Tag Archives: tracking stations

[December 26, 1967] The Prime Minister is Missing! (Disappearance of Australian Prime Minister Harold Holt)




by Kaye Dee

Christmas is supposed to be a time of family celebration, but this year in Australia it has instead become a time of national mourning following the tragic disappearance of our Prime Minister, Mr. Harold Holt. The country is in shock as we come to terms with the loss of a relatively new national leader in an apparent drowning accident.

A Fateful Swim
The full circumstances surrounding the Prime Minister’s disappearance have yet to be established. What we do know is that on Sunday 17 December Mr. Holt was swimming off Cheviot Beach, south of the Victorian state capital of Melbourne, when he was lost to the view of friends onshore after swimming out into deep water and apparently being swamped by a large wave.

The Prime Minister’s love of the ocean is well known: he and his wife have beachside holiday homes in Queensland and at Portsea, not far from Cheviot Beach.  A strong swimmer, fond of skindiving and spearfishing, Mr. Holt apparently claimed to “know Cheviot beach like the back of my hand”, and to be familiar with its sometimes treacherous offshore currents. While skindiving on an earlier visit, Mr. Holt had once recovered a porthole from the wreck of the SS Cheviot, the ship which broke up and sank near the beach, due to its dangerous currents, with the loss of 35 lives on 20 October 1887.

On 17 December, while spending the weekend at Portsea, Mr. Holt and four companions decided to stop at remote Cheviot Beach for a swim before lunch when returning from a drive. The water conditions were rough and only one of Holt’s companions ultimately went into the water with him.  Mr. Holt swam out into deep water and may have been caught in a rip current when he disappeared. Mrs. Gillespie, one of the group who remained on the shore, saw Mr. Holt disappear, describing it as “like a leaf being taken out […] so quick and final”.

A Desperate Search
The Prime Minister’s disappearance sparked “one of the largest search operations in Australian history”. Three amateur divers initially tried to brave the heavy seas but found them too turbulent. They were soon joined by the Victoria Police, deploying helicopters, watercraft, police divers, and two Navy diving teams. By the end of the day, more than 190 personnel were involved. However, the leader of one of the Navy teams apparently believed that “any chance of finding the Prime Minister was lost by the Sunday night”.

Despite this gloomy assessment, the number of searchers eventually increased to more than 340, including 50 divers, working in extremely difficult weather and sea conditions. The intense search continued until December 21, but was then scaled back, although the quest to find Mr. Holt’s body still continues.

Readers outside Australia may be wondering how the leader of the country could go swimming without being accompanied by a security detail. Australian leaders have traditionally not employed bodyguards or other protective measures and Mr. Holt similarly refused a security detail when he first assumed the Prime Ministership: he considered it was unnecessary and might distance him from the public. Although a couple of incidents in mid-1966 resulted in Holt grudgingly accepting a single bodyguard for his official duties, he continued to refuse any protection while on holiday, considering it a violation of his privacy. (Nasty rumour has it that he also wanted to conceal the extramarital affairs he has been suspected of indulging in). Thus, he was unaccompanied by any official security during his weekend break.
The first searchers combing Cheviot Beach, looking for any clue to the Prime Minister's disappearance

A Man of the Twentieth Century
The third Australian Prime Minister to die in office, Mr. Holt was a relatively young man, only 59. The first of our national leaders to be born in the Twentieth Century, Holt believed it was his responsibility as Prime Minister “to reflect the modern Australia to my fellow countrymen, to our allies and the outside world at large”. Mr. Holt became Prime Minister when he assumed the leadership of the incumbent Liberal Party in January 1966.

A lawyer and political lobbyist before being elected to the Federal Parliament, Mr. Holt was an enthusiastic sportsman and swimmer, as well as an effective orator, making him a sharp contrast with his Prime Ministerial predecessors and most of his parliamentary colleagues. His popularity with the public was reflected in his crushing victory in the elections of late 1966.  Mr. Holt (right), at Parliament House, during his period as Treasurer to his predecessor, Sir Robert Menzies (left)

With extensive political and governmental experience, serving as a Minister in several critical portfolios, Mr. Holt helped to transform post-War Australia into a modern democracy that now sees itself as more than just an outpost of the British Empire.

His important economic reforms have included the creation of the Reserve Bank of Australia and the introduction of decimal currency. As Prime Minister he also promoted significant political reforms, including the nation-building post-war immigration scheme; dismantling the shameful White Australia policy (which largely precluded non-white people from immigrating to Australia); and amending the Constitution to give the Federal Government responsibility for Aboriginal affairs. This latter change means that Australia’s first inhabitants can now be counted in the national census for the first time. (Yes, I’m embarrassed to say that until this year, our Constitution did not recognise Aboriginal Australians as citizens or count them in the population of the country!)

