Tag Archives: Deep Space Network

[August 4, 1969] A Small Step and a Giant Leap (Apollo-11, Part 2)


by Kaye Dee

The crew of Apollo-11 has returned home in triumph, splashing down safely in the Pacific Ocean on 24 July US time, at the end of their historic mission. The New York Times Editorial of 20 July has called their epic adventure “more than a step in history; it is a step in evolution.” Those footprints (well, bootprints, like Col. Aldrin's above) on the Moon mark the beginning of humanity's giant leap from its home planet into the cosmos.


Despite their hero status, right now the crew of Apollo-11 are pariahs – in quarantine to ensure that they have not brought home any nasty surprises from the Moon in the form of unknown pathogens. But alongside the treasure trove of Moonrocks, what they have brought home is a stunning visual record of Mankind's "greatest adventure", and I have waited a little to prepare this article so that it could be illustrated with many of the images taken during the flight (which had not been developed and distributed until now). I hope you’ll agree that it has been worth the delay.

The Apollo-11 mission has been epic in every sense of the word – so much so, that my intended two-part article has evolved into a three-part story, the final chapter to come after the astronauts are released from their quarantine.

A Smooth Cruise
At the end of Part 1, we left the Apollo-11 crew on their coast to the Moon, which was largely routine and uneventful. Despite the intrinsically dangerous nature of the Apollo-11 mission, the flight was, overall, probably the most trouble-free Apollo mission to date. Certainly, the Operations Supervisor at the Honeysuckle Creek Manned Space Flight (MSFN) Tracking Station has described it as “a very smooth mission from our perspective”, and I understand that Mission Control in Houston thought the same, despite the stresses inherent in such a historically significant undertaking as the first Moon landing. 

Coming to You in Living Colour
34 hours into the flight, Mr. Armstrong, Col. Aldrin and Col. Collins gave their first public television broadcast. Highlights of the 36-minute transmission (in colour for those countries with colour TV service) included views of the Earth, Lunar Module (LM) Pilot Aldrin demonstrating zero-g push-ups and “Chef” Collins dishing up a space food chicken stew. 

Compare the resolution of this photo taken by the crew with the television image of a similar view of the Earth at around 10,000 nautical miles

Another television transmission took place 55 hours after launch, with a 96-minute colour broadcast. Shown live in the US, Japan, western Europe and much of South America, this show again included views of the Earth, now 201,300 miles away. Viewers could see the removal of the probe and drogue docking apparatus and the opening of the spacecraft tunnel hatch to the LM, with Command Module (CM) Pilot Collins making jokes about his non-union “stagehands” (Armstrong and Aldrin).

Col. Aldrin entered the LM first, followed by Mr. Armstrong, providing a tour around the vehicle that would land the first human beings on the Moon. Aldrin also described the Moonwalking gear waiting to be used.


Aldrin in the LM during its first checkout. His sunglasses were specially developed by Australian ophthalmologist Dr. John Colvin

Into Lunar Orbit
On mission day four, Col. Collins swung the Command Service Module (CSM) around, so that the crew could look at the rapidly approaching Moon, its crater-pocked surface now filling their windows. As the spacecraft entered the Moon’s shadow, Mr. Armstrong noted “Now we are able to see stars again and recognise constellations for the first time on the trip. The sky is full of stars, just like the nights on Earth. But all the way here, we’ve only been able to see stars occasionally… but not recognise any star patterns.”

An eerie view approaching the Moon in its shadow, with the solar corona and dimly Earthlit craters appearing around the lunar rim

Like Apollo-8 and 10, the CSM engine burn required to place Apollo-11 into lunar orbit had to occur behind the Moon, with the crew out of direct contact with the Earth. Shortly before they disappeared behind the Moon, while in contact with the MSFN station near Madrid, the astronauts described the lunar surface they could see through their windows, with Col. Collins likening its colour to “Plaster of Paris grey.”


After a Trans-Lunar Coast that lasted for 73 hours, 5 minutes and 35 seconds, a 5 minute 57.53 second burn placed Apollo-11 exactly where it should be – in a lunar orbit of 195 by 69 miles. When reporting to Mission Control on the Lunar Orbit Insertion burn, once contact was re-established, Col. Collins could only say “It was like… perfect.”

Around the Moon
Orbiting the Moon, in their Columbia, like the heroes of Jules Verne’s “Autour de la Lune” (Around the Moon) in their Columbiad, at 78 hours and 20 minutes into the mission Armstrong, Aldrin and Collins offered viewers back on Earth a 40-minute live colour television transmission that showed spectacular views of the lunar surface and the approach path to the LM Eagle’s planned landing site. As the spacecraft prepared to go behind the Moon again, Aldrin quipped, “And as the Moon sinks slowly in the west, Apollo-11 bids good day to you,” paraphrasing Lowell Thomas’ famous travelogue sign-off to fit the occasion.


As Apollo-11 approached the Sea of Tranquility for the first time, it was early dawn on the surface below, with long, black shadows stretching across the cratered Moonscape.

Just over two hours later, CMP Collins initiated a second engine burn of 16.88 seconds, to place the spacecraft into an elliptical orbit, ready for the LM to depart for the lunar surface. This burn was critical, because if it was even two seconds too long it could put Apollo-11 on a collision course with the other side of the Moon!

Checking out the LM
A little over 81 hours after launch, during their fourth orbit of the Moon, LMP Aldrin entered the LM, to power up and checkout the spacecraft systems. Then Commander Armstrong and Col. Aldrin called Mission Control in Houston for the first time from the lunar landing vehicle, using the “Eagle” callsign.

A view of the approach to the Apollo-11 landing site, captured during the LM checkout period. It has been annotated with formal and unofficial names to show the approach path

Once this communications test was completed, the astronauts began to prepare for a sleep period. Collins suggested that Armstrong and Aldrin take the most comfortable sleeping positions in the Command Module, so they would get a good rest before the landing attempt. He was undoubtedly concerned about the possibility of an error due to overtiredness, which could have catastrophic consequences for the mission and the crew. The possibility of having to return to Earth alone if disaster should strike the lunar module crew seems to have weighed on Col. Collins’ mind, as he mentioned his understandable apprehension in several interviews prior to the flight.


