground Environment (SAGE) Project, adapting weather prediction software into a programme used by the U.S. Air Force to search for potential enemy aircraft. At the Lab, she was the first person to get a particularly difficult programme, which no-one had been able to get to run, to actually work! While working on SAGE, Ms. Hamilton began to take an interest in software reliability, which would pay dividends during Apollo-11’s lunar landing.

A Calculated Move

When Margaret Hamilton learned about the Apollo project in 1965, she wanted to become involved in the lunar programme, and moved to the MIT Instrumentation Laboratory, which was developing the Apollo Guidance Computer. She was the first programmer hired for the Apollo work project at MIT and has led the team responsible for creating the on-board flight software for both the Apollo Command and Lunar Modules. She also serves as Director of the Software Engineering Division at the Instrumentation Laboratory.

The Apollo Guidance Computer was installed on both the Command and Service Modules. Astronauts communicated with it using a numeric display and keyboard

While working on the Apollo software, Ms. Hamilton felt that it was necessary to give software development the same legitimacy as other engineering disciplines. In 1966, she therefore coined the term “software engineering” to distinguish software development from other areas of engineering. She believes that this encourages respect for the new field, as well as respect for its practitioners.

A page from the software for the Apollo Guidance Computer

On one occasion when her young daughter was visiting the lab, the little girl pushed a simulator button that made the system crash. Ms. Hamilton realised immediately that the mistake was one that an astronaut could make. While Ms. Hamilton has said that she works in a relationship of "mutual respect" with her colleagues, when she recommended adjusting the software to address the issue, she was told: “Astronauts are trained never to make a mistake.” Yet during Apollo-8, astronaut Jim Lovell made the exact same error that her young daughter had!

While Ms. Hamilton’s team was able to rapidly correct the problem, for future Apollo missions protection was built into the software to prevent a recurrence. With her interest in software reliability, Margaret Hamilton insisted that the Apollo system should be error-proof. To achieve this goal, she developed a programme referred to as Priority Displays, that recognises error messages and forces the computer to prioritise the most important tasks, also alerting the astronauts to the situation.

In Part 2 of my series of Apollo-11 articles, we saw how, during the descent to the Moon’s surface, the Lunar Module’s computer began flashing error messages, which could have resulted in Mission Control aborting the landing. However, the Priority Displays programme gave Guidance Officer Bales and his support team confidence that the computer would perform as it should despite the data input overloads that it was experiencing, and that the landing could proceed.

Ms. Hamilton with this year's printout of the entire Apollo Guidance Computer software

Ms. Hamilton and her 100-strong team continue to work on developing and refining the Apollo flight software, and I’m sure that they will contribute to whatever future spaceflight projects NASA develops, stemming from Vice-president Agnew’s recently-delivered Space Task Group report to President Nixon.

“I’ve Got Rocket Fuel in my Blood”: JoAnn Morgan

Mission safety and reliability are, of course, critical, but Apollo-11 could not even have made the historic lunar landing if the mission had been unable to launch in the first place! When Apollo-11 lifted off, there was one lone woman in the launch firing team at Kennedy Space Centre’s (KSC) Launch Control Centre, who helped to ensure that would happen – Instrumentation Controller JoAnn Morgan.

JoAnn Morgan watching the lift-off of Apollo-11 from her station in Launch Control

Mrs. Morgan, who was born in December 1940, has described herself as a “precocious little kid” who loved mathematics, science and music, and wanted to become a piano teacher. However, after her family moved to Florida from Alabama, she was inspired by the launch of the first American satellite, Explorer-1, in January 1958, and its significant discovery of the Van Allen Radiation Belts. It was the “opportunity for new knowledge” that space exploration represented that filled the teenager with a desire to be part of the new space programme.

Young JoAnn with one of her favourite books. As a child she loved to read and play with her chemistry set

Soon after, JoAnn saw an advertisement for two (US) Summer student internship positions, as Engineer’s Aides with the Army Ballistic Missile Agency at Cape Canaveral. As we know, job openings are often advertised separately for males and females, but this ad only referred to “students” (not “boys”), so she took the chance, decided to apply, and was successful thanks to her strong marks in science and mathematics.

So, at just 17, JoAnn Hardin, as she was then, began working as a University of Florida trainee for the Army at Cape Canaveral Air Force Station. “I graduated from high school on the weekend and went to work for the Army on Monday. I worked on my first launch on Friday night” is how Mrs. Morgan describes the beginning of her NASA career. The Army programme she was working with became part of NASA when it was established in October 1958.

Supportive Male Mentors

While undertaking her degree in mathematics at Jacksonville State University, Mrs. Morgan continued her Summer internships with the NASA team launching rockets at Cape Canaveral. The young student’s potential did not go unnoticed, and she acknowledges that she received significant support in furthering her career from several senior NASA personnel, including Dr. Wernher von Braun, the chief architect of the Saturn V rocket, Dr. Kurt Debus, the first director of Kennedy Space Centre and Mr. Rocco Petrone, Director of Launch Operations at KSC.

Mentors Kurt Debus, left, and Rocco Petrone, right, during the Apollo 7 flight readiness test in the blockhouse at Complex 34

Dr. Debus provided Mrs. Morgan with a pathway to becoming an engineer, and she gained certification as a Measurement and Instrumentation Engineer and a Data Systems Engineer, which enabled her to be employed as a Junior Engineer on the launch team. “It was just meant to be for me to be in the launching business,” she says. “I’ve got rocket fuel in my blood.”

As a young woman joining an all-male group, Mrs. Morgan was fortunate that (unbeknownst to her at the time) her immediate supervisor, Mr. Jim White, insisted that the men on the launch team address her professionally, not be “familiar”, and reportedly told them that “You don’t ask an engineer to make the coffee”! (Which, of course, is often a task that falls to the women in any office).

Professional Disrespect

Despite Mr. White’s efforts to create an environment of respect for his first female engineer, Mrs. Morgan has still described experiencing sexism and harassment, treatment similar to the experiences of Miss Northcutt. With no female restrooms in the launch blockhouses at Cape Canaveral, when she needs to use the restroom, she has to ask a security guard to clear out the men’s room so that she can enter. She has reported receiving obscene phone calls at her station (which disappointingly could only have come from colleagues).

However, like Miss Northcutt, while she has said that she sometimes feels a sense of loneliness as the only woman in the team, Mrs. Morgan “wants to do the best job she can” and works the same long hours as her male colleagues. In 1967, as the Apollo programme was ramping up, her dedication to her work had tragic consequences. The stress and long hours of her job contributed to her miscarrying and losing her first child.

The crowded interior of the blockhouse at Launch Complex 34, where Mrs. Morgan has often worked

Perhaps the most shocking example of professional disrespect and harassment (which could be considered an assault) that Mrs. Morgan has experienced was during a test being conducted at the blockhouse for Pad 34, where the first Apollo missions were set to be launched. When preparing to acquire some test results, she was actually struck on the back by a test supervisor, who aggressively told her that “We don’t have women in here!” She had to appeal to her own supervisor, Mr. Karl Sendler (who developed the launch processing systems for the Apollo programme) to confirm that she could remain. He told her to disregard the test supervisor and continue with her work (though it’s not clear if any action was taken against the offending supervisor).