Mr. Holt supported Australia’s membership of INTELSAT and the expansion of the NASA tracking station networks in Australia. In June this year, he became the first Australian Prime Minister to make a satellite broadcast, appearing in the special “Australia Day” programme from Expo 67 in Montreal. In March, he officially opened the Manned Space Flight Network station at Honeysuckle Creek, near Canberra, which will play a major role in the Apollo Moon programme. While there, he received as a special gift from the staff, a portrait generated by one of the station computers! Mr. Holt's computer-generated portrait. It took the staff at the NASA Honeysuckle Creek tracking station about 20 hours to programme the computer to produce this image.

Turning Our Eyes to Asia
Mr. Holt also had the foresight to recognise that, in a region of politically unstable nations, Australia needs to be better engaged with Asia and the Pacific. Earlier this year, he said in Parliament that “geographically we are part of Asia, and increasingly we have become aware of our involvement in the affairs of Asia – our greatest dangers and our highest hopes are centred in Asia's tomorrows”.

Prime Minister Holt at the South East Asian Treaty Organisation's meeting in Manila in October 1966

As Prime Minister, Mr. Holt's first overseas trip was to South-East Asia in April 1966, visiting Malaysia, Singapore, South Vietnam, and Thailand. This year, he toured Cambodia, Laos, South Korea, and Taiwan, and had planned future visits to other Asian nations.

Of course, in considering Australian involvement in Asia, we cannot ignore the ongoing conflict in Vietnam. Fervently opposed to Communism, Mr. Holt’s approach to national security emphasised countering Communist expansion. This lay behind his interest in encouraging greater engagement with Asia and his government’s expansion of Australia's involvement in the Vietnam War. In March 1966, Prime Minister Holt tripled the number of Australian troops in Vietnam to around 4,500, which included 1,500 conscript national servicemen: since October this year, with the most recent announcement of a troop increase, there are now over 8,000 Australian military personnel stationed in South Vietnam.
Although Mr. Holt’s expansion of Australia’s involvement in the Vietnam conflict was initially popular – and has been considered a key factor in his landslide election victory last year – the tide of public opinion has been turning against the war in recent months, especially as greater numbers of young men, conscripted into national service through a “birthday lottery” system that many people consider unfair, are being sent overseas to fight.

“All the Way with LBJ!”
The Vietnam War has dominated Australian foreign policy since Mr. Holt became Prime Minister, as he believed that “unless there is security for all small nations, there cannot be security for any small nation”. Believing that the United States provides a critical “shield” for Asian and South Pacific nations against Communist aggression, Mr. Holt cultivated a close relationship between Australia and America and formed a strong personal friendship with President Johnson, whom he had first met in 1942, when Mr. Johnson visited Melbourne as a naval officer.

In 1966, Mr. Holt visited the U.S. twice. On his first visit, he made a comment at a White House address that has become somewhat controversial here in Australia. While apparently intending the remark to be taken as a “light-hearted gesture of goodwill”, Mr. Holt’s comment that “you have an admiring friend, a staunch friend that will be all the way with LBJ” (a reference, I’m told, to the slogan used in Mr. Johnson's 1964 presidential campaign), was seen by many in Australia as sycophantic and embarrassingly servile.

Despite the controversy, I suspect that this jingle-like phrase will become one of Mr. Holt’s best-known utterances. It certainly appeared again when President Johnson made the first ever visit to Australia by a serving US President in October 1966. The President toured five cities, being greeted by both large crowds of the curious and anti-war demonstrators. I accompanied my sister and her family to join the crowds lining the motorcade route in Sydney, as I was certainly interested to get a glimpse of a US President!

Changing of the Guard
No trace of Mr. Holt was found by the evening of 18 December. At 10 p.m. that day the Governor-General announced that the Prime Minister was presumed dead. Since the country cannot be left without a leader, Mr. John McEwen, the leader of the junior government coalition party, the Country Party – and therefore the Deputy Prime Minister – has been sworn in as the interim Prime Minister, and the Liberal party will elect a new leader, and thus a new Prime Minister, early in the new year. Although Mr. Holt’s body still has not been found, a memorial service was held on 22 December, at St Paul's Anglican Cathedral, Melbourne. There were 2,000 people within the cathedral, while thousands more lined the nearby streets and listened through a public-address system. The funeral was broadcast on radio and television and, also via satellite to the United States, the UK and Europe. This was the first major satellite broadcast from Australia of a significant local news event. Interim Prime Minister McEwen with international dignitaries at Harold Holt's memorial

International dignitaries and heads of state attended the memorial service, including Charles, Prince of Wales (representing Her Majesty the Queen), the Prime Minister and Opposition Leader of the UK, the UN Secretary General and President Johnson. Seven Prime Ministers and Presidents from Asian and Pacific Countries also attended, in addition to foreign ministers and ambassadors from many countries in the region and the Commonwealth.