Just before the sleep period, the astronauts captured another glorious vision of the Earth hovering above the lunar surface that is certain to become as iconic as Apollo-8’s Earthrise image

The Big Day Arrives
On 20 July (21 July in the eastern hemisphere, including Australia), astronauts Armstrong and Aldrin donned their spacesuits in the CM equipment bay, before entering Eagle for their descent to the lunar surface. After sealing the hatch and completing the final checkout of the LM, they extended Eagle’s landing gear and prepared to separate from the CSM.


This manoeuvre took place behind the Moon, during the 13th orbit, so as to place Eagle on the correct descent trajectory to touch down at the ALS-2 landing site. The LM moved away from Columbia and pirouetted around so that Col. Collins could inspect the vehicle and ensure that Eagle was totally ready for its historic descent to the Moon. “The Eagle has wings,” Armstrong assured Mission Control, as he and Aldrin put the craft through its paces. A nine-second Reaction Control System engine burn by the CSM then separated the two spacecraft to a safe distance apart

Meanwhile, Back in Mission Control
In focussing on the astronauts, it’s easy to forget the flight controllers and their support teams monitoring, guiding and approving every stage of a manned space flight.

Flight Director Kranz (second from right) in the MOCR

For the critical lunar landing phase of Apollo-11, the Mission Operations Control Room (MOCR), better known as Mission Control in Houston, was staffed by the White Team of flight controllers, under Flight Director, Mr. Eugene Kranz, usually known as Gene. The space specialists now filling roles that did not even exist outside the pages of science fiction a decade ago, have an average age of just 26 years! Rookie astronaut Charles Duke served as CAPCOM, the direct contact with the astronauts.

CAPCOM Duke, with Apollo-8's Jim Lovell, the Apollo-11 backup commander, listening in

As the time for Apollo-11’s historic landing approached, every available audio outlet in Mission Control had a headset plugged into it, to listen to the spacecraft communications channel. Senior NASA officials and astronauts, including Alan Shepard and John Glenn, positioned themselves in the MOCR to be eyewitnesses to the fulfillment of President Kennedy’s bold challenge of 1961. The families of the crew were also present.

The Eagle Stoops to the Moon
The Descent Orbit Insertion (DOI) burn needed to land Eagle safely on the Moon, required a 30 second firing of the LM descent engine. All the telemetry data being received at Mission Control indicted that everything was going to plan, but the landing on the Moon’s surface was (aside from re-entry) the most dangerous part of the flight: within forty minutes, the Eagle and its crew would either “land, crash or abort”, determining the success of the mission.


At 102:33:05.01 GET (Ground Elapsed Time) Eagle fired its descent engine to commence the landing sequence. Unexpectedly, the burn placed the LM 4.6 miles further downrange than planned, resulting in the landing point being 4.6 miles beyond the designated ALS-2 site. It seems the cause of this discrepancy was some residual pressure in the tunnel connecting the CM and LM when the two craft undocked (the tunnel should have been in vacuum, but had not been fully decompressed). This pushed the spacecraft apart with more velocity than planned.

With the LM’s legs facing the flight path, the astronauts were essentially flying backwards and unable to see where they were going, although they could see landmarks passing by and knew where they were as they descended towards the Moon’s surface. 

Problems Arise
As the LM’s altitude decreased, the on-board radar data was critical for evaluation and comparison with altitude data from the tracking stations on Earth. But a potential electrical problem with the radar was just one of an increasing number of problems that began to arise as the LM dropped towards the lunar surface. Communications difficulties with Mission Control meant that Col. Collins in Columbia had to relay some messages between Houston and Eagle.

Nevertheless, when Flight Director Kranz polled his team, they were all prepared to give the “Go!” for powered descent. Guidance Officer Steve Bales had the only reservations, noting that the spacecraft was moving a little faster than planned. As a result, Eagle was going to land further downrange than planned, in what was expected to be a rockier area.

Abort?
At 102:38:22 GET the astronauts received a 1202 alarm, which meant their computer was overloaded by irrelevant data from the rendezvous radar (which should have been switched off) and couldn’t do all the tasks in the time available. Would the landing have to be aborted?

The backroom boys supporting Mission Control. They realised the alarms were minor issues

With the lives of Commander Armstrong and Col. Aldrin – and the success of the entire mission – in their hands, Guidance Officer Bales and his support team fortunately recognised the issue immediately and were able to give assurance that the computer would perform, nevertheless, and landing could proceed. When a similar 1201 alarm sounded, with Eagle just 2,000 ft above the lunar surface, they once again gave a positive response for the landing to continue.

Heading for Touchdown
With four minutes until touchdown, communications between the LM and Earth finally strengthened and stablised. Another rollcall of the flight controllers gave the landing the “Go!” to proceed.

At 9,000 ft, the LM began to drop its legs to point down to the Moon’s surface. Mission Commander Armstrong was trained to land the LM, controlling the spacecraft’s flight while looking out the window at the landing site. Col. Aldrin’s role was to concentrate on the display panel and provide Armstrong with the information he needed as he guided the Eagle safely down to the lunar surface. At this point, the flight control team back on Earth could do no more for the landing: everything now depended on the skill and teamwork of Armstrong and Aldrin.

Commander Armstrong flying the LM to touchdown in a training simulation

As an experienced test pilot, Neil Armstrong chose to fly the final landing phase (about the last ¾ of a mile to the touch down spot from a thousand feet) manually, like flying a helicopter. This enabled him to exercise his judgement to fly beyond the intended landing position, when it became clear that “a gigantic crater and lots of very big rocks” made it a very unfavourable position to touch down.

Time is Running Out!
Extending his downrange flight, Mr. Armstrong searched for a more suitable landing site, but time and fuel were fast running out. At around 250 ft altitude, an amber light warned that only 5 per cent fuel remained – there were only 94 seconds left to land! Approaching 100 ft above the Moon’s surface, the downblast of the LM’s descent engine began to stir up the dust, making it difficult for Armstrong to gauge their velocity, or sight a safe place to land, by observing surface features.