On Console for Apollo-11

The unpleasant incident with the test supervisor prompted many of Mrs. Morgan’s colleagues and senior managers to come forward in expressing acceptance and respect for her as part of the team. Nevertheless, even though she has worked launches for Mercury, Gemini and Apollo, received an achievement award for her work during the activation of Apollo Launch Complex 39, and been promoted to a senior engineer, Mrs. Morgan has frequently found herself rostered for the inconvenient evening shifts. Since her husband is a school teacher and band-leader, this hasn’t always allowed them a lot of time to be together.

Until Apollo-11, Mrs. Morgan was also not selected to be part of the firing room personnel for a launch, usually being stationed at a telemetry facility, a display room or a tracking site for launch. She found this very disappointing, as she always wanted to feel the vibrations from a launch that her colleagues described.

But her desire to experience the incredible shockwave vibrations of a Saturn-V lift-off was finally achieved with the launch of Apollo-11. Recognising that Mrs. Morgan is his best communicator, Mr. Sendler quietly obtained permission from Dr. Debus for her to be the Instrumentation Controller on the console in the firing room for Apollo 11! (This achievement also had the bonus of working day shifts, so that she has been able to spend more time with her husband).

Can you spot the lone woman in a sea of men? In this picture of the Launch Control firing room during Apollo-11, Mrs. Morgan is in the third row, just to the left of centre.

A successful launch is critical to each mission and Mrs. Morgan believes that her prime role in the launch of the historic mission will help to further her career within NASA. Although she has not received the same level of press and television attention as Miss Northcutt, she does hope that even the photos of her in Launch Control – a lone woman in a sea of men – will help to inspire young women to aspire to careers in the space programme, so that, at some time in the future, photos like the ones she is in now “won’t exist anymore.”

Making Packed Lunches for Astronauts: Rita Rapp

You could say that the astronauts are the most fragile component of each Apollo mission. Nutrition is important in keeping crews healthy and functioning during a flight, so space food has to be as appetising as possible, within the constraints of spaceflight and the weightless environment – especially as missions to the Moon, and future space stations and lunar bases will keep astronauts in space for longer and longer periods. 

Physiologist Miss Rita Rapp, head of the Apollo Food Systems team, has been looking after the astronauts' bodies – and stomachs – since she joined NASA in 1960. For the Apollo programme, she has developed the space food and food stowage system designed to keep the astronauts supplied with the right mix of calories, vitamins, and nutrients to enable them to function well in space. One of her goals has been to ensure that crews have something worth eating during their spaceflights.

Rita Rapp with some of her space food innovations that have greatly improved the space food menu for Apollo astronauts

Born in 1928, Miss Rapp studied science at the University of Dayton and then took a Master’s in anatomy at the St. Louis University Graduate School of Medicine. She was one of the first women to enrol in this school. Graduating in 1953, she took a position in the Aeromedical laboratories at Wright-Patterson Air Force Base, where she began assessing the effects of high g-forces on the human body, especially the blood and renal systems, using centrifuge systems.

In 1960 Miss Rapp joined NASA’s Space Task Group preparing for the Mercury manned spaceflight programme, later transferring to the Manned Spacecraft Centre in Houston. For the Mercury program, she continued her work on centrifugal effects on the human body. She also designed the first elastic exercisers for Mercury and Gemini missions, devised biological experiments for the astronauts to conduct in-flight, and developed the Gemini medical kit.

The first Gemini biological experiment, designed by Miss Rapp

From Aeromedicine to Space Food

In 1966, as the Apollo programme was ramping up, Miss Rapp joined the Apollo Food Systems team. Although she has continued to work on space health and hygiene projects, in her new role her primary focus became looking at systems for storing food onboard the Apollo spacecraft. Working with dieticians, and commercial companies, she has investigated the ways space food could be packaged and prepared, and become the main interface between NASA’s Food Lab and the astronauts.

Although she tries to use as much commercially available food as possible, Miss Rapp and her team are also continually experimenting with new recipes in the food lab, gradually replacing the earlier “tubes and cubes” style of space food used in Mercury and Gemini with meals that are closer to an everyday eating experience.

She has developed improved means of food preservation, such as dehydration, thermostabilisation, irradiation and moisture control, which allows for a wider range of foods to be suitable for spaceflight, and I have no doubt these useful technologies will find their way into commercial food preparation and onto our supermarket shelves in the not-too-distant future. 


Working with the Whirlpool Corporation, Miss Rapp has developed new forms of food packaging for Apollo, such as the spoon bowls, “wet packs” and cans for thermostabilised food. These containers enable astronauts to eat with more conventional utensils, instead of sucking food out of a tube or plastic bag. Creating a more natural, homelike eating experience is good for the astronauts’ morale and psychological health during missions. You can discover more about Miss Rapp's space food developments in my articles on the various Apollo missions. 

Miss Rapp takes great pride in providing the Apollo crews with the flavours and comforts of home. “I like to feed them what they like, because I want them healthy and happy,” she says. She takes note of their individual food preferences, often devises new recipes and prepares the individual meals of each Apollo astronaut separately. Her home-made sugar cookies, that she bakes herself, are a special favourite of Apollo crews, and additional supplies are included as snacks in the onboard food pantries of the Command and Lunar Modules. She also likes to provide the crews with special food “surprises”, such as the turkey dinner enjoyed by the Apollo-8 crew in lunar orbit on Christmas Eve last year.


Just the Beginning

The women of Apollo who I’ve discussed in this article are trailblazers for women’s participation in mathematics, engineering, and other technical aspects of spaceflight.  While they are not the only women in professional roles in the space sector, female participation in space careers, and in science, engineering, and technology more generally, is still very low.

I hope that by highlighting the exciting Apollo-related careers of the four women above, it will plant a seed in the minds of young girls reading the Journey that they, too, can aspire to careers in scientific and technological fields that are generally thought of only as careers for men. I also hope that growing levels of female participation in the workforce, together with feminist activism, will eventually consign the sexism, discrimination and harassment that women working in all careers experience at present, to the history books—though I won’t hold my breath on it happening any time soon.






[October 14, 1965] Taking a Deep Dive (the SEALAB project)


by Kaye Dee


The SEALAB II habitat on the dockside ready for its official launching ceremony

In my article at the end of August about the Gemini 5 mission, I mentioned the unique phone call that Gemini 5 commander Gordon Coper made from space to his fellow Mercury astronaut Scott Carpenter, who was working aboard the SEALAB II experimental underwater habitat. Carpenter is the first astronaut to also serve as an aquanaut, and the two roles are clearly related, since they both involve operations in dangerous, barely explored environments, isolated in small, confined craft. Since the third (and last) crew in SEALAB II has just completed their undersea mission, I thought it would be interesting to look at the SEALAB programme this month.

Getting Saturated

The SEALABs have been developed by the United States Navy to research the technique of saturated diving and enable a better understanding of the psychological and physiological stresses that affect people living in confined isolation for extended periods of time. This research into long-duration isolation is obviously relevant to space exploration as well as undersea activities.

Saturation diving is a technique that reduces the risk of decompression sickness (“the bends”) for divers working at great depths. If a diver breathes inert gasses, while in an environment pressurised to match the intended depth of a dive, the body will become saturated with the gasses, reaching a state of equilibrium once the blood and body tissues have absorbed all they can. Once this occurs, a diver’s decompression time will be the same whether he stays underwater for hours, days, weeks, or even months. This means that if a diver lives in a suitably pressurised habitat, he can work underwater for long periods and only have to undergo decompression once, at the end of his assignment.

