Tag Archives: venera 3

[June 14, 1967] What's Easy for Two (Venus 4 and Mariner 5)


by Gideon Marcus

Red Venus?

Every 19 months, Venus and Earth reach positions in their trips around the Sun such that travel to the former from the latter uses a minimum of energy. Essentially, a rocket blasts off and thrusts itself toward the Sun just long enough to drift inward and meet Venus after about half an orbit (a direct path would be very costly in terms of fuel use). The less energy used, the bigger the spacecraft can be sent. That means more payload for experiments.

The Soviets have been trying to reach the Planet of Love, Earth's closest neighbor (besides the Moon) for more than six years now. In February 1961, they launched Venera 1 (Venus 1), the first interplanetary probe to fly by another world–but it had gone silent by the time it got there.  Veneras 2 and 3 went up three opportunities later, in November 1965, but fell silent the next spring, just before reaching their target.  Indeed, Venera 3, a soft-lander, is believed to have rammed the cloud-shrouded world, becoming the first artificial object to reach another world.  Either way, no useful data was received.

Why didn't they launch any Veneras in 1962 or 1964?  In fact, it looks like they did.  The Soviets don't herald their failures.  Nevertheless, according to NASA officials, we have a pretty good catalog of them, thanks to careful parsing of Russian news reports as well as radar and telemetry data we've managed to gather.  Three Russkie Venus probes were launched in September 1962 and three more in February 1964.  Getting out of Earth orbit can be tough, requiring a second firing of onboard engines once a spacecraft is circling our planet.  Apparently, these six probes never got away.

But Venera 4, launched on June 12, 1967, has apparently passed that first hurdle.  Moreover, at one and a quarter tons, it is several hundred pounds heavier than any of its predecessors.  We don't know much about what's on the latest Communist probe, but scientists speculate some of the extra weight has been devoted to heat shielding.  Venus is very hot, perhaps 900° Fahrenheit, and it is believed that heat is what caused Venera 3 to fail.  Given that TASS, the Soviet news service, reported that Venera 4 is going to Venus, rather than by, it is assumed the spacecraft will make another landing attempt.

Provided it doesn't go slient like its predecessors.  Communicating across planetary distances is a hurdle the Soviets only recently surmounted with their Zond 3 probe, which tested radio reception at about 150 million kilometers' distance–far enough for a Martian mission.  Essentially, Zond 3 was the Soviet version of Pioneer 5–but five years later.  This is suggestive as to the Soviet level of communications technology, at least.  America would seem to have the clear lead there.

Well, I wish the Soviets luck.  Politics or no, I want to know more about that mysterious, seared world that is Venus!

Yankee Two-dle

If Venera 4 fails, it has a back-up of sorts.  Mariner 5, itself a back-up for the Mars-bound Mariner 4, was launched today early this morning, destination: Venus.

Already several hundred thousand kilometers from Earth, zooming at more than 10,000 kilometers per hour, it should reach Venus in October.  The spacecraft, launched via Atlas-Agena, the same rocket that launched our first Venus probe, Mariner 2, is barely a quarter the mass of Venera 4.  Moreover, Mariner 4's TV camera has been deleted, a decision that likely irks Venus scientist Dr. Carl Sagan, who insists doing so is short-sighted, clouds or no. 

But that removal, along with the reduction in the size of the solar panels (less is needed so close to the sun) means that when Mariner 5's planned flight path brings it within 3000 kilometers of Venus, it will be able to investigate the planet with a wide suite of instruments.  An ultraviolet photometer should not only refine temperature estimates of the Venusian upper atmosphere, it will tell us a bit about what gasses constitute it.  For instance, if there be any water there, perhaps life exists in the cloud tops, above the intense heat at the surface.

The rest of the instruments are likely ho-hum for the general audience, but should return a bonanza for scientists.  They include a magnetometer and various radiation sensing equipment that not only will measure the Venusian version of the Van Allen Belts (if they exist–Mariner 2 couldn't find any), but also tell us a lot about the solar wind on the way to Venus.

I will say, I'm glad we're sending a craft to Venus, and it does seem we did it on the cheap ($35 million), but I think I'm with Sagan on this one: for all the effort, it seems we're not going to find out very much about Venus with Mariner 5.  Another reason to root for Venera 4.

And a good reason to write your Congressman about the importance of planning a bigger Venus shot, perhaps on the more powerful Atlas Centaur rocket, when the next opportunity rolls around in January 1969!



Want to find out what we currently know about Venus?  Come read our previous articles on the planet of love!