View from the LM window about 30 seconds before touchdown, with the shadow of an LM leg and contact probe against the lunar surface

Finally, with just 10 seconds of fuel left, as Armstrong saw the shadow of the LM stretching in front of him, Col. Aldrin called “Contact light!”, indicating that one of Eagle’s landing leg probes had touched the lunar surface. So gently that the crew barely noticed it, the first manned spacecraft from Earth touched down on the surface of the Moon! It was 102:45:40 GET, 15:17CDT on 20 July in the United States. (For us on the east coast of Australia, it was 6.17am on a cold winter’s morning!)

“The Eagle has Landed!”
Inside the Eagle, Mr. Armstrong and Col. Aldrin apparently looked across at each other and silently shook their space-gloved hands, celebrating the success of their flight in reaching the Moon’s surface. But as historic as that safe landing was, the astronauts had to immediately prepare the LM for a sudden abort ascent in the event the landing had damaged the Eagle, or some other emergency arose.

Eagle's shadow on the Moon's surface following the landing. This view was taken after the Moonwalk and the astronaut's bootprints can be seen on the surface

“Houston, Tranquility Base here. The Eagle has landed!” Apollo-11 Commander Armstrong announced proudly to Mission Control and the world, as soon as he was sure that Eagle had touched down safely. Since the descent stage of the LM will remain on the Moon (and presumably be designated as a historic monument in the future), it was an appropriate gesture to identify its landing site as Tranquility Base – Earth’s first outpost on another world.

In Mission Control, the flight controllers briefly celebrated, before Flight Director Kranz called for a “Stay/No Stay” decision from his team just one minute after landing. There were abort points at three and twelve minutes after landing – after that, the astronauts would have to wait for Columbia to go around the Moon again. At each decision point, flight controllers approved Eagle to stay on the lunar surface.

The Loneliest Man
While Eagle’s crew on the Moon were in constant communication with Mission Control, CMP Collins was orbiting the Moon, relying on events being relayed to him so that he knew what was happening. After forty minutes of complete isolation behind the Moon on each orbit, he could talk and listen to the Earth for seventy minutes, through either the Goldstone or Tidbinbilla DSN stations. However, he only had about eight minutes in direct contact with Eagle each time his orbit passed over Tranquility Base. Fortunately, Columbia was in the contact zone when Eagle was landing, so that he could hear the verbal exchanges of the touchdown, but his general communication isolation from the Earth, and from his crewmates, earned Mike Collins the nickname “the Loneliest Man”.

Where Did They Land?
Each time he passed over the Sea of Tranquility, Collins scanned the lunar surface for signs of the LM, hoping to spot the spacecraft (he never did) and any landmarks that would assist in identifying Eagle’s actual landing site: since Commander Armstrong had taken the LM further downrange than planned in search of a safe landing site, its exact position on the lunar surface was uncertain.
Annotated NASA image showing Collins' attempts to sight the Eagle's landing site. Very close, but no cigar!

Using huge lunar maps and data from the spacecraft and tracking stations, the Mapping Sciences Laboratory in Houston had narrowed the landing site down to a 5-mile radius, but Eagle’s crew could not identify anything of significance from their position. It wasn’t until Apollo-11 was halfway back to Earth that a chance remark by Mr. Armstrong finally helped the mappers to pinpoint the location of the landing site!

Going for a (Moon) Walk
Apollo-11’s flight plan called for a four-hour rest period after touching down on the Moon. However, as everything had gone according to schedule, the astronauts were eager to take their first steps on the lunar surface before their rest period. Two hours after landing, Armstrong requested Mission Control’s approval to postpone the scheduled sleep period and go out on the lunar surface straight away.


Mission Control concurred, and Armstrong and Aldrin began to carefully don their lunar Extravehicular Activity (EVA) spacesuits. In the cramped space of the LM’s cabin, surrounded by vulnerable switches and instrument panels, this took considerably longer than the expected preparation time of about two hours. Every move in the donning process had to be meticulously carried out and checked, ultimately taking around 3½ hours for the crew to be fully suited up and ready for Mankind’s historic first steps onto the Moon.

Preparing for the Moonwalk Broadcast
Like me, I’m sure you will be surprised to learn that NASA originally intended to provide only radio coverage of Apollo-11’s history-making first steps on the Moon! It was not until early this year that the decision was finally made to include television coverage of the lunar EVA! However, as a contingency, Westinghouse (which produced the colour television camera used in the Apollo 10 and 11 Command Modules) had been contracted to develop a compact television camera that could be used on the lunar surface. This slow-scan black and white camera has a vertical resolution of 320 lines scanned at 10 frames per second, designed to work with the small transmission bandwidth available from the LM on the Moon, which was not sufficient for a standard TV signal.


The Westinghouse Apollo-11 Lunar Surface Camera was initially mounted in the Modular Equipment Stowage Assembly (MESA), in the LM Descent Stage, positioned so that it could see the astronauts descending the ladder to step onto the lunar surface. Because of its design, and the limited space available within the MESA, the camera had to be mounted upside down. This meant that the transmitted view of Mission Commander Armstrong coming down the ladder was upside down, and a special switch had to be activated at the reception station on Earth to invert the image to the right way up. This step was not necessary when the camera was removed from the MESA and set up on the Moon’s surface itself to cover the activities of the lunar EVA.

On the Apollo-11 flight plan, the lunar EVA was scheduled so that the television transmission would be received at the Goldstone DSN station, where the 210 ft “Mars” antenna would provide maximum reception capability of the relatively weak television signal. However, should the Moonwalk should occur when Goldstone was unable to receive the television signals, NASA contracted the 210 ft Parkes Radio Telescope in Australia to act as a back-up to receive the astronaut telemetry and television broadcast from the Moon. As events transpired, it was fortunate that this arrangement was in place! The "Mars" DSN antenna at Goldstone, so called because it was developed to support space probes to Mars

Live from the Moon (via Australia)!
When Neil Armstrong finally backed gingerly out of the narrow LM hatch in his bulky spacesuit, he pulled a small ring to activate the television camera in the MESA. At 109:22:00 GET, the first television from the surface of the Moon was received at Goldstone. In Australia, where the Moon was just rising into their field of view, Honeysuckle Creek MSFN station (which was tracking the LM) and the Parkes Radio Telescope could also see the television transmission. 