The Genesis of SEALAB

SEALAB has its origins in a research programme by Captain George F. Bond, a US Navy physician. In 1957, Dr. Bond began Project Genesis at the Naval Submarine Medical Research Laboratory in Connecticut with the aim of demonstrating that divers could withstand prolonged exposure to different breathing gases at multi-atmosphere pressures. The first two phases of Project Genesis were carried out in 1957 and '58. This involved exposing animals, including rats, goats and monkeys to saturation using a variety of breathing gasses. Dr. Bond happened to meet Jacques Cousteau, the famous French oceanographer, when he gave a talk about the concept of saturation diving in 1957 and the two men became good friends. They co-operated on their diving research, and Cousteau even contributed some ideas to SEALAB II.


"Papa Topside", Dr. George F. Bond, (left) on the SEALAB I support ship with Argus Island in the background

NASA Keeps the Research Going

Despite his promising results, the Navy was not interested in funding the human trials that Dr. Bond needed to progress his research. Then, in 1962, NASA stepped in and funded the human research programme because it was interested in using a mixed -gas spacecraft atmosphere (either nitrogen-oxygen or helium-oxygen) for the Apollo programme – although it has now decided to use a simpler low-pressure oxygen atmosphere for the Apollo spacecraft, despite its potential fire danger.

Between 1962 and 1963, Capt. Bond, with the help of three volunteer divers, experimented with varying gas mixtures of oxygen, nitrogen and helium. One volunteer, Chief Quartermaster Robert A. (“Bob”) Barth took part in all these experiments and went on to become a member of the crews of SEALAB I and II.

"Papa Topside" and SEALAB I

By 1963, Capt. Bond’s team had collected enough data for the Navy to initiate its “Man in the Sea” programme, which would include an experimental habitat, dubbed SEALAB. Dr. Bond serves as the Senior Medical Officer and principal investigator of the SEALAB programme. The SEALAB I crew nicknamed him “Papa Topside”, for being always available on the support ship that kept station above the undersea habitat.

SEALAB I was a cigar-shaped chamber, 40 feet long and 10 feet in diameter. It was constructed from two converted steel floats and held in place with axles from railway cars. The lab had two portholes on each side and two open manholes in the bottom, but water didn’t enter because the pressure inside the chamber was the same as the surrounding water. SEALAB I used a helium-oxygen atmosphere that caused its crew to develop funny, squeaky voices that made them sound like a garbled Alvin the Chipmunk! The habitat was linked to its surface support ship by a Submersible Decompression Chamber, that served as a lift (elevator) between the two. Cables carried electricity, compressed gas, fresh water, communications, and atmosphere sampling lines between SEALAB and the support ship.


The quarters were pretty cramped and uncomfortable on board SEALAB I

First tested in the waters off Panama City, Florida, SEALAB I was lowered to 193ft into the Gulf of Mexico. It was then moved 26 miles southwest of Bermuda and lowered to a depth of 192ft, beside a US Navy research tower named “Argus Island”.

SEALAB I was both a habitability study and an experiment in developing safe decompression procedures for saturation diving. It had a crew of four aquanauts, including former experimental subject Bob Barth. They began their submerged sojourn on 20 July 1964, which was intended to last three weeks. The team investigated the effects of nitrogen narcosis on cognition, tried out the characteristics of the new “Neoprene” foam wet suit and performed many other performed physical and biological experiments. These included using ultrasonic beacons, current meters, and an anti-shark cage, as well as attempting to grow plants in the helium atmosphere.

Unfortunately, the SEALAB I mission had to be aborted after 11 days, due to an approaching hurricane. The support ship attempted to lift the habitat by crane from the ocean floor while slowly decompressing the divers (rising 1 foot every 20 minutes), but the churning sea caused the habitat to sway dangerously back and forth. As a result, the crew were transferred from the habitat to a small emergency decompression chamber and brought to the surface within minutes. 


An amazing underwater shot of the emergency decompression chamber coming to the rescue of the SEALAB I crew

Despite being cut short, SEALAB I was a major success, testing and proving the concept of saturation diving. Many lessons learned from SEALAB I would be applied in the development of its successor-SEALAB II. This included better solutions for raising and lowering the habitat (after two early attempts that dropped it!), lower humidity, improved umbilicals, and a reduction in the gear the divers needed to wear and store in the habitat. A helium voice unscrambler was also developed to improve communications with the aquanauts, because the changes that the gas made in their voices made them almost unintelligible.


The crew of SEALAB I with Mercury astronaut Scott Carpenter, who had originally planned to join their team. (left to right) Gunner's Mate First Class Lester E. Anderson; Lieutenant Robert E. Thompson; Astronaut M. Scott Carpenter, Chief Hospital Corpsman Sanders W. Manning; Chief Quartermaster Robert A. Barth

SEALAB II

SEALAB II is a big advance on its predecessor. Constructed in a naval dockyard in California, it is 57 feet long and 12 feet in diameter, with a small “conning tower”: I’ve heard someone describe it as looking like a “railway tank car, without the wheels”. It has eleven viewing ports and two exits. SEALAB II is also much better equipped, with hot showers, a built-in toilet (I wonder what they used on SEALAB I?), laboratory equipment and a fridge. The gas mixture used onboard is 77-78%helium, 18% nitrogen, and 3-5% oxygen at a pressure of 103 psi, which is seven times that of Earth's atmosphere! SEALAB I found that helium chilled the habitat uncomfortably, so SEALAB II has been fitted with heating coils in the deck to combat the cold. Air conditioning has also been included in this habitat, to reduces the humidity.

A new support ship was provided for SEALAB II, equipped with a Deck Decompression Chamber and a Pressurised Transfer Capsule, used to transport the aquanauts from the surface to the habitat. And, of course, Papa Topside was there, presiding over the experiment.


Inside the Tiltin' Hilton. This team photo of the first SEALAB II crew pokes fun at the habitat's slight tilt. Team leader Scott Carpenter is in the centre of the photo.

In August 1965, the habitat was placed at a depth of 205 feet in the La Jolla Canyon off the coast of California. The location has earned it the nickname of the "Tiltin' Hilton" because it was placed on a sloped part of the ocean floor, giving it a six-degree tilt and a slight cant to port. The first SEALAB II crew, consisting of 10 divers, swam down to the habitat to take up residence on August 28. One of those divers was Mercury astronaut M. Scott Carpenter, who has joined the SEALAB program on leave from NASA.

Astronaut Aquanaut

Carpenter became interested in the SEALAB program after meeting Jacques Cousteau in 1963. He originally planned to be a member of the SEALAB I crew, but was injured in a motorcycle accident during training and so was unable to participate in that experiment. But he became the commander of the first two teams to use SEALAB II, spending 30 days living on the ocean floor. SEALAB II has hosted three crews of ten men, each of 15 days duration. Altogether 28 divers occupied SEALAB II between August 28 and October 10, with Carpenter and Bob Barth both part of two crews.


Originally a Naval aviator, then an astronaut, now Scott Carpenter has added to his resume as the team leader of the first two SEALAB II crews

The SEALAB programme seems to have been a bit jinxed for Carpenter: his right index finger was wounded by the toxic spines of a scorpion fish. In addition to his conversation with Gemini 5, soon after his arrival on SEALAB II, during his time in decompression at the end of his mission, Carpenter also took part in another special telephone call, this time from President Lyndon Johnson. Since Carpenter was calling from a decompression chamber with a helium-oxygen atmosphere, his "chipmunk voice" was almost unintelligible as a helium voice unscrambler was not available! 