[April 20, 1966] Space Exploration is Hard (Venera 2 and 3, Luna 10 and OAO 1)


by Kaye Dee

While manned spaceflight always grabs the headlines, the past month or so has seen some fascinating, if not always successful, attempts at planetary and lunar exploration and the launch of a new space observatory. The failures of some of these missions remind us that space exploration is hard and success is never guaranteed…

Still Unable to Lift the Veil of Venus

Launched just days apart back in November last year, Soviet Venus probes, Venera 2 and 3 were due to arrive at the Earth’s mysterious, cloud-veiled sister planet at the beginning of March, but both seem to have failed just on the verge of success. 

As early as February 1961, the USSR commenced its attempts to explore Venus with the Venera (Russian for Venus) 1 probe. Although Venera-1 flew past Venus at a distance of 100,000km on 19 May 1961, no data were received, due to a communications failure. According to my friends at the Weapons Research Establishment, following that mission there may have been several failed attempts by the USSR to launch missions to Venus, before Venera 2 and 3 were successfully sent on their way back in November.

(top) Venera 1, the USSR's first Venus probe and (bottom) its official follow on, Venera 2. I wonder how many unannounced failures lie between these two missions?

According to various news releases from the Soviet news agency TASS, the two spacecraft were intended for different exploration missions. Venera 2 was planned to fly past the sunlit side of Venus and examine its enigmatic clouds. The spacecraft was equipped with cameras, a magnetometer and a variety of instruments to measure the radiation environment in space and at Venus. Valuable data on the interplanetary space environment was transmitted back to Earth during the flight to Venus.

All Venera 2's instruments were activated for the flyby on 27 February, at a distance of 14,790 miles. While the instruments were operating, the radio had to be shut down, with the probe storing their data in onboard recorders. The plan was for the stored data to be transmitted it to Earth once contact was restored. However, it seems that ground controllers in the USSR were unable to re-establish communications with the spacecraft after the flyby. Attempts to re-establish contact with Venera 2 ceased on March 4, but if communication with the spacecraft can be made at some future point, Soviet scientists believe that it may still be possible to recover some of the flyby data.

Touchdown?

Unlike Venera 2’s flyby (similar to those of Mariner 2 at Venus and Mariner 4 at Mars), Venera 3’s ambitious goal was to land a small capsule of instruments on the surface of Venus, hopefully to unlock at least some of the secrets hidden beneath its veil of clouds. Because some scientists believe there could be life on Venus, the USSR claims the lander was “sterilised” before its departure from Earth so that would not contaminate the Venusian atmosphere or surface with any microbial terrestrial life.

The Venera 3 lander was a metal sphere about 35 inches in diameter, which carried instruments to measure atmospheric temperature, pressure and composition, and light levels at different altitudes, as well small metal Soviet emblems. Interestingly, because some scientists still hold the view that Venus could be a water world, the lander was designed to be able to float and carried a motion detector, which could determine if it had actually landed in water and was rocking in the waves.

Venera 3 was similar to its sister-probe Venera 2. But look closely and you can see the landing capsule at the bottom of the spacecraft

Weighing 884lbs, the lander was designed to drop through Venus’ atmosphere on a parachute, transmitting data from its instruments directly back to Earth, while the rest of the Venera 3 spacecraft went into orbit around Venus to take other scientific measurements. However, like its sister probe, contact with Venera 3 was lost as it approached Venus. Tracking data indicates that the landing capsule entered the Venusian atmosphere on 1 March, although no telemetry was received from the lander. Nevertheless, the Venera 3 lander has become the first manmade object to impact another planet, which is an achievement in itself. The reasons for the failure of the two Venera spacecraft remain a mystery, although some experts believe that the thick Venusian atmosphere may have had something to do with it.

Newly-released Venera 3 stamp (thanks Uncle Ernie!). It shows the Soviet medal and pendant depicting the planet Earth that were carried on board the lander

Advancing the Soviet Lunar Programme

Despite the problems with its Venus programme, the USSR’s lunar programme seems to be going from strength to strength. Following on from the historic soft landing on the Moon with Luna 9 in February, Luna 10 marks another step forward, becoming the first spacecraft to go into orbit around the Moon. (Of course, it’s obvious that this feat was timed to occur during the 23rd Congress of the Communist Party of the Soviet Union, but I’m sure it was also deliberately planned to upstage the United States’ Lunar Orbiter program, which is due to commence later this year, with a series of spacecraft that will photograph and map the Moon in advance of the Apollo programme).