The Honeysuckle Creek antenna, near Canberra, tracking Eagle on the Moon just as Armstrong stepped onto the surface

Although the picture quality received at Goldstone was good, the vision sent to Houston was extremely contrasty, due to incorrect settings on the scan converter that turned the slow-scan signal into one suitable for regular television broadcast. It was also initially upside down, as the camera operator forgot to flick the inversion switch. The images received at Honeysuckle Creek, though of lower resolution due to its smaller antenna, were clearer than Parkes, where the signal strength was very low. After a few moments switching between signals for the best picture, the broadcast controllers at Houston settled on the signals from Honeysuckle Creek for the initial global television transmission of Armstrong coming down the ladder and stepping onto the Moon’s surface.

About nine minutes later, when the Moon had risen high enough at Parkes to provide a much stronger signal, the quality of its images led the broadcast controllers to switch to the Parkes feed. This was used for the rest of the two-and-a-half-hour broadcast from the lunar surface.

The combined Australian and NASA team at Parkes were so dedicated to ensuring that the historic lunar television broadcast was made available to the world, that they kept the radio telescope in operation and stayed at their posts, even when a violent storm arose with windspeeds well in excess of the safe operating limit of the antenna.

“One Small Step for Man”
Moving carefully down the ladder on the leg of the LM, testing every phase of the descent to the surface, Mission Commander Neil Armstrong halted momentarily on the Eagle’s footpad to describe the lunar surface. At 109:24:15 GET, 21:56 CDT July 20 he then took Mankind’s first step onto another world, saying “That’s one small step for Man. One giant leap for Mankind”.

Armstrong about to take the First Step, as seen on the monitor at Honeysuckle Creek.

Armstrong had not shared with anyone what he planned to say as he stepped onto the Moon, and while his first words on the lunar surface will undoubtedly resound through history, they are, in fact, something of a non-sequitur. There’s already speculation that he may have slightly flubbed his intended line – understandable due to the stress and tension of the circumstances – and that he really meant to say “That’s one small step for a man (meaning himself). One giant leap for Mankind", which would be more logical (and indeed, later in the flight, Aldrin quoted Armstrong's utterance with the "a" included).

That First Step was watched around the world by an estimated 650 million viewers, potentially making it the most viewed television event in history (unless 700 million really did watch the Our World broadcast in 1967!). Millions more listened-in on the radio. There are estimates that 93% of televisions in the US were tuned the broadcast.

To watch the historic event, people gathered around television screens at home, or wherever they could find them. In Australia, where television ownership is still relatively low, crowds gathered around the shopfronts of any building displaying a television, like the bank shown below, since the Moonwalk occurred around lunchtime. School children spent the day in front of sets in the classroom or assembly hall. Seasoned newsmen around the world, like your famous Walter Cronkite, struggled to convey their emotions as the ancient dream of touching the Moon was realised in Armstrong's "small step".

On the Surface of the Moon
After ensuring that the Moon’s surface could bear his weight, Armstrong moved around a little, collecting a contingency sample of lunar soil – more correctly called regolith – and a couple of small rocks, in case he had to make a quick retreat to the LM. He also took a series of photographs. At least there would be something for the scientists if Eagle had to make an emergency departure! On the other side of the Moon at the time, Col. Collins was disappointed to miss the historic moment of Armstrong’s first step.


Sixteen minutes later, Col. Aldrin began backing cautiously out of Eagle’s hatch to join Armstrong, making a joke about not locking them out of the LM. On reaching the surface, an awestruck Aldrin described the vista before him as “magnificent desolation”.

As they inspected their spacecraft and their surroundings, both astronauts found their suits comfortable to walk around in, although they found it difficult to stand up again after bending down to pick up an object. 

Ceremonial Activities
As a momentous historic event, the Moonwalk included several ceremonial activities, commencing with the unveiling of a small commemorative plaque, marking the place that humans first landed on the Moon, that was attached to between the third and fourth rungs of the LM ladder. At 109:52:19 GET, the two astronauts gathered around the Eagle’s ladder and ‘unveiled’ this plaque by removing its cover. Armstrong then read the inscription aloud for everyone back on Earth.

Armstrong reading the plaque, with Aldrin beside him. You can almost see the astronauts' faces!

After this moving moment, Mr. Armstrong and Col. Aldrin removed the television camera from the MESA and set it up on a stand, so that it could view their field of operations as they went about performing the real work of their mission.

Although not listed on their procedure checklist, the astronauts' next ceremonial task was setting up a US flag, just as the polar explorers of the past have done on reaching their goals. Since the United Nations’ Outer Space Treaty, established in 1967, prohibits any nation on Earth from claiming ownership of the Moon, the US Government has been very careful to state that the flag-planting is purely symbolic, recognising the United States as the first country to land on the Moon, but not representing territorial claim.

The astronauts found it difficult to insert the flagpole into the lunar surface and had trouble extending the arm designed to stretch out the flag to its full extent on the airless lunar surface. However, this worked to good effect, creating the impression that the flag was actually waving in a breeze.

Aldrin poses with the "waving" flag

When the astronauts planted the flag on the Moon's surface, an identical flag was raised in the MOCR.

As a symbolic act of international representation, a silicon disc about the size of a 50-cent piece was placed on the Moon's surface. It contains goodwill messages in the form of statements from leaders of 73 countries around the world, although the USSR and the People's Republic of China are not included.

A final symbolic event took place a little while later, at 110:16:30 GET, when President Richard Nixon made the first interplanetary phone call from the Oval Office in the White House directly to the astronauts on the Moon. Armstrong and Aldrin stood before the television camera to receive the call, so it could be telecast as a split-screen, showing both the astronauts and President Nixon in conversation. The President praised the astronauts for their historic achievement, adding “Because of what you have done, the heavens have become a part of Man’s world… For one priceless moment in the whole history of Man, all the people on this Earth are truly one.”

Down to Work
After the ceremonial activities, the real work of the Apollo-11 astronauts began. Aldrin conducted experiments to determine the extent of an astronaut’s mobility, attempting to run and hop like a kangaroo. He also took a core tube sample of the regolith, although he was not able to drive a core tube far into the surface.

Two more images destined to become iconic, I'm sure. Aldrin on the lunar surface, and a close-up of the impression his boot is making in the regolith!