The cold water off the Californian coast has been a real test for the aquanauts, along with poor underwater visibility. Even with its heating coils and air conditioning, SEALAB II still experienced high humidity and cold, with the temperature having to be raised to 86°F to ward off the chill. Nevertheless, the aquanauts conducted many physiological experiments and tasks, including testing new tools, methods of salvage and trying out an experimental electrically heated drysuit.

Dolphin Delivery

The Navy Marine Mammal Program also supported SEALAB II, assigning one of its bottlenose dolphins, named Tuffy, to assist the SEALAB crews. Tuffy’s Navy trainers attempted to teach the dolphin useful skills, such as delivering supplies from the surface to SEALAB, or carrying items from one aquanaut to another. Tuffy was apparently not up to the standard of that famous TV dolphin, Flipper, but I’ve heard that he will also be assigned to the SEALAB III mission when that takes place, so the Navy must have been happy enough with his performance.


Tuffy the Navy dolphin, at work during the SEALAB II programme. Wonder if he'll get a TV series of his own some day?

Third time continues the charm?

The third, and last, crew to serve on SEALAB II departed the habitat on October 10, marking the conclusion of a very successful experimental programme. SEALAB I and II have been a resounding success and the knowledge gained from these expeditions will certainly help to improve the techniques of saturation diving and, consequently, the safety of deep-sea diving and rescue. I’ll be watching the future SEALAB III mission, when it arrives, with interest!






[May 16, 1963] Going out with style (Gordo Cooper's Faith 7 Mercury flight)


by Gideon Marcus

Nearly six years ago, the Russians threw down the gauntlet with Sputnik.  Then they upped the ante with the orbit of Yuri Gagarin in April 1961.  It's hard to believe that, in just two years, America has not only answered the Soviet challenge but completed its first manned space program.

For those of us well-heeled in science fiction, the Mercury spacecraft is hardly impressive-looking.  Barely big enough to hold a person (and not a tall one, at that), it is little more than a second space suit with a heat shield and a retrorocket.  And yet, as a first step for America into outer space, its importance cannot be overstated.

For it was those first two Mercury-Redstone flights, Alan Shepard's and Gus Grissom's, which showed that one could survive both the crushing weight of acceleration and the exhilarating freedom from gravity, in close succession, no less.  John Glenn proved an astronaut could orbit repeatedly, and Scott Carpenter demonstrated that spacemen are unflappable when things don't go just right.  Wally Schirra doubled the mission length of his predecessors and perfected fuel conservation and landing accuracy. 

But it was this latest and last Mercury mission, flown by the youngest of the Mercury 7, 36-year old Gordo Cooper, that showed what an astronaut and his spacecraft could really do. 

The original Mercury configuration only allowed for short flights — no more than Schirra's six orbits (nine hours).  Cooper's mission was to get into the endurance range that the Soviet Vostok enjoys — a day and beyond.  That meant more batteries, more water, more oxygen, and more maneuvering fuel.  Some items had to be trimmed, weight being at a premium.  For instance, the largely irrelevant periscope was deleted, saving a precious 76 pounds.  The result was a stocked up, stripped down version of Mercury that Cooper called Faith 7.  NASA was not too happy with this choice, worried about the inevitable headline in the event of mission failure: America Loses Faith.

The flight of Faith was scheduled for April but weather and other considerations pushed the launch back to May.  Finally, early on the 14th, the astronaut suited up and entered his spacecraft.  After many hours of waiting, the flight was delayed until the next day.  There had been a problem with the Bermuda tracking radar.  It does one well to remember that an astronaut is just one of thousands of participants in any given mission, the failure of any one of whom can cause a scrub. 

All systems were go the next morning, however.  After a pleasant two-hour nap in his capsule while the countdown rolled and held without him, Cooper was then pressed into his seat with several times his weight come liftoff time, 8:04 A.M. Eastern Daylight Time.  Less than fifteen minutes later, he became the sixth American to enter Earth orbit.

The flight called for 22 orbits, with go/no-go opportunities after seven and seventeen.  Cooper was the first astronaut who got to sleep in orbit, though he spent the first hour of his designated slumber time snapping pictures of the Himalayas — and astonishing folks on the ground with his visual acuity.  According to the astronaut, he could pick out individual houses and vehicles from orbit. 

Orbit 17 came and went, and Cooper declared himself and his metal steed A-Okay to finish the mission.  But perhaps he had spoken too soon.  Come the 19th orbit, Faith 7 began to fall to pieces.  The cabin temperature rose, instrument readouts became erratic, and the automatic pilot failed completely.  As Cooper approached the end of the mission, he was confronted with a situation no one had ever had to face before: he would return himself from orbit manually.

Of course, that's why NASA hired test pilots for the job.  Cooper was delighted at the opportunity to show his stuff.  His aim and timing of his retrorocket fire was so precise that not only did he make it safely back to Earth, but he came down just a couple of miles from the recovery fleet off Midway Island.  Astronaut Cooper had flown longer and better than an American before him, ending is mission just before 4 P.M. EDT (11 AM local time).

Better still, Cooper had shared none of the deterioration of his spaceship.  Aside from a little pooling of blood in the legs, the astronaut was in good health.  Moreover, he experienced none of the disassociation from reality that psychologists worried would afflict long-term space travelers.  Faith 7 was, despite the breakdowns, a complete success.

In that success, Mercury has signed its own death warrant.  While some have clamored for a multi-day Mercury flight (particularly first astronaut Alan Shepard), the fact is, there just isn't much more to learn with such a minimal craft.  The longer, more involved missions are going to need a more sophisticated spacecraft.  A two-person ship with the ability to maneuver and dock.

It's in development right now, and it's called Gemini.  It flies next year.




[Mar. 30, 1963] Mercury waltzes Matilda (the tracking and research station at Woomera, Australia)


by Ida Moya

I’m back from a whirlwind of helping the data analysts at Los Alamos get their FORTRAN formulas running on that balky old IBM Stretch computer. I can see why IBM only made 8 of these things. It is miraculous to have a computer that can fit into a single room, but this stretch (pardon the pun) in computing technology still averages only 17 hours uptime a day — and that’s also a stretch (no more, I promise).

When it breaks, this swarm of white-coated men in ties comes in and fusses around with it with a bunch of special tools, as well as the set of ALDs (Automated Logic Diagrams) that come with every IBM computer. The way those diagrams are produced and updated with punch cards and special line printers is an amazing story, but for another time.

Although we at Los Alamos Scientific Laboratory can comfort ourselves that the Stretch is the fastest computer in the world, I’m still envious of the institutions that have the better-engineered IBM 7090 computers. These are being used for calculations for the exciting Mercury program.


IBM 7090 at the Weapons Research Establishment's headquarters at Salisbury, on the northern outskirts of Adelaide in South Australia.

The Mercury spaceships do not have a computer on board – computers are far too heavy – so for figuring out how to re-enter the earth’s atmosphere the astronauts rely on computations sent by radio from the pair of IBM 7090 computers at the Mercury Control Station at Cape Canaveral. It’s an incredible amount of faith to put in one site, so Mercury control has those two redundant IBM computers, plus another set of computers in New Jersey. A third computer gathering information from the flight is on the other side of the globe — in Adelaide processing tracking data collected at at Weapons Research Establishment in Woomera, Australia. There is also another control center at Muchea, in Western Australia.