Luna 10, the first spacecraft to orbit the Moon

A pre-launch photograph of Luna 10 indicates that its design is very similar to that of Luna 9, although the instrument capsule on top has a different shape. Launched on 31 March, Luna 10 went into lunar orbit three days later. Its elliptical orbit approaches as close as to the lunar surface as 217 miles, with its farthest point at 632 miles, and takes just under three hours. The 530lb spacecraft is battery powered, rather than using solar panels, so it is unclear how long it will keep sending data back to the Earth, but at present it is producing a regular stream of information about the space environment in the vicinity of the Moon, that will help us understand how safe (or otherwise) it will be for the first cosmonauts and astronauts to explore cislunar space and the Moon itself.

Close up view of a model of the Luna 10 instrument capsule and the small Soviet metal pendants that it carried onboard

Scientific Instruments aboard Luna 10 include a gamma-ray spectrometer, a magnetometer, a meteorite detector, instruments for solar-plasma studies, and devices for measuring infrared emissions from the Moon and radiation conditions of the lunar environment. However, it is not clear whether the probe is actually carrying a camera to photograph the Moon’s surface. Preliminary data released by the Soviet Union indicates that there are higher concentrations of meteoritic dust in the vicinity of the Moon than in interplanetary space, as well as “electron fluxes” that are “70 to 100 times more intense than the cosmic ray background”.

First day cover commemorating the Luna 10 mission. Soviet space covers are masterpieces of propaganda, with the stamp design, envelope design and postmark all re-inforcing the message of Communist space achievement!

A Propaganda Serenade from the Moon!

As the Space Race heats up, the Soviet leadership is always ready to exploit propaganda opportunities associated with space exploration. To celebrate the CPSU Congress, a synthesised version of the Communist anthem “The Internationale” was broadcast live from Luna 10 to the congress on 4 April. (At least, it was claimed to be live: I wonder if Luna 10’s controllers actually used a pre-recorded version in case there were problems with the spacecraft? After all, it would be very politically embarrassing to have a failure of Soviet technology at such a high profile event for global Communism!)

Sky High Eyes on the Sky

The last mission I want to mention this month is NASA’s Orbiting Astronomical Observatory (OAO) 1, not least because this a major space project managed by a woman! Dr. Nancy Grace Roman, formerly a radio astronomer with the Naval Research Laboratory, joined NASA in 1959 and became Chief of Astronomy in NASA's Office of Space Science in 1960. She has a prestigious international reputation and was the first woman in an executive position at the space agency, where she has established the space astronomy programme.

Dr Nancy Grace Roman in 1962 with a model of another of her space observatory projects, the Orbiting Solar Observatory

The heaviest satellite yet launched by the United States (weighing almost two tons), OAO 1 was launched successfully on 8 April, riding to orbit on an Atlas-Agena D from Cape Canaveral. It carried 10 telescopes and other instruments capable of detecting ultraviolet, X-ray and gamma ray emissions to measure the absorption and emission characteristics of the stars, planets, nebulae from the visible to gamma-ray regions The observatory satellite was intended to give astronomers their first clear look at the heavens without the distorting effect of the Earth’s atmosphere and its results were greatly anticipated.

However, before the instruments could be activated, something caused a power failure that resulted in the mission being terminated after just 20 orbits. Because the spacecraft could not be controlled, its solar panels could not be deployed to recharge the batteries supplying the equipment and instruments on board the satellite. Although this is a blow to space astronomy, I’m sure the OAO programme will continue as future satellites are already in development.

NASA illustration of Orbiting Astronomical Observatory 1. While this satellite has failed, there will be future space observatories in this program






[November 22, 1965] Keep on Exploring (Explorer-29 and 30 and Venera-2 and 3)


by Kaye Dee

November has been a busy month in space exploration with two new missions in NASA’s ongoing series of Explorer scientific satellites, and two spacecraft bound for Venus, launched by the Soviet Union. Let's get stuck right in and see why 1965 continues to be an amazing year for the space race.

GEOS is Go!

NASA’s Explorer series keeps on producing fascinating new scientific missions that help us discover as much about the Earth as they do about space. November’s first Explorer satellite, designated Explorer 29, also goes by the name of Geodetic Earth Orbiting Satellite (GEOS)-1 or GEOS-A. It is the first successful active spacecraft in the United States’ National Geodetic Satellite Program, and more are expected to follow.


NASA illustration of GEOS-1/Explorer-29 in orbit

Geodesy is the science of accurately measuring and understanding Earth's geometric shape, its orientation in space and the shape and characteristics of its gravitational field. You could say that passive satellite geodesy began with Vanguard-1, back in 1958, when scientists used the perturbations in its orbit to determine that the Earth is actually slightly pear-shaped, not quite that round ball we see in science fiction movies (though you'd have to have really sharp eyes to notice the difference!)