Mr. Armstrong carried out geological observations and collected bulk samples of rock and regolith. He took a large number of photographs of the lunar surface, from close-ups of rock structures and regolith to panoramas and views of craters.

Because Armstrong was usually carrying the camera, the majority of Apollo-11 photographs of an astronaut on the lunar surface show Col. Aldrin. The picture above is one of the rare images – as distinct from television coverage or film – of Armstrong on the lunar surface.

Col. Aldrin set out the EASEP (Early Apollo Scientific Experiments Package), the first set of scientific instruments to be placed on the Moon. EASEP instruments include: a seismic detector to measure Moonquake activity, a laser reflector that can be targetted from Earth to precisely measure the distance between our planet and its satellite; a solar wind particle collector; and even a tiny detector to measure the characteristics of lunar dust. Tracking stations on Earth are now collecting data from these instruments to continually monitor conditions around the landing site, even though the astronauts have departed (bringing the solar wind collector sheet back with them to Earth for analysis). 

Aldrin setting up the EASEP seismic detector

The solar wind particle collector

The lunar laser ranging experiment for making precise measurements of the distance between the Earth and the Moon

Back to the LM
After 2 hours 31 minutes and 40 seconds, Neil Armstrong and “Buzz” Aldrin concluded their activities on the surface of the Moon, loading back into the LM some 47lbs of lunar rocks and regolith. They had taken 339 images of the lunar surface and their activities, and walked a total of 1100 yds, travelling a maximum of 67 yds from the LM. The extent of the Apollo-11 lunar excursions could be contained within a football field, but from this small beginning future missions will expand the range of their activities, exploring further away from the LM.


Back aboard Eagle, the astronauts’ first chore was to pressurise the cabin and begin stowing the rock boxes and film magazines. To allow for the weight of the lunar samples, the astronauts’ lunar overboots, life support backpacks, spacecraft trash, and any other gear no longer required, were jettisoned onto the Moon’s surface (proving that humans can leave litter anywhere!).


Elated but exhausted, Armstrong and Aldrin then took time to rest and get some sleep, Col. Aldrin curled up in the limited floor space of the LM, while Armstrong rigged up a sleeping place on the cover of the ascent engine. Neither of them slept well, though future lunar crews will have proper hammocks, I'm told.

After more than 21½ hours on the Moon, Mr. Armstrong and Col. Aldrin prepared their ship for lift off, firing their ascent engine just one minute behind the flight plan scheduled time at 124:22:01 GET. The blast from the engine appears to have knocked over the flagpole planted by the astronauts, but that didn’t dampen the crew’s spirits as the ascent engine worked as expected and set them on a trajectory to rendezvous with Col. Colins in Columbia

This article has been lengthy, but there has been so much to cover with such a historic mission. I'm going to pause at this triumphant moment in the story, and will continue with a final wrap-up later this month, when we will hopefully have even more information as the lunar samples are analysed and the Apollo-11 crew are released from isolation.






[July 18, 1969] The Greatest Adventure Lifts Off (Apollo-11, Part 1)

Two days ago, Apollo 11 blasted off from Cape Kennedy's Pad 39A, destination: Moon.  KGJ, our affiliated TV station, will be simulcasting CBS coverage of the landing and Moonwalk starting at noon, Pacific time, on July 20th, and going all day from then.

Please join us for this once-in-a-lifetime event!


by Kaye Dee

"Lift off. We have lift off”, Launch Control at Kennedy Space Centre (KSC) excitedly announced, as Apollo 11’s Saturn-V thundered off the pad just two days ago! While a Saturn-V liftoff is no longer a new occurrence at KSC, this launch was special. An astronaut crew is now on the way to fulfill the millenium-old human dream of reaching the surface of the Moon!

Describing Apollo 11 as Mankind’s “greatest adventure” has already become hackneyed and overused. And yet, I didn’t really feel that I could give this article today any other title – because the attempt to land the first astronauts on the Moon is an incredible adventure: some commentators are calling it the greatest human adventure since our hominid ancestors ventured out of Africa to explore the world. Is that hyperbole? Perhaps. But it is a daring exploit to venture out from our home planet, across a totally inimical environment, and actually set foot on another world for the first time.


This mission is exciting, complex and – yes – dangerous, so to follow it all, I’m once again going to divide my coverage of it into two parts, beginning today with some background for the mission and its launch. The second part will follow, after the astronauts’ (hopefully) successful return to Earth.

Where to Land?
Operational and engineering considerations have played the major role in dictating where the first astronauts will land on the Moon. Over the last two years, intense analysis has gradually winnowed down some thirty possible landing sites originally suggested based on Lunar Orbiter images and Surveyor lander data and more recent close-up imagery from Apollo-8 and 10.

Several constraint parameters have determined the Apollo-11 landing site and its backup landing locations. The Moon has a peculiar lighting characteristic, in that it reflects the light from the Sun directly back into your face, and it was a concern to the astronauts that they might be dazzled by this reflected light while trying to land. To avoid this, they wanted to have the Sun only about 10 degrees above the horizon, meaning that the Lunar Module (LM) must fly in from the east with the Sun behind it, to land shortly after sunrise, when surface objects cast revealing shadows to identify possible hazards around the landing site.


This trajectory for landing means that the landing site had to be east of the lunar meridian, so that if the launch was delayed for a few days, back-up sites would still have suitable lighting.  NASA wanted the site to be within 5° of the lunar equator, as a higher latitude site would consume more fuel, and fuel economy is an important consideration for this first landing attempt. Finally, mission planners wanted a relatively flat landing site for the initial landing, free from sharp ridges, large boulders or steep sided craters.


A “Water Landing” on a Dry World
These constraints required the location for the first manned lunar landing to be a “mare” region (those areas thought by ancient sky-gazers to be lunar seas) near the Moon’s equator, with the choice settling on the Mare Tranquillitatis (Sea of Tranquility). This area provided two possible landing targets designated ALS (Apollo Landing Site)-1 and ALS-2.

Map showing the final five prospective landing sites for Apollo-11. Site 2 is the selected location for the landing attempt

The selected site, ALS-2, is only 25 kilometres southeast of the Surveyor-5 landing site, and when Apollo 10 made a low pass over the spot it received a favourable report from Commander Tom Stafford. 