A Tragic Accident, Suicide or Something More Sinister?
Without a body, no definitive conclusions can be reached as to what happened to the Prime Minister. The official view, and it seems that of his family, close friends and colleagues, is that Mr. Holt overestimated his swimming ability and went literally out of his depth in dangerous conditions, resulting in a tragic accidental drowning. Other possibilities include that he may have suffered a heart-attack or other sudden medical issue in the water (although his health was generally good), been stung by a deadly jellyfish (yes, we do have them in Australia), or attacked by a shark.

Some allegations have been raised that Mr. Holt committed suicide due to a number of political difficulties and controversies that have arisen in recent months. However, his wife and friends have rejected this as uncharacteristic of his personality. Already, outlandish theories have also been advanced for the Prime Minister’s disappearance, including suggestions that he has faked his own death in order to run off with a mistress, or that he has been assassinated by the CIA (but one would have to ask why, since he was so pro-American). As long as no body is found, I suspect that the mystery of Prime Minister Holt’s disappearance will continue to haunt, and fascinate, Australia – and that the bizarre theories will continue.

In the meantime, Australia mourns the loss of a forward-looking leader and the promise he might have represented.












[October 28, 1967] Unveiling Venus – at Least a Little (Venera-4 and Mariner-5)



by Kaye Dee

Despite the hiatus in manned spaceflight missions while the Apollo-1 and Soyuz-1 accident investigations continue, October has been a very busy month for space activities – so much so that I’ve had to defer writing about some of this month’s events to an article next month!

Spaceflight Slowdown?

4 October saw the tenth anniversary of the launch of Sputnik-1, the Soviet satellite that surprised the world and ushered in the Space Age and the Space Race. Since that first launch, the pace of space exploration has been breathtaking, far surpassing what even its most ardent proponents in the 1950s anticipated.

In the famous Colliers’ “Man Will Conquer Space Soon” article series, reproduced even here in Australia, Dr Wernher von Braun predicted that the first manned mission to the Moon would not occur until the late 1970s

As part of the USSR’s Sputnik 10th anniversary celebrations, many space-focussed newspaper articles were published.  One of these, written by Voskhod-1 cosmonaut and engineer Dr. Konstantin Feoktistov, strongly hinted that Russia's next major space feat would be the launch of an orbiting space platform. This would certainly be an important development in establishing a permanent human presence in space and put the Soviet Union once again ahead in the Space Race, especially if the US and USSR lunar programmes are faltering.

Earlier this month, the head of the NASA, Mr James Webb, said it was increasingly doubtful that either the United States or the Soviet Union would land people on the Moon in this decade. He delivered a gloomy prognostication for the second decade of the Space Age, saying the entire US programme was “slowing down”. Mr. Webb criticised recent Congressional cuts of 10 per cent to the space-agency budget projected for the year ending next 30 June, saying that NASA was laying off over 100,000 people.

Administrator Webb also cast doubt on some proposed NASA planetary exploration missions. “The serious question is whether or not this country wants to start a Voyager mission to Mars in 1968”, he is reported to have said. The Voyager programme is a 10-year project that envisages sending two spacecraft to Mars (one to orbit around it, the other to land on its surface), with the additional possibility of landing a spacecraft on Venus and exploring Jupiter. These would undoubtedly be exciting missions that would reveal new knowledge about these planets, but Mr Webb said he had virtually no money for the Voyager programme as a result of the budget cut.

Parallel Planetary Probes: Venera-4 and Mariner-5

But possible future downturns in space activity can’t detract from this month’s big news: the safe arrival of two spacecraft at Venus!

Back in June, a suitable launch window meant that both the USSR and NASA sent spacecraft on their way to our closest planetary neighbour. First off the blocks was the Soviet Union, which launched its Venera-4 mission (generally known in the West as Venus-4) on 12 June from the Baikonur Cosmodrome in Kazakhstan. NASA’s Mariner-5 followed two days later, on 14 June, launched from Cape Kennedy.