Control room of the astronaut tracking station at Muchea in Western Australia, part of US Project Mercury

A lot of people haven’t heard of Woomera, so let me tell you a little bit about it. At Woomera, more is being done than track Mercury astronauts. This part's an open secret, but the Brits and the Aussies are working together there on testing (or doing “trials” as they say) on rockets, missiles, and even atomic weapons. That's why they built this testing range in the middle of nowhere, in the outback of Australia.


Woomera Research Establishment Officer’s mess

A few years ago we had a visit from Bill Boswell, the Woomera director, along with a team from Maths Services, and Mary Whitehead, the leader of the Planning and Data Analysis Group. They were visiting various computer installations at Point Mugu, White Sands, and Cape Canaveral. These are all larger-than life place-names, but they really just represent groups of men and women madly making observations, coding the photographs in a way the computer can understand, and using these results to steer the manned spaceships. Mary and I had time to talk about more prosaic things, like her new apartment (or “flat” as they call it down under) in Woomera village, and the troubles of living so far from civilization.


Mary’s new flat at Woomera

Woomera reminds me a lot of Los Alamos. It is a similar purpose-built town, isolated from the surrounding population by remoteness and security. Entire families live there, with houses, apartments, and schools for the kids. There are clubs and mess halls; a bowling alley and community grocery store. The store sells just canned and packaged food; if you want something fresh the closest produce is 50 miles away. The planners made a lot of efforts to plant trees, most of which failed. Honestly, it sounds awful to me. I love the "Land of Enchantment" (New Mexico), where things actually grow. The two science towns also have odd mixed populations – for Los Alamos, it is the influx of American and foreign scientists, local Hispanos, and the San Ildefonso tribe. In Woomera, it is the influx of British scientists, local Aussies, and the aboriginal people. Personally I think Los Alamos does a better job of integrating the native population.


Community store in Woomera

There’s something about space that is so exciting. Space has it all: exploration, discovery, danger, and destiny. There’s so much more to it than my dry work of computers, trajectory calculations, and strangely named groups that I am so mired in. That’s why I am so excited to find science fiction and Galactic Journey’s reviews, which is opening my mind to our real future in space that this work makes possible.




[October 4, 1962] Get to work!  (The Mercury Flight of Sigma 7)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Five years ago, satellite launches were quarterly events that dominated the front page.  Now, the Air Force is launching a mission every week, and NASA is not far behind.  The United Kingdom and Canada have joined the U.S. and U.S.S.R. in the orbital club, and one can be certain that Japan and France aren't far behind.  It's truer than ever that, as I've said before, unmanned spaceflight has become routine.

Yesterday, the same thing happened to manned missions.

39 year-old Navy Commander Walter M. "Wally" Schirra blasted off early the morning of October 3, 1962, flew for six orbits, and splashed down safely in the Pacific near Midway Island less than half a day later.  His Sigma 7 capsule was in space twice as long as Glenn and Carpenter's Mercury ships and, to all accounts, it was a thoroughly uneventful trip.  Aside from the whole nine hours of weightlessness thing.

While the newspapers all picked up the mission, radio and television coverage was decidedly less comprehensive than for prior flights.  Part of it was the lack of drama.  Shepard was the first.  Grissom almost drowned.  Glenn's mission had the highest stakes, it being our answer to the Soviet Vostok flights, and his capsule ran the risk of burning up on reentry.  For a couple of hours, Carpenter was believed lost at sea.

But the upshot of Schirra's mission seemed to be that, as the Commander put it, a chimpanzee could have flown it.  The giant Atlas rocket blasted off just 15 minutes late (the delay was due to a radar malfunction at a overseas tracking station), and that was the most remarkable snag.  One of Schirra's tasks was to make observations of various points of interest on the ground and snap shots with his camera.  Unfortunately, mother nature was not accommodating, clouds obscuring most of Schirra's targets (further reducing his active scientific role).  The pilot did see Glenn's "fireflies," though, which have since been determined to be ice crystals shaken loose from the capsule. 

After Carpenter's flight, wherein a combination of engine malfunction and pilot exuberance led to Aurora 7 running out of fuel on reentry, Schirra chose to let his capsule drift.  When Sigma 7's heat shield began to glow on contact with the atmosphere, it still had a tank that was 78% full.  The spaceship landed less than a mile from the carrier recovery fleet, well within view of television cameras on the deck of the U.S.S. Kearsarge (I felt a brief eerie sensation at the thought that almost exactly twenty years ago, American carriers had patrolled these same waters — to do battle with their Japanese counterparts.)

It was, as Schirra termed it, a "textbook flight."  If you read the Press Kit, you might well have skipped watching the news.  And yet, it is the lack of drama that makes the flight so dramatic.  Now, instead of biting our fingernails, wondering if our rockets will work, our ships will function, our pilots will survive…now we can focus on getting the work of spaceflight done.  We've passed the Wright Flyer stage — now we're ready to put our craft to use.

There will probably be just one more Mercury flight, this one to last a full day.  The pilot has not been chosen for this mission, but it had been broadly hinted that it will be L. Gordon Cooper, the remaining active Mercury astronaut (Donald K. Slayton having been removed from the roster for heart trouble).  After that, we move on to two-man flights aboard the aptly named Gemini.

Whether we beat the Soviets to that stage of the Space Race remains to be seen…




[May 24, 1962] Adrift in Two Oceans (The Flight of Aurora 7)


by Gideon Marcus

They say things get tedious in repetition.  Well, I can assure you that at no point during Scott Carpenter's three-orbit flight, planned to be a duplicate of predecessor John Glenn's, was I in the least bit bored.  In fact, of the six manned space shots, this was the most moving for me.  Since the launch this morning from the East coast of Florida, a couple of hours after dawn, I've been hooked to the television and radio, engaged to a greater degree than ever before.

Perhaps it's the thoughtful, enigmatic nature of Carpenter, a contrast to the gung ho Glenn, the taciturn Shepard, the consummate test pilot Grissom.  Maybe it's the fact that Carpenter's flight had its fair share of drama (but then, so did Glenn's).  It could well be that, now that Glenn has set the template for space travel, I could spend time contemplating what it all meant.

Certainly, NASA wanted to get the most out of the flight out of Aurora 7.  Its pilot was smothered with tasks, each of them taking longer than scheduled.  First, there were the pictures to take.  Carpenter, cramped into a cockpit barely larger than that of the navy planes he used to fly for a living, fumbled to load film of the special space camera.  Then he had to make haste to spin the little Mercury spacecraft around so as to get good pictures of the horizon and ground features of interest.  By the end of Orbit One, half of the ship's fuel was gone.

During the second orbit, Carpenter's suit began to overheat.  Sweat dripping into his eyes, the astronaut deployed a parti-colored beachball.  It was supposed to trail behind the Mercury, providing data on the density of the rarefied atmosphere at that height, as well as the reflectivity of light in orbit.  Well, it never quite inflated.  The wilted thing followed along dispiritedly behind Aurora 7 for the next few hours.

This is not to say that Carpenter was having a bad time.  From his first exuberant exclamation upon becoming weightless, it was clear the astronaut was enjoying himself.  He got to eat the first full meal in space…from tubes: one of peaches, and one of beef and vegetables.  And, for a blessed four-and-a-half hours, the heavy space suit weighed nothing at all.  Even overtasked, Carpenter felt free as a bird, even in his tiny, spacecraft-shaped cage.  The dark sky framed three sunrises and three sunsets, punctuated by flurries of the same fireflies that accompanied Glenn in his flight (the astronaut believes they are ice particles shaken from the capsule). 