Apollo-10 view of the Apollo-11 landing site

ALS-2 would also allow a two-day recycle in the case of a delay, to the next back-up site in Sinus Medii. Last, but not least, the choice of ALS-2 has made the scientists happy, since it will provide them data from a typical mare site.

A Crew to Make History
For the astronauts of Apollo-11, becoming the crew that would make the historic first lunar landing attempt has been a matter of luck and crew rotation, rather than deliberate selection. As the back-up crew for Apollo-8, Neil Armstrong and Edwin Aldrin were automatically rotated into the prime crew for Apollo-11. The third member of that back-up team, Fred Haise, was replaced by Michel Collins, following his return to flight status after surgery for a bone spur in his neck. (Haise has now been switched to the Apollo 14 crew).

L. R. Neil Armstrong, Michael Collins and Edwin "Buzz" Aldrin

We already know that Apollo-10 was a brief contender to make the first landing attempt, while had that mission failed to achieve all its “rehearsal” objectives, Apollo-11 would now be repeating its flight plan. In that case, Apollo-12 would have become the first landing attempt – and should Apollo-11 fail to achieve its landing objective, Apollo-12 may yet become the first Moon landing mission.

While perhaps not “hand-picked” for the job, the current Apollo-11 crew, formally announced on 9 January this year, are certainly up to the task of ensuring the success of this history-making spaceflight!

Apollo-11 crew portrait at the announcement of their selection

Spaceflight Veterans
Each member of the Apollo-11 crew is a veteran of one previous space mission, so we have met them before in the annals of the Journey.

Mission Commander Mr. Neil Armstrong, 38, was the Command Pilot of the Gemini-8 mission, which experienced NASA’s first in-flight emergency. He safely rescued that mission by drawing on his extensive test flight experience. As a civilian, Mr. Armstrong earns $US22,500 a year from NASA, making him the most highly paid of all the astronauts.

A lovely portrait of the Apollo-11 crew with their wives and children, from Life magazine

USAF Colonel Edwin Aldrin, 39, known to his family as “Buzz” and to his astronaut colleagues as Dr. Rendezvous, is the designated Lunar Module Pilot (LMP). Col. Aldrin was the Pilot of Gemini-12, performing three successful spacewalks. If the onboard radar fails, this is a man who can manually complete the rendezvous using a sextant and a slide rule!

Also a Colonel in the US Air Force, Michael Collins is the Command Module Pilot (CMP) for this mission. His first spaceflight was Gemini-10, for which he was the Pilot, performing both a “stand-up” EVA (standing in the hatch of the spacecraft) and a partially-successful spacewalk.

Who’s First Out the Hatch?
At the very first press conference for the Apollo 11 crew in January, on the assumption that it would be the first landing mission, a reporter raised the question of who would be the first astronaut to step onto the Moon. Early mission flight plans and timelines noted that the LM Pilot would step out first, and this scenario was consistent with the practice on the Gemini missions, where the Pilot would make the Extravehicular Activities (EVAs), rather than the Command Pilot.

Fish-eye view of astronauts Aldrin and Armstrong as they train in a mock-up lunar module

However, in April it was announced that Mr. Armstrong, as mission commander, would be the first to step onto the lunar surface. Col. Aldrin, apparently expecting to be first out of the hatch, is rumoured to have been put out by this, especially when there were some stories flying around that he had been sidelined in favour of Armstrong because the commander was a civilian. Aldrin is said to have felt this to be a slight to the military.

A Quiet Hero
There is an official NASA rationale for the decision that Mr. Armstrong should be the first person to exit the LM and step onto the lunar surface: the interior design of the Lunar Module and the physical locations of the two astronauts inside the cabin makes it more practical for Armstrong to be the first one out. As LMP, Col. Aldrin will stand on the right side of the LM, while Mr. Armstrong, on the left, will be closest to the hatch opening.

Diagram of a forward view of the LM, showing the Commander's station the let and the LMP station to the right. It would have been difficult for Armstrong and Aldrin to swap places in this very cramped interior

I have heard through the grapevine at the Honeysuckle Creek Tracking Station that senior NASA managers decided unanimously in March that they wanted Mr. Armstrong to be the First Man on the Moon, because they felt that the first human to set foot on another world should be someone like the pioneering aviator Charles Lindbergh – a calm and quiet person. Armstrong fitted this mould as “the example of the great American hero – calm, quiet, softly spoken, with absolute confidence and with no ego”.

Charles Lindbergh and Neil Armstrong – seen by NASA managers as two men in the same quietly heroic mould. There is certainly something similar in their facial expressions

Flight Operations Director Deke Slayton is also said to have felt that, as Commander, it was a matter of protocol that Mr. Armstrong should be first out the hatch, especially as he was senior to Col. Aldrin, having joined the astronaut corps in Group Two, while Aldrin entered in Group Three.

But whatever the reasoning, as long as the landing on the lunar surface is a success, Neil Armstrong looks set to become the astronaut whose name will reverberate through history as the First Man on Moon in just a few days’ time.

Symbolic Callsigns
As was the case with Apollo-9 and 10, Apollo-11 requires separate callsigns for the Command and Lunar Modules when they are operating independently at the Moon. Given the globally significant nature of this flight, and its symbolic role in winning the Space Race for the United States by landing the first astronauts on the lunar surface ahead of the USSR, the crew, according to Mr. Armstrong, were inundated with suggestions for the names of their spacecraft.

NASA Public Affairs wanted the Apollo-11 crew to be “less flippant” in selecting their spacecraft names following the more light-hearted choices of the Apollo-9 and 10 crews. While I’ve heard that the names Snowcone (CM) and Haystack (LM) were referred to early in mission planning, ultimately the Apollo-11 astronauts selected the names Columbia (for the CM) and Eagle (for the LM) as being suitably representative of the historic nature of the mission.

1915 US coin depicting Columbia and the American eagle

Columbia (a feminine form derived from the name of Christopher Columbus) is the traditional female personification of the United States. This name is also a nod to Jules Verne’s spacecraft “Columbiad” (from the 1865 novel From the Earth to the Moon), which was the name the Apollo-8 crew wanted to use for their historic Command Module.