Pre-launch photo of Venera-4

Venera-4 is the most recent Soviet attempt to reach the planet after Venera-2 and 3 failed to send back any data in March last year. There is some speculation that, since its previous Venus mission employed twin spacecraft, Russia may have also intended this Venus shot to be a two-spacecraft mission. It’s possible that the short-lived Cosmos 167 spacecraft, launched on 17 June, was Venera-4’s twin that failed to leave orbit, although with the secrecy that surrounds so much of the Soviet space program, who knows if we’ll ever get the truth of it? Venera-4 was itself first put into a parking orbit around the Earth before being launched in the direction of Venus. A course correction was performed on 29 July, to ensure that the probe would not miss its target.


Mariner-5 being prepared for launch

Mariner-5 is NASA’s first Venus probe since Mariner-2 in 1962. Originally constructed as a backup for the Mariner-4 Mars mission, that probe’s success meant that the spacecraft could be repurposed to take advantage of the 1967 Venus launch window. Interestingly, I understand from my friends at the Sydney Observatory that there were initial suggestions to send the Mariner back-up spacecraft to either comet 7P/Pons–Winnecke or comet 10P/Tempel, before the Venus mission was decided upon. While it’s useful to have additional data from Venus, it would have been fascinating to send an exploratory mission to a comet, since we know so little about these transient visitors to our skies. 

At its closest, Venus is just 36 million miles from Earth, but Mariner-5 followed a looping flightpath of 212 million miles, to enable it to fly past Venus at a distance of around 2,500 miles (about 10 times closer than Mariner-2’s flyby). Australia’s Deep Space Network (DSN) stations at Tidbinbilla, near Canberra, and Island Lagoon, near the Woomera Rocket Range, were respectively the prime and back-up monitoring and control stations for Mariner-5’s mid-course correction burn that placed it on its close flyby trajectory. 

Keys to Unlock a Mystery

Venus has always been a planet shrouded in mystery since its thick, cloudy atmosphere prevents any telescopic observation of its surface. For this year’s launch window, one could almost believe that Cold War tensions had been overcome and the USSR and USA had agreed to work together on a Venus exploration program, given that their two spacecraft effectively complement each other.

Venera-4’s mission was announced as “direct atmospheric studies”, with Western scientists speculating that this meant that it would follow Venera-3 in attempting to land on the planet’s surface. The spacecraft’s arrival at Venus has proved this speculation to be correct, and the few images of Venera-4 now available show the 2,436 lb spacecraft to be near-identical to Venera-3. 11 ft high, with its solar panels spanning 13 ft, Venera-4 carried a 1 metre (3 ft 3 in) spherical landing capsule that was released to descend through the atmosphere while the main spacecraft flew past Venus and provided a relay station for its signals.
Soviet models of the Venera-4 spacecraft and its descent capsule

The 844 lb descent capsule was equipped with a heat shield, capable of withstanding temperatures up to 11,000°C (19,800 °F) and had a rechargeable battery providing 100 minutes of power for the instruments and transmitter. During the flight to Venus the battery was kept charged by the solar panels of the carrier spacecraft. Supposedly, the entire Venera-4 probe was sterilised to prevent any biological contamination of Venus, but some Western scientists have cast doubt on this claim. The capsule was pressurized up to 25 atmospheres since the surface pressure on Venus was unknown until Venera-4’s arrival.
Picture of the Venera-4 descent capsule released by the USSR. Western scientists are wondering what that heat shield is made of

Information recently released by the Soviet Academy of Sciences has said that the descent vehicle carried two thermometers, a barometer, a radio altimeter, an atmospheric density gauge, 11 gas analysers, and two radio transmitters. Scientific instruments on the main body of the spacecraft included a magnetometer and charged particle traps, both for measuring Venus' magnetic field and the stellar wind on the way to Venus, an ultraviolet spectrometer to detect hydrogen and oxygen gases in Venus' atmosphere, and cosmic ray detectors.


Much smaller than Venera-4, the 5401b Mariner-5 was designed to flyby Venus taking scientific measurements: it was not equipped with a camera, as NASA considered this un-necessary in view of the planet’s cloud cover. NASA controllers initially planned a distant flyby of Venus, to avoid the possibility of an unsterilised spacecraft crashing into the planet, but the final close flyby was eventually chosen to improve the chances of detecting a magnetic field and any interaction with the solar wind.