Fun, to be sure, but at the end of the third orbit, Carpenter was in a pickle.  Almost out of fuel, the ship misaligned thanks to a balky thruster, and the window for firing his retrorockets sliver-thin, the astronaut fired his braking thrusters a few seconds late.  For half an hour, first in the shuddering initial reentry, and then in the chest crushing crashing through the atmosphere, culminating in the gentle sway beneath parachutes before splashdown in the Atlantic, Carpenter had no idea where he would end up.

Neither did the recovery fleet.  In fact, Carpenter landed some 250 miles away from where he was supposed to.  This did not bother the philosophical spaceman, who spent the next hours relaxing on his inflatable raft, sitting in pleasant companionship with a little black fish nearby.  When the boats of the U.S.S. Intrepid finally arrived, hours later, Carpenter was completely calm.  In fact, like a good guest, he offered them some of his food. 

Aside from a little dehydration (he'd lost seven pounds in space!) Carpenter was in tip-top shape.  He has since been whisked off to Grand Turk island for extensive post-flight evaluation, and it is my understanding he got quite the hug from Glenn upon arrival.  There he will stay for a couple of days before he gets to make a tour of his home town of Boulder, Colorado. 

The folks there must be proud of their native son who has ascended far beyond the lofty Rockies.  I know I am.

[Apr. 30, 1962] Common Practice Period (April Spaceflight Round-up)


by Gideon Marcus

The radio plays Classical music on the FM band now. 

The difference is palpable.  Bach and Mozart on the AM band were tinny and remote.  It was almost as though the centuries separating me and the composers had been attenuating the signal.  This new radio band (well, not so new, but newly utilized) allows transmissions as clear as any Hi-Fi record set could deliver. 

Don't get me wrong; I still listen to the latest pop hits by The Shirelles and The Ventures, but I find myself increasingly tuned into the local classics station.  The sound, and the selections, are just too good to ignore.  The last movement of Robert Schumann's Symphony #1, with its stirring accelerando is playing right now, and it is a fitting accompaniment for the article I am currently composing.

Time was I would write an article on a space mission about once a month.  This wouldn't be a wrap-up, but an article devoted to a single satellite.  But the pace of space launches has increased – there were two successful orbital flights in 1957, nine in 1958, 13 in 1959, 20 in 1960, 38 in 1961.  There were six flights just last week.  Either I'm going to have to start abbreviating my coverage, or I'll need to start a satellite (no pun intended) column. 

But that's a decision for next year.  Right now, with a bit of musical texturing, let me tell you all about the exciting things that happened in spaceflight, April 1962:

Quartet in USAF Minor

Late last year, President Kennedy put a lid on all military space programs, classifying their details.  This was a break from Ike's policy, which was to publicize them (more or less accurately).  I think Eisenhower's idea was that any space shot was good for prestige.  Also, if we were upfront about military flights, maybe the Soviets would follow suit.

The current President has decided that discretion is the better path.  So even though I have it on good authority that four boosters took off from Vandenberg Air Force Base in California (it being rather hard to hide a blast of that magnitude, and the papers are still reporting on them as best they can), I couldn't tell you exactly what was at the tips of those rockets.  It's a fair bet, however, that three of them were reconnaissance satellites, snapping photos of the USSR from orbit.  The last was probably a nuclear missile launch detector called MIDAS.  That's make it the 5th in the series. 

Quartet in USSR Minor

Meanwhile, the Russians, who had not reported any spaceflights since Comrade Titov's flight last summer, suddenly threw up four probes in about as many weeks.  The missions of "Kosmos" 1-4 were "to study weather, communications, and radiation effects during long space flights in preparation for an eventual manned landing."

That sounds good, but while the first three satellites are still up in orbit returning scientific data, the fourth, launched four days ago, landed three days later – after passing over the United States several times.  All we know about it was it was launched from "a secret base" and "valuable data [was] obtained."  Given that Kosmos 4's mission plan bore a striking resemblance to that of our Discoverer capsule-return spy sats, I suspect the first three Kosmos shots were a flimsy camouflage.  What's interesting here is that the Communists feel it necessary to construct a cover-up.  But the fact is, they just can't hide when they launch things into space, any more than we can. 

Solo for English Horn

The first UK satellite, Ariel 1, was successfully launched on April 26, 1962 atop an American Thor Delta booster.  The little probe will investigate the Earth's ionosphere.  You can read all about this mission in Ashley Pollard's recent article.

Mooncrash Sonata

It's two steps forward, one step back for NASA's ill-starred ("mooned?") Ranger program.  Thrice, the lunar probe failed to fly due to a balky Atlas Agena booster.  This time, Ranger 4, launched April 24, 1962, was hurled on a perfect course for the Earth's celestial companion.  The trajectory was so perfect that the craft didn't even require a mid-course correction.

Of course, it wouldn't have mattered if it had.  Upon leaving the Earth, it quickly became apparent that Ranger 4 was brain-dead.  It issued no telemetry, nor did it respond to commands.  NASA dispiritedly tracked the probe's 64-hour trip to the moon, which ended in its impact on the far side. 

Heart-breaking, but it is a sort of semi-victory: At least the rocket works now, and the United States as finally caught up with the Soviets in another aspect of the Space Race (just two-and-a-half years late…)

Saturn (fortissimo)

Speaking of successful rockets, the tremendous Saturn I had another successful test on April 25, 1962.  Like the first, the upper two stages were inert, filled with water for ballast.  This flight has a twist, however.  After the first stage had exhausted its fuel, the dummy stages were detonated and the ensuing watery explosion observed.  This "Operation Highwater" was designed to demonstrate how far the debris of a booster blast would travel.  I imagine it was also a lot of fun.

I have to wonder about the future of the Saturn I.  It has already been determined that the Apollo moon craft will be launched by the much more powerful and generally unrelated Saturn C-5 and Nova boosters.  It seems that the Saturn I is something of a technological dead end, though I'm sure they are at least perfecting their heavy booster launch techniques.

Prelude, Symphony #2

The National Aeronautics and Space Administration is planning another Mercury one-person shot for next month.  It will be an exact duplicate of John Glenn's February flight, down to the three-orbit duration.  To be piloted by Navy aviator Scott Carpenter (the hunkiest of the Mercury 7), the main purpose of the mission is to make sure that the errors that plagued Glenn during his flight are fixed before the little spacecraft takes on longer journeys.  And, of course, then we will have caught up with the Russians in another way – we'll have had two men orbit the planet.

No doubt, Carpenter's flight will be the spaceflight highlight of next month; I have not seen any other missions announced.  Then again, the Reds might have a surprise that'll have us singing a different tune…

[Mar. 17, 1962]  Our Knights in Shining Armor (Have Space Suit, Will Travel)

[The Journey's "Fashion Columnist" returns with a timely piece on the latest advancement in sartorial science…]


by Gwyn Conaway

Last month, on February 20th, 1962, John Glenn became the second American to leave behind our earthly constraints for the majesty of space.