The obverse of the Great Seal of the United States depicts a bald eagle carrying both an olive branch and a bundle of arrows in its claws, symbolising war and peace

The bald eagle is, of course, the symbolic bird of the United States, depicted on the Great Seal of the United States and the National Coat of Arms. It also appears on the seal of the US Department of the Air Force – and Col. Aldrin and Col. Collins are both USAF officers.

And a Symbolic Mission Patch
The association of the eagle with the United States is a motif that also occurs in the design of the Apollo-11 mission patch. In fact, the deciding factor in selecting the name “Eagle” for the Lunar Module was the patch design already under development, that depicted an American bald eagle landing on the Moon.


Mr. Armstrong’s backup, Captain Jim Lovell, is credited with originally suggesting the symbol of an eagle on the mission patch.

Some early sketches for an Apollo 11 patch were prepared by Allen Stevens of Rockwell International, who has been involved with the development of several Apollo mission patches, but Astronaut Collins seems to have had a major role in the final design.

Allen Stevens early designs for the Apollo-11 patch incorporated the names of the crew and the Roman numeral XI

Col. Collins found a depiction of a bald eagle in a National Geographic book on birds that he considered ideal – the eagle with its wings partially folded, swooping down with its talons extended.(left) A beautiful eagle painting by National Geographic Society staff artist Walter A Weber, first published in the July 1950 issue of National Geographic magazine, was re-used and re-oriented (below) for the book that inspired Michael Collins

Tracing the picture, Collins then sketched in the Moon’s surface to give the impression that the eagle was landing, and included an image of the Earth in space in the background above the eagle’s right wing. In the final patch design, the eastern seaboard of the United States and parts of the northern portion of South America are visible on the globe, with a scattering of white clouds over the blue oceans.

As the design evolved, the crew decided on a departure from previous patch designs, leaving off their own names so that the patch could be said to represent all the people involved in the mission, not just the astronauts. Since Armstrong felt that the Arabic number ‘11’ would be more easily understood around the world, the use of the Roman numeral, or Collins’ suggestion of writing out “eleven” were both dropped as design elements.

An interim step towards the final mission patch design

Images and Impressions Matter
NASA simulator instructor Tom Wilson suggested that the eagle carry an olive branch, as a symbol of the United States’ peaceful intentions in landing on the Moon.

The olive branch was added to the design, depicted as being carried in the eagle’s beak. To round out their design, the three astronauts selected a naturalistic black for the sky, with blue and gold edging around the around the outside of the circular patch.

NASA illustrator James Cooper produced the finished artwork for this design. However, when the crew submitted it for approval, it was rejected on the basis that the eagle’s powerful talons, extended stiffly below it, were "too warlike", and might give a wrong impression in our Cold War environment, where propaganda imagery matters.

Recalling that in the Great Seal, the eagle carries an olive branch in one set of talons, the olive branch was switched from the beak to the eagle’s claws. Although Col. Collins expressed the thought that “the bird looked a little uncomfortable” depicted in this way, the design was approved and became the official mission patch.

Artist James Cooper hands over the finsihed version of the final artwork for the Apollo 11 patch to Astronaut Collins

Tracking Apollo to the Moon
For the previous Apollo missions, I hadn’t written in any detail about the worldwide NASA tracking network that will be following every second of Apollo-11’s voyage to the Moon and back. Time to fix that, as none of the lunar missions would have been possible without it.

NASA’s global Manned Space Flight Network (MSFN) will be constantly monitoring the flight, using the resources of 17 stations, 4 ships and the 8 aircraft that form the Apollo Range Instrumented Aircraft (ARIA) fleet.

Map showing the MSFN deployment for Apollo-11's Trans Lunar Injection. The irregular circles mark the reception areas of each tracking station, ship or aircraft

Three MSFN stations – at Goldstone in California, Honeysuckle Creek, near Canberra, Australia, and Fresnedillas, near Madrid, Spain – were specifically constructed to support the Apollo missions, being deliberately sited close to existing stations in NASA’s Deep Space Network (DSN) so that the two networks could work together for lunar operations.

The MSFN tracking station at Goldstone, California

Working Together
The DSN facilities at Goldstone, Canberra and Madrid (which have similar 85ft dishes to those used by the MSFN), will be shadowing the MSFN stations to provide back-up, as well as complementing spacecraft communications at the Moon. During the period when the Columbia and Eagle will be operating independently – with the CM in lunar orbit, while the LM transports Armstrong and Aldrin to the lunar surface and back and during their surface activities – the DSN facility will support tracking and communication with one spacecraft while the MSFN station supports the other.

The "Pioneer" DSN antenna at Goldstone, with its "Apollo Wing", housing the equipment added to support Apollo missions

In addition, for the planned live television broadcast from the lunar surface during the LM crew’s historic first Moonwalk, the new 210ft antenna at Goldstone is anticipated to be the prime receiving station for the signals from the Moon, with the Parkes Radio Telescope in Australia providing back-up. I’ve mentioned the Parkes telescope previously, in conjunction with the Our World global satellite television broadcast, but what is not generally known is that the design of this 210ft radio telescope was, in fact, the prototype on which the new 210ft dishes of the DSN are based.

The Parkes Radio Telescope, photographed on the evening of Apollo 11's launch

The new "Mars" 210ft antenna at Goldstone

A Tough Training Schedule
It’s hard to believe today that when Alan Shepard made the first Mercury spaceflight, he had only conducted 150 hours of mission simulations. Given the critical nature of the Apollo-11 flight, Armstrong, Aldrin and Collins worked 14-hour days, 6 days a week for a full 6 months before the mission. They each spent over 1,200 hours in simulators wrestling with a continuous stream of missions, frequently peppered with emergencies, equipment malfunctions, and potential catastrophes to test their knowledge, skill, and coolness to the limits.

Armstrong and Aldrin practicing their lunar surface activities

CMP Collins concentrates during a session in the LM simulator

Col. Aldrin during survival training at the U.S. Air Force Air Defense Command Life Support School in Texas

It's well-known that Mr. Armstrong has demonstrated his coolness in emergency situations. Not only did he successfully bring the stricken Gemini-8 safely back to Earth, in May last year, he survived the crash of a Lunar Landing Research Vehicle and shortly afterwards was back at work in his office at the Manned Spacecraft Centre as if his narrow escape had not occurred!