As Mariner-4’s backup, Mariner-5 has the same basic body – an octagonal magnesium frame 50 in diagonally across and 18 in high. However, since it was heading to Venus instead of Mars, Mariner-5 had to be modified to cope with the conditions much closer to the Sun. Due to its trajectory, Mariner-5 needed to face away from the Sun to keep its high-gain antenna pointed at Earth. Its solar panels were therefore reversed to face aft, so they could remain pointed at the Sun. They were also reduced in size, since closer proximity to the Sun meant less solar cells were needed to generate the same level of power. Mariner-5's trajectory also required the high-gain antenna to be placed at a different angle and made moveable as part of the radio occultation experiment. A deployable sunshade on the aft of the spacecraft was used for thermal control, and Mariner-5 was fully attitude stabilized, using the sun and Canopus as references.
View from below showing the main components of Mariner-5

Mariner-5’s prime task was to determine the thickness of Venus’ atmosphere, investigate any potential magnetic field and refine the understanding of Venus’ gravity. Its suite of instruments included: an ultraviolet photometer, a two-frequency beacon receiver, a S-Band radio occultation experiment, a helium magnetometer, an interplanetary ion plasma probe and a trapped radiation detector. The spacecraft instruments measured both interplanetary and Venusian magnetic fields, charged particles, and plasmas, as well as the radio refractivity and UV emissions of the Venusian atmosphere.

During its 127-day cruise to Venus, Mariner-5 gathered data on the interplanetary environment. In September and October, observations were co-ordinated with measurements made by Mariner-4, which is on its own extended mission, following its 1965 encounter with Mars. Similar observations were made by Venera-4 during its flight to Venus, which found that the concentration of positive ions in interplanetary space is much lower than expected. 

Missions Accomplished

A few days before it arrived at Venus, the Soviet Academy of Sciences requested assistance from the massive 250 feet radio telescope at the Jodrell Bank Observatory in the UK, asking the facility to track Venera-4 for the final part of its voyage. This has provided Western scientists with some independent verification of Soviet claims about the mission. Jodrell Bank even announced the landing of the Venera-4 descent capsule more than seven hours before it was reported by the Soviet news agency Tass!

On 18 October, Venera-4’s descent vehicle entered the Venusian atmosphere, deploying a parachute to slow its fall onto the night side of the planet. According to a story that one of the Sydney Observatory astronomers picked up from a Soviet colleague at a recent international scientific conference, because there was still the possibility that, beneath its clouds Venus might be largely covered by water (one of the main theories about its surface), the capsule was designed to float if it did land in water. Uniquely, the spacecraft’s designers made the lock of the capsule using sugar, which would dissolve in liquid water and release the transmitter antennae in the event of a water landing.

Although the Venera-4 capsule had 100 minutes of battery power available and sent back valuable data as it fell through the atmosphere, Jodrell Bank observations, and the official announcement from Tass, indicated that the signal cut off around 96 minutes. While it was initially thought that this meant that the capsule had touched down on the surface, and there were even early reports claiming it had detected a rocky terrain, questions are now being raised as to whether it actually reached the surface, or if the spacecraft failed while still descending. Tass has said that the capsule stopped transmitting data because it apparently landed in a way that obstructed its directional antenna. A recording of the last 20 seconds of signal received at Jodrell Bank was delivered to Vostok-5 cosmonaut Valery Bykovsky during a visit to the radio telescope on 26 October. Perhaps once it is fully analysed, the question of the capsule’s fate will be clarified. Of course, if the landing is confirmed, Venera-4 will have made history with the first successful landing and in-situ data gathering on another planet.

Diagram illustrating the major milestones during the Mariner-5 encounter with Venus on 19 October
Mariner-5 swept past Venus on 19 October, making a close approach of 2,480 miles. At 02:49 GMT the Island Lagoon DSN station commanded Mariner 5 to prepare for the encounter sequence and 12 hours later its tape recorder began to store science data. Tracked by the new 200 in antenna at NASA’s Goldstone tracking station, Mariner reached its closest encounter distance at 17:35 GMT, and minutes later entered the “occultation zone” before passed behind Venus as seen from the Earth. 17 minutes later, Mariner-5 emerged from behind Venus and completed its encounter at 18:34 GMT.

The following day, Mariner-5 began to transmit its recorded data back to Earth. Over 72½ hours there were three playbacks of the data to correct for missed bits. Mariner-5's flight path following its Venus encounter is bringing it closer to the Sun than any previous probe and the intention is for to be tracked until its instruments fail.