Less than one year after Alan Shepard’s historic suborbital flight on a Redstone rocket, John Glenn ascended to low Earth orbit in his spacecraft, Friendship 7. He circled the Earth three times at speeds upwards of 17,000 miles per hour, and persevered through the crushing force of nearly eight times the force of Earth's gravity Gs at reentry into our atmosphere.

What a time to be alive! We are witness to human history! This is a milestone in a long journey toward chasing the unknown. Never have I been more certain that we are explorers, creatures of adventure. And what better bedfellow to our curiosity than innovation?  For to accomplish his mission, Colonel Glenn required two spacecraft: the bell-shaped Mercury, as well as his formfitting personal capsule – the Mark IV spacesuit.

Our newly beloved Space Age is thanks, in no small part, to a little-known mechanical engineer and designer named Russell Colley at B. F. Goodrich Company. Owing to his career-long devotion to high-altitude pressure suits, Colley has been deemed the Father of the Spacesuit, the First Tailor of the Space Age. Mark my words, his Mark IV spacesuits, with their sleek and futuristic design, will inspire generations of fashion to come.

The Mark IV rides on the coattails of many pressure suits designed by Colley and others over the years. Its evolution is a testament to American doggedness and bears the fruits of the unbridled technological advancements in textiles and garment manufacturing we’ve seen through the past decade.


The Post pressure suit, first flown in 1934. This suit had a skewed visor to favor Wiley Post’s one good eye.

Colley first began his groundbreaking work in 1934 when Wiley Post, the aviator who achieved fame through making the first solo flight around the globe, commissioned him to design the world’s first pressurized suit for high-altitude flight. Later the same year, after two failed designs, Colley built a rubber bladder suit with long underwear and a diver’s helmet on his wife’s sewing machine. This suit launched Wiley Post 50,000 ft into the air and jump-started an evolution over the next thirty years that leads us to our current moment of triumph – the Mark IV spacesuits.


John Glenn being fit for his Mark IV, destined to carry him into orbit last month. What once looked like a diver’s suit has now been transformed into a feat of futuristic design and engineering.

From 1941 to 1954, the David Clark Company designed and built twenty pressure suit models for the U.S. Military.  When David Clark’s funding dried up, B.F. Goodrich, where Colley worked, was offered the contract. Colley himself built seven suits at B.F. Goodrich. They started this contract with the Model H (the 8th letter of the alphabet and their 8th suit design, in case you were wondering). Models H through R were built and tested before the company began the Mark series that would take Alan Shepard, Gus Grissom, and now John Glenn into space.

By the time B.F. Goodrich won the bid to build their Mark IV spacesuits in 1961, the U.S. Military and NASA had collectively funded more than forty pressure suit designs across three major engineering companies.


The Mercury 7 in a fitting for their Mark IV space suits. Note the sage green option for the suit in the back right.

The Mark IV, in addition to its sleek name, is a marvel to behold, unlike any other piece of flight equipment I’ve ever seen. Each suit is fitted by Colley in Akron, OH, where he attended to each of the Mercury 7 pilots. The gloves alone come in fifteen sizes: five palm sizes, each with short, regular, or long digits. John Glenn had a new feature added to his gloves specifically for his February flight: tiny lights affixed to the tops of each finger so he could read the instrument panels.


John Glenn shows off his finger flashlights. Also visible in this photo are the only two instances of metal bearings in the entire suit: the neck ring and glove attachments.

Space suits have made incredible strides since his Colley's collaboration with Wiley Post more than thirty years ago. When pressurized, these high altitude suits inflate the interior, pushing in on the human body and out on the suit. This provides the pilot with enough atmospheric pressure to stabilize blood flow to the brain and keeping them conscious during difficult maneuvers. However, once these suits are pressurized, mobility becomes extremely limited, and even bending one’s fingers becomes a task of titanic strength.


Astronauts ‘test’ the Mark IV in a light-hearted ball game. Clearly visible along the outer seams of the arms and legs are Colley’s revolutionary elastic pleating to enhance mobility.

The earliest suits were outfitted with heavy metal hinges at the joints for mobility. In a stroke of genius, Colley departed from metal bearings and joints in the Mark series. Rather, he used adjustable cords and pleats to fold the inflated suit at important junctions. While the cords had originally concerned NASA, they proved invaluable in fittings, where Colley was able to replace the lengths of many of these cords with highly-tailored zippers, elastic seams, and pressure pockets for each pilot.


John Glenn’s waffle-weave long underwear can be seen here as he suits up. The waffling occurs across the back, buttocks, thighs, and biceps in reinforced panels.

It’s a daring, romantic choice. I’m sure I’m not the only one who saw John Glenn walk to his shuttle last month and sigh, “Ah, now there is a knight in shining armor!” I wonder how far into the future Russell Colley’s Mark IV will inspire children, artists, and science fiction? How long will the stamp of America’s Mercury 7 linger on the face of space exploration? Decades? Centuries?

Yuri Gagarin may have beat us to space in April of last year, but the cosmonaut’s orange utility suit will not leave such a glimmer in the eyes of our children. The Russians touched the stars first, but Russell Colley has won the hearts of the people of Earth.

[February 20, 1962] American Made (John Glenn and the flight of Friendship 7)


by Gideon Marcus

And the Free World exhales.  At long last, an American has orbited the Earth.  This morning, Astronaut John Glenn ascended to the heavens on the back of an Atlas nuclear missile.  He circled the globe three times before splashing down in the Atlantic Ocean.

It is impossible to understate what this means for us.  The Soviets have been ahead of us in the Space Race since it started in 1957: First satellite, first lunar probe, first space traveler.  Last year, the best we could muster was a pair of 15 minute cannonball shots into the edges of space.  For two months, Glenn has gone again and again into his little capsule and lain on his back only to emerge some time later, disappointed by technical failure or bad weather.  Each time, the clock ticked; would the Soviets trump us with yet another spectacular display of technological prowess?

But this morning, everything was fine – the weather, the booster, the spacecraft, and the astronaut.  As I went to sleep last night, Glenn woke up.  He had the traditional low residue breakfast of orange juice, toast, eggs over-easy, fillet mignon, and Postum, before suiting up and entering the capsule.  That was at 5 AM his time (2 AM mine).  For five hours, the patient Colonel waited as his Atlas rocket, only recently tamed sufficiently for human use, was prepared and tested for flight.

At 9:47 AM his time, at last we saw the fire shoot out from beneath the missile, saw the Atlas and its black-painted cargo lift off, leaving its support gantry shrouded in white smoke.  For several minutes, the flight of mission Mercury-Atlas #6 was a strictly aural affair, the TV cameras' only subject being the now-empty launchpad.  But we heard the confident communication between Alan Shepard on the ground and Glenn hurtling skyward, America's first and American's latest spacemen, and we knew everything was still going well.

The sky went quickly from blue to black as Glenn struggled against six times his normal weight.  First, the Atlas' two side engines exhausted their fuel and detached.  A few minutes later, the central sustainer engine's job was complete, and the Mercury capsule, dubbed Friendship 7 by Glenn, flung itself from its empty booster.  Glenn was now in orbit, weightless, and cleared for his full three-orbit, five-hour mission.

For the first time, an American flight was long enough for the public to contemplate, to be worthy of news flashes.  And even though the last Soviet flight had spanned a full day, it was shrouded in secrecy until after its completion.  Glenn's mission was, on the other hand, entirely open.  Cockpit chatter was broadcast in the clear; each success and potential failure was presented for the world to hear.  Space travel had become a spectator sport.