Satellite geodesy has come a long way in seven years and GOES-1 is carrying a suite of instruments that are designed to operate simultaneously, so that the data from each can be combined to give a highly accurate location for a point on the surface of the Earth. These instruments include four optical beacons, laser reflectors, Doppler beacons, and a range and range rate transponder. GEOS-1 also carries a SECOR transponder, the same type as used by satellites in the US Army’s satellite geodesy program, so that it can also contribute to that program’s research.


This US Army SECOR satellite bears an interesting resemblance to the Naval Research Laboratory's SOLRAD-8, as well as sharing a transponder type with GEOS-1

The objective is to use the data from all of Explorer-29’s instruments to precisely locate a series of observation points (or geodetic control stations) in a three dimensional “Earth centre-of-mass” coordinate system within 10 m of accuracy. These precision locations will help to improve the accuracy of cartography, surveying, and satellite navigation using the TRANSIT satellites.

GEOS-1’s instruments will also help in defining the structure of the earth's irregular gravitational field and refining the locations and magnitudes of the large gravity anomalies that have so far been detected. The various instrument systems will be compared with each other to determine which is the most accurate and reliable.

Explorer-29/GEOS-1 was launched from Cape Canaveral on 6 November (US time), on the first flight of the new Delta E launcher. Powered by solar cells, GEOS-1 uses gravity-gradient stabilisation, a relatively new technique that was first successfully tested on satellite 1963-22A, launched in June 1963. GEOS-1’s range and range rate transponder is tracked by NASA’s STADAN (Space Tracking and Data Acquisition Network) stations, including Carnarvon in Western Australia and the newly-operational station (just last month) at Orroral Valley, near Australia’s capital, Canberra.


NASA's new STADAN tracking station near Canberra tracks scientific satellites including the Explorer series – whatever alternate names they are known by

Satellite for a Quiet Sun

Explorer-29 was followed just two weeks later by Explorer-30, which also goes by the names of SOLRAD-8 and Solar Explorer-A (SE-A). The SOLRAD (short for Solar Radiation) program began in 1960, with the aim of providing continuous coverage of the wavelengths of solar radiation that can't be observed from Earth's surface. SOLRAD is a project of the Naval Research Laboratory and grew out of its earlier Vanguard program. Most of the earlier SOLRAD satellites have been launched piggy-back with other satellites (which, rumour has it, were of a classified nature), but SOLRAD-8 is the first to be launched as part of NASA’s Explorer program.

SOLRAD-8 is part of International Quiet Sun Year program, which is studying the upper atmosphere and the space environment during the Solar minimum, the least energetic time in the Sun's 11 year activity cycle. The data gathered during this period can then be compared with information obtained during the International Geophysical Year, when the Sun was at its most active.


The Naval Research Laboratory's SOLRAD-8 will help us to better understand the differences in the space environment between periods of maximum and minimum solar activity

Launched on November 19 by a Scout X-4 rocket from NASA’s Wallops Island facility, SOLRAD-8 is composed of two 24-inch aluminium hemispheres, with an equatorial ‘belt’ carrying 14 X-ray and Ultra-violet photometers. The satellite weighs 125 pounds and is powered by six solar panels. SOLRAD-8 is the first satellite to use a new type of miniature gas thruster, firing ammonia, to stabilise itself with its spin axis perpendicular to the Sun. It transmits data back to Earth in real time, using a FM/AM telemetry system that is recorded at NASA’s STADAN network stations.

Will we Lift the Veil of Venus This Time?

Venus has proved to be a difficult planet to explore. Only one space probe so far, NASA’s Mariner-2 in 1962, arrived safely at the planet and returned data which indicated that Venus was molten hot, shattering all those tales of a ‘jungle Venus’ or a planet of island dotted oceans, like ERB’s Amtor. But this month, the Soviet Union is making another attempt to visit our mysterious ‘sister’ planet and pierce its veil of clouds.


Official pictures released by the Soviet Union showing Venera-2 (top) and Venera-3 (below). The slight difference between the design of the two space probes is a hint that they might have different missions when they arrive at Venus

Not one, but two spacecraft are on their way to Venus: Venera-2, launched 12 November, was quickly – and much to the West’s surprise – followed only four days later by Venera-3. Both spacecraft were launched from the USSR’s Baikonur Cosmodrome and seem to be safely on their way. It is assumed that the Soviet Union has launched a pair of space probes so that, as with NASA’s Mariner-3 and 4, if one fails the other might still succeed in sending back data to Earth. However, TASS has said that the two probes have slightly different equipment, so some of my colleagues at the WRE have suggested that perhaps the Russians are trying something bolder with this twin mission: maybe one probe will perform a flyby past Venus and the other will either try to go into orbit – or maybe even impact on the planet’s surface. That would be a really exciting achievement: I can’t wait to learn what exciting information these spacecraft will send back to earth in a few months’ time!