A Peep Behind the Veil

So what have we learned about Venus from these two successful probes? There has long been controversy among astronomers as to whether Venus is a desert planet, too hot for life, or an ocean world, covered in water. The data from both Venera and Mariner has come down firmly on the side of the desert world hypothesis.
Astronomical artist Mr. Chesley Bonestell's 1947 vision of a desert Venus

The effects of Venus’ atmosphere on radio signals during Mariner-5’s occultation experiment have enabled scientists to calculate temperature and pressure at the planet's surface as 980°F and 75 to 100 Earth atmospheres. These figures disagree with readings from Venera 4 mission, which indicate surface temperatures from 104 to 536°F and 15 Earth atmospheres’ pressure, but both sets of data indicate a hellish world, with little evidence of water and an extremely dense atmosphere.

Venera has established that Venus’ atmosphere consists almost exclusively of carbon dioxide with traces of hydrogen vapour, very little oxygen, and no nitrogen. Mariner-5's data indicates that the atmosphere of Venus ranges from 52 to 87 per cent carbon dioxide, with both hydrogen and oxygen in the upper atmosphere: it found no trace of nitrogen. It detected about as much hydrogen proportionately as there is in the Earth's atmosphere. Mariner scientists, however, have pointed out that further analysis and refinements of both Russian and American data could clear up the apparent discrepancies.

Although Mariner’s instruments could not penetrate deeply enough into Venus’ atmosphere to obtain surface readings, they determined that the outer fringe of the atmosphere, where atoms were excited by direct sunlight, had a temperature of 700°F, below which was a layer close to Zero degrees, lying about 100 miles above the surface. Chemicals in the atmosphere, or electrical storms far more intense than those of Earth, give the night side of the planet an ashen glow.
A view of the Mariner-5 control room at JPL during the Venus encounter

A fascinating finding is that the dense atmosphere acts like a giant lens, bending light waves so they travel around the planet. Both American and Russian researchers agree that astronauts standing on the surface would feel like they were “standing at the bottom of a giant bowl”, with the back of their own heads a shimmering mirage on the horizon. Vision would be so distorted that the sun would appear at sunset to be a long bright line on the horizon: its light could penetrate the atmosphere, but not escape because of scattering, so that it would appear as a bright ball again for a time at sunrise until the atmosphere distorted its rays.

Neither spacecraft found any evidence of radiation belts comparable to the Van Allen belts around the Earth, and both established that Venus has only a very slight magnetic field, less than 1% that of the Earth. Observing how much Venus' gravity changed Mariner 5's trajectory established that Venus’ mass is 81.5 % that of Earth. Tracking of radio signals from Mariner-5 as it swept behind Venus, has shown that the planet is virtually spherical, compared with Earth's slightly pear-shape. (Other celestial mechanics experiments conducted with Mariner-5 obtained improved determinations of the mass of the Moon, of the astronomical unit, and improved ephemerides of Earth and Venus).

Life on Venus?

Although neither spacecraft was equipped to look for life on Venus, their findings will undoubtedly contribute to the growing scientific controversy over whether life does, or can, exist there. Based on its Venera results, the Soviet Union has said that Venus is “too hot for human life”, although Sir Bernard Lovell, the Director of Jodrell Bank Station, has suggested that future probes might find remnants of some early organic development, even if conditions today make life highly unlikely. However, German/American rocket pioneer and space writer Dr Willy Ley, has suggested there might be the possibility of “a very specialised kind of life on Venus”, possibly at the poles, which he believes would be cooler that the currently measured temperatures. The USSR’s Dr Krasilnikov has said that Earth bacteria could withstand the atmospheric pressure on Venus and might even be able to survive the intense heat. 


But just as Mariner-4 demolished fantasies of canals made by intelligent Martians, so the results from Venera-4 and Mariner-5, in allowing us a glimpse behind its cloudy veil, have swept aside any number of science fiction visions of Venus. Edgar Rice Burroughs’ verdant Amtor, with its continents and oceans, and Heinlein’s swampy Venus are no more. They have been replaced by a new vision of a hellish Venus, almost certainly inimical to life, with fiery storms raging in a dense, metal melting atmosphere which traps and bends light waves in a weird manner. I wonder where the SF writers of the future will take it?





[July 20, 1965] No War of the Worlds After All? (Mariner IV reaches Mars)


by Kaye Dee

Just a few days ago, on July 15, NASA’s Mariner IV space probe made history by being the first spacecraft to successfully reach the planet Mars, capturing images of its surface. These are the first close-up views of another planet in our solar system and the initial pictures suggest that, despite what science fiction would have us believe, Earth won’t have to fear an invasion from Mars any time soon!

The first close-up image ever taken of Mars, showing the limb of the planet and a haze-like feature that might be clouds. The smallest features in this image are roughly 3 miles across, but there's no sign of Martian canals!