The world participated.  Indeed, it had to.  An orbital mission requires global tracking.  Glenn's flight was monitored as he passed over exotic locales like Zanzibar, Woomera, Hawaii.  The citizens of the west Australian city of Perth turned their lights on for the astronaut's passage, providing a virtual streetlamp as he whizzed overhead at 18,000 miles per hour. 

Three sunsets and three sunrises greeted Colonel Glenn, though he was given precious little time to appreciate them, so crowded was his schedule with experiments and ship operations.  As the Mercury spacecraft's functions began to degrade in its third orbit, the value of an experienced human pilot became evident.  Glenn manually configured and trimmed the vessel to make the most of the journey and ensure the mission could be completed. 

Glenn's biggest challenge came at the end of the mission.  Sailing backwards over the Earth, the astronaut prepared to fire the ship's retrorockets, a blast of fire that would slow the craft such that it could break out of orbit and back toward ground.  But an indicator suggested that the Mercury's heat shield was loose.  If that were true, then there could be no returning for the astronaut – he would burn up on reentry. 

Was there anything the astronaut could do about the situation?  Well, the retrorocket package was held tight against the bottom of the bell-shaped craft (and thus, its heat shield) by a series of straps.  Normally, the retrorockets would be discarded before reentry.  This time, on the advisement of ground control, Glenn left the retrorockets strapped in.  The hope was that the straps would keep the shield attached, if it was indeed loose.

What a terrifying display that must have been for the pilot, watching flaming chunks of the retrorockets fly past his window as he tore through the white-hot outer layers of the atmosphere.  Glenn had plenty of other things to worry about.  The "G" forces spiked as the craft decelerated, and the ionization of the air cut off radio contact.  We all waited, white-knuckled, for some sign that the astronaut had survived the journey…or had been vaporized.

Then his voice crackled over the air again, the Mercury's striped parachutes were deployed, and we began breathing again.  A ship of the recovery fleet, the little destroyer called the U.S.S. Noa, was already close at hand when Friendship 7 touched down in the waves.  Once the capsule was hoisted aboard, the astronaut popped the side hatch, the one that had exploded prematurely for second astronaut Grissom.  An overheated but grinning Glenn stepped out of the Mercury, and into history.

Mercury's primary mission, to orbit and safely return a human, has been completed.  Nevertheless, there is obviously much life left in the bird.  Three more three-orbit flights are planned to shake out the bugs that plagued the latter portion of Glenn's flight.  Then 12, 24 hour, and perhaps multi-day flights are slated. 

Of course, the Soviets may soon respond with a flight that trumps ours, perhaps even a two-person mission.  But for now, the hour rightfully belongs to the West.  The democracies of the world at last have their emissary to the stars. 

Godspeed, John Glenn!

[February 1, 1962] Silver Lining (January Space Race round-up!)


by Gideon Marcus

January has been a frustrating month in the Space Race.  We are no closer to matching the Soviets in the manned competition, much less beating them, and our unmanned shots have been a disappointment, too.  That said, it's not all bad news in January's round-up: stick to it through the end, and you'll see cause for cheer!

Quintuplets fail to deliver

The Air Force has been playing around with combined launches for a while now.  After all, if you're going to spend millions of dollars to throw a booster away, you might as well get multiple bangs for your buck.  Sadly, the latest attempt, a Thor Ablestar launch on January 24 dubbed "Composite 1," failed when the top stage tumbled in orbit and failed to separate from its payloads.

What we lost: SolRad 4, for measuring solar X-rays (only visible above the curtain of the atmosphere); Lofti 2, which would have examined the effects of Earth's ionosphere on Very Low Frequency radio transmissions; Surcal, a strictly military probe designed to calibrate the navy's communications net in orbit; the wholly civilian Injun 2, which would help map the Van Allen belts (see below); and Secor, a big balloon that would have helped the Army with their ranging equipment.

Copies of these probes will end up at some point, either launched together on a big rocket or separately on little ones.

Moon Miss-ion

It's been a bad run of luck for NASA's latest moon program, Project Ranger.  After the failure of the first two Ranger missions, designed to test the probe's engineering and return sky science, there were high hopes for the lunar flight, launched January 26. 

Things went badly from the beginning.  Ranger 3 was pushed into a bad trajectory by a faulty guidance system.  Not only did it rush past the moon, failing both to hit the target or end up in orbit, but it was pointed the wrong way the entire length of the journey.  No useful data or pictures were obtained.  That nifty seismometer that makes up Ranger's Rudolph nose went completely unused. 

Ranger 4, a carbon copy of #3, should launch in the next few months.  Hopefully, they'll have the kinks worked out by then.  This is one of those clear places where the Communists are ahead in the space race, having pioneered both lunar orbit and the moon's surface several years ago.

A rain check for Mercury

The third time turned out also not to be the charm for Major John Glenn.  His orbital Mercury mission has now been postponed three times.  It's a good thing the Marine is so good-natured; I know I'd be frustrated.

The first delay happened on January 22 when there was a failure in the spacecraft's oxygen system.  Definitely something I'd like working on a five hour flight!  On the 27th, cloud cover prevented the launch, and just today, there was a problem with the temperamental Atlas booster.  The next opportunity to launch won't come until February 13.

So much is riding on this flight.  The Soviets have already launched two of theirs into orbit while we flutter futilely on the ground.  Newspapers and talking heads are already opining that we'll have a Red-staffed space station and a Red-dominated moon before long if we don't hurry to catch up. 

Explorer 12: Reaping the harvest

Here's the good news: I've said before that the most exciting thing about a satellite is not its fiery launch but the heap of data it returns.  That's where the taxpayer gets one's money's worth and where the scientist sees the payoff.  Explorer 12 was the latest in the series of probes (starting with America's first, Explorer 1) sent into orbit to probe the hellish fields of charged particles that circle the Earth.  The spacecraft is still up there, though it went silent in December.  However, in its four months of life, it learned a great deal about the furthest reaches of our planet's influence.

For one, Explorer 12 found that the outer of the two "Van Allen" belts around our planet is made mostly of protons rather than electrons (though there are still plenty of the latter — enough to make hanging around a dangerous proposition for astronauts).  Those protons, particularly the less energetic ones, have been linked to solar magnetic storms, which result in spectacular auroras on Earth.

Perhaps even more interesting is that the probe found the edge of the Earth's magnetosphere.  "What's that?" you ask.  Well, our planet is a giant magnet, probably the result of a dense iron core that spins deep inside the Earth.  These magnetic lines of force extend far beyond the Earth's crust and 70,000 kilometers into space where they trap the wind of high energy particles from our sun.  This keeps them from scouring away our atmosphere. 

Where our magnetic field meets the field carried on the solar wind, called the magnetopause, there is an area of turbulence and disorganized magnetism. It is now believed that the sun's wind smashes against the Earth's field, creating a bow shock – the kind you'd see when a blunt body is smacked by a supersonic gas.  Moreover, the Outer Van Belt "breathes" inward and outward, responding to waves in the solar wind.

And speaking of magnetic fields, NASA scientists just released findings from the intentionally short-lived Explorer 10 found a magnetic "shadow" behind the Earth.  Specifically, the solar wind seems to hit our planet's magnetosphere and deflect around the Earth, but the magnetic field acts as kind of an umbrella, shielding a large portion of near-Earth space. 

The general contours of Earth's magnetic environment have thus been mapped.  Neat stuff, eh?