The Canals of Mars

Mars has been an object of intense scientific and popular fascination since the last century, when telescope observations first suggested that the planet was potentially Earthlike, since it showed polar caps and surface changes that appeared to represent seasonal variations due to the growth and die-back of vegetation. Then, in 1877, the Italian astronomer Schiaparelli observed what he called “canali” on Mars. He apparently meant grooves or channels on the Martian surface, but his work was translated into English as “canals” and some astronomers took this literally to mean that he had observed structures that were the work of intelligent beings.

A section of one of Percival Lowell’s maps of Mars, published in his 1895 book Mars. The complete map depicted 184 named canals marked on it using numbers.

By the end of the 19th Century, the idea that there is intelligent life on Mars had taken hold, thanks particularly to the writings of American astronomer Percival Lowell (the same Percival Lowell who is also associated with the discovery of the Planet Pluto!) He believed in a Martian civilisation that had constructed vast networks of canals to bring water from the planet’s poles and wrote several books and innumerable newspaper articles detailing his observations of canal systems on the Red Planet. Science fiction stories like H.G. Well’s War of the Worlds, first published in 1897, and Edgar Rice Burroughs' "Barsoom" series further encouraged popular belief that there was intelligent life on Mars and generated something of a ‘Mars mania’ that has grown across the 20th Century.

Cover of the August 1927 issue of Amazing depicting the iconic Martian machines from Wells' War of the Worlds. This powerful story has been re-interpreted on radio and film and has had a tremendous influence in shaping popular perceptions of life on Mars.

The Mars Race

Most scientists have accepted for a decade or more now that modern telescope observations indicate that it is unlikely that higher forms of life will be found on Mars after all. Yet the fascination with Mars has been so strong that it’s not surprising the planet became an early target for space exploration, after the Moon. The Soviet Union started the race to Mars in October 1960, with “Marsnik” 1 and 2. We don’t know much about these probes, but it seems they both failed even to reach orbit. The USSR’s Mars 1 flew past Mars in June 1963, but it had stopped sending back data in March. Sputnik 22 and Sputnik 24, both launched around the same time as Mars 1, are also believed to be elements of a failed Mars mission. Zond 2, launched just 2 days after Mariner IV, is also assumed to be an attempted Mars mission, though it, too, ceased transmitting en route. Clearly, getting to Mars is hard. Mariner IV was meant to be a twin mission with Mariner III, but that mission also failed at launch.

Even though Mars 1 ceased transmitting long before it reached Mars, the USSR still celebrated it as an achievement on its 1964 Cosmonauts Day stamp.

Mariner IV was launched on an Atlas Agena rocket from Cape Canaveral at 12:22 GMT on November 28, last year. It has an octagonal magnesium frame, 50 inches across the diagonal and 18 inches high, which houses the electronic equipment, propulsion system and attitude control gas supplies and regulators. Four solar panels, containing a total of 28,224 solar cells, are attached to the top of the frame. They are able to generate 310 watts of power at the distance of Mars from the Sun. Mariner also has two antennae for transmitting data back to Earth: An elliptical high-gain parabolic antenna and an omnidirectional low-gain antenna, mounted on a seven-foot, four-inch-tall mast next to the high-gain antenna.

Mariner IV is an incredibly sophisticated space probe for its size, packed with scientific instruments, plus its television camera system. Its design is a radical departure from the conical design used for the Ranger Moon probes and NASA's successful Mariner II mission to Venus.

Deep Space Laboratory

For its relatively small size, Mariner IV is a spacegoing scientific laboratory, designed to measure the conditions in deep space between Mars and the Earth and in the vicinity of Mars itself. Its scientific instruments include a helium magnetometer to measure the characteristics of the interplanetary and planetary magnetic fields; an ionization chamber/Geiger counter, to measure the charged-particle intensity and distribution in interplanetary space and in the vicinity of Mars; a cosmic ray telescope, to measure the direction and energy spectrum of protons and alpha particles; a solar plasma probe, to measure the very low energy charged particle flux from the Sun, and a cosmic dust detector, to measure the momentum, distribution, density, and direction of cosmic dust. Although the Geiger counter failed in February and the plasma probe's performance is degraded, the other instruments are all working well.

Mariner IV's 'endless loop' magnetic tape recorder. Its 330ft of tape has a storage capacity of 5.24 million bits – right at the cutting-edge of recording technology!

Probably the most important instrument on Mariner IV, and certainly the one of the most interest to the public, is its television camera, designed to obtain close-up images of the Martian surface. The camera is mounted on a scan platform at the bottom centre of the spacecraft and consists of 4 parts: a Cassegrain telescope with a 1.05° by 1.05° field of view; a shutter and red/green filter assembly with 0.08s and 0.20s exposure times; a slow scan vidicon tube which translates the optical image into an electrical video signal, and the electronic systems required to convert the analogue signal into a digital signal for transmission. During the fly-by of Mars, all the television images and the data gathered by the scientific instruments were stored on an ‘endless loop’ four-track magnetic tape recorder for later transmission back to Earth. 

First Pictures from Another World

On July 15 Mariner 4 passed within 6117 miles of Mars, spending just 25 minutes doing visual observations of the planet’s surface. During that brief time, its television camera captured 21 full pictures and part of a 22nd, the first ever close-up images of the surface of another planet. Each photo covers an area of about 77 square miles. It takes about 10 hours to transmit each image back to Earth and each picture is being transmitted twice to ensure that all the data is correctly received.

The second Mariner IV image released by NASA shows the border of Elysium Planitia and Amazonis Planitia. Taken from around 9,940 miles, the picture is about 310 miles across and 560 miles from top to bottom because the surface is curving away. North is up and the sun is illuminating the area from the southeast.

Only three of the Mariner Mars images have so far been released, but already they have disappointed scientists and the public alike by putting an end to any hope of finding intelligent life on the Red Planet. What they have so far revealed is a world that looks more like the Moon than the Earth, with no signs of water, vegetation or animal life. When this is coupled with the findings of the scientific instruments, which show that Mars has an atmosphere of carbon dioxide with only a very low atmospheric pressure (only a fraction of that found on Earth, which was quite a surprise to scientists), a daytime temperature of -148 degrees F and no magnetic field (meaning that the surface of the planet is bombarded by the solar wind and cosmic radiation), it means that the prospects for any kind of life on Mars are very small indeed. However, Mariner’s images only cover just 1% of the Martian surface, so perhaps we should not entirely give up hope that future missions will find Mars more exciting and scientifically interesting than it seems right now. After all, the pictures have not yet revealed the cause of the apparent seasonal changes observed from Earth….

The third image we have seen so far shows the Orcus Patera region in western Amazonis Planitia. It was taken with the sun only 13 degrees from vertical, so the topography is hard to make out, although some raised areas can be seen at upper left. The image is 202 miles across and 319 miles from top to bottom. The resolution is about 1.9 miles and north is up.

Australia Plays Its Part

Australia has played a crucial role in the Mariner IV mission, with its first images being received at the Tidbinbilla tracking station outside Canberra. NASA’s second Deep Space Network station in Australia, Tidbinbilla became operational in December 1964 so that it could support the Mars mission. As the signal from Mars is very weak, the station asked the civil aviation authorities to divert any aircraft that might interfere with the reception of the signals from Mariner at the time of the fly-by. This resulted in an amusing incident: at the critical time, just when Mariner 4 had gone behind Mars, the direct phone from Canberra Airport rang and the station was asked if it was experiencing interference from a UFO! It now seems that the offending object was a weather balloon and not a Martian saucer come to check on what the Earthmen are up to.


Nestled in a secluded valley, for protection from radio interference from nearby Canberra, NASA's Tidbinbilla Deep Space Network Station received the first images of Mars from Mariner IV. Australia is host to a growing number of NASA tracking stations covering all its space tracking networks.

A Role for a Radio Telescope

Australia’s Parkes radio telescope, the largest fully steerable radio telescope in the world, also played a role in receiving Mariner IV’s Mars images. NASA is basing the design of its new 210 ft antennae for the Deep Space Network on that of the Parkes telescope. As a demonstration of its tracking capabilities, Parkes has also tracked Mariner IV and received some of its images from Mars. Its greater antenna size, and therefore better reception capabilities, mean that its images will be more detailed than those received by the 85 ft dishes at Tidnbinbilla and other NASA stations and they will enhance the overall quality of Mariner IV’s Mars pictures when the Parkes and Tidbinbilla images are combined. I hope that NASA will release the rest of the Mariner images soon: even if they have dashed almost a century of Martian fantasies, they are revealing a planet that is very different from what we have expected and I wonder what further surprises might be in store for us as we explore more of Mars and the rest of the Solar System….

The world-leading radio telescope developed by the Commonwealth Scientific and Industrial Research Organisation, Australia's national civil scientific research body. Located near Parkes, New South Wales, this astronomical instrument is also proving its value as a space tracking facility and I'm sure that NASA will call on it again in the future for further tracking support