Scientist-Astronaut Dr. Harrison “Jack” Schmitt, a professional geologist, also worked extensively with the Apollo-11 crew, preparing them for lunar rock collecting. After such thorough preparation, the astronauts surely know every twist and turn of the normal and emergency operational procedures, as well as every capricious component of the spacecraft’s 26 subsystems.

Mr. Armstrong and Col. Aldrin on a geology field trip at Sierra Blanca, Texas

Bringing It All Together
Apollo-11’s Lunar Module, LM-5 and its Command and Service Modules, CSM-107, arrived at Kennedy Space Centre in January. LM-5 has several differences from Apollo 10's Lunar Module, customising it for an actual landing on the Moon. These include: a VHF radio antenna to facilitate communication with the astronauts during their time on the lunar surface; a lighter ascent engine and more thermal protection on the landing gear. The LM is also carrying a scientific instrument package – the Early Apollo Scientific Experiments Package (EASEP), which will be deployed on the Moon.

LM-5 being checked out at KSC prior to being installed for launch in in the Saturn-V

Apollo-11’s Saturn-V vehicle, AS-506, was rolled out of the Vehicle Assembly Building on 20 May, and transported to Launch Pad 39A while Apollo 10 was still on its way to the Moon. A countdown test was conducted between 26 June and 2 July, which went extremely smoothly, without any major issues – hopefully a good omen for the entire mission.

The Apollo-11 launch vehicle arrives at Pad 39A, in preparation for the historic flight

Avoiding Any Infections
To prevent the crew from picking up any infections that might lead to illnesses causing delays to the mission, since a brief visit home with their families (whom they will not see up close again after their release from quarantine in August if all goes to plan) for the Fourth of July holiday, the astronauts have been kept carefully isolated from all un-necessary contacts.

A dinner with the crew, proposed by President Nixon for the night before launch, was cancelled, while at their last press conference before the launch, Mr. Armstrong and Colonels Aldrin and Collins were stragetically placed on a platform so that air flowed from behind them towards the assembled press corps, in hope that this would keep any germs from the audience reaching the astronauts!

The Apollo-11 crew at their final press conference, hoping to avoid any germs!

At their final medical checks, all three astronauts were pronounced fit and ready for flight – so one assumes that the precautions worked as intended. 

Pre-flight Preparations
The final preparations for Apollo-11’s launch continued the now established pattern for Apollo missions, with an early morning wake-up for the crew, the traditional pre-flight breakfast of steak and eggs with Flight Operations Director Deke Slayton and the backup crew, followed by the ritual of suiting up. A small folding shovel with plastic sample bags were placed in the special pocket of Mr. Armstrong’s spacesuit, to be used should the astronauts’ stay on the Moon be cut short for any reason: at least they would return to Earth with a few lunar soil samples.

L. The Apollo-11 crew enjoy their traditional pre-flight breakfast; R. Suited and ready for space, the astronauts enter their transfer van for the ride to the launch pad

When the crew arrived at Pad 39A, the White Room crew chief, Guenter Wendt, greeted them holding a 4ft long "key to the Moon", which he presented to Neil Armstrong. Mr. Armstrong in turn gave Wendt a card reading, “Space Taxi ticket, good between any two planets.”

At three minutes and twenty seconds before launch, the countdown became automated, and over 450 personnel at the consoles in Launch Control Firing Room 1 turned their eyes to watching that very special Saturn-v leave the tower and soar into the sky.


A Million Spectators?
The Cocoa Beach Chamber of Commerce estimated that perhaps one million spectators would gather to watch the launch of Apollo-11 from the highways, beaches and waterways within the vicinity of Kennedy Space Centre. CBS news later reported that the number was closer to 300,000; local motel owners, charging rates as high as $65 a night, were reportedly disappointed. Nevertheless, the essentially uncountable number was still the highest ever to attend a space launch.

A crowd of spectators in Titusville, near KSC, ready to watch the launch

These spectators included a group from the American Poor People's Campaign demonstrating against the expenditure on space exploration, when people are going hungry in the United States. The Campaign director, Mr Hosea Williams, said the demonstration included hungry people from five southern States. “We're not against things like the space shot” he said, explaining the reason for their protest. "But there's been a miscalculation in priorities". NASA Administrator Paine agreed to host protesters as spectators at the launch. Awestruck, by the powerful spectacle of the rocket's launch, they prayed for the astronauts, despite protesting the mission itself.

Although President Nixon decided to watch the launch on television in the White House, Vice President Agnew and former president Johnson and his wife were among the VIP guests at the launch site. Other dignitaries at the launch included the Chief of Staff of the United States Army, four members of the Cabinet, 19 state governors, 40 mayors, 60 ambassadors and 200 congressional representatives. There were approximately 3,500 press, radio and television representatives: while the majority were from the United States, 55 other countries were also represented in the media contingent.

President and Mrs. Johnson, with Vice President Agnew, were among the VIPS watching the launch from Kennedy Space Centre, along with a huge press corps.

It is estimated that 25 million people tuned in to watch the launch in the US, while thanks to satellite communications, the lift-off was televised live in 33 countries, including Australia. Millions more around the world listened in to radio broadcasts of the launch.

Despite the late night timeslot of the launch here in Australia (11.32pm), thousands of households around the country stayed up to watch. Like many other parents, my sister and her husband roused their children from bed to join the viewing audience: they even sat their eight-month-old baby on the couch to watch. He may not remember it, but at least in the future he will be able to honestly say that he saw the launch of Apollo-11!

Lift off into History!
At last, on 16 July, at 9.32am EDT, Apollo-11 lifted off into history, rising slowly at first from the launch pad.  The three astronauts have reported that they were not aware of the moment of lift-off, but first felt a powerful thrust to their backs, accompanied by a distant rumble, sounding rather like a train. They were thrown left and right against their straps in spasmodic jerks as the 36 storey vehicle adjusted itself to wind effects, to keep on the planned course.


Within forty seconds the Saturn-V was travelling faster than the speed of sound, and the noise in the cabin dropped away. However, Commander Armstrong noted that those first 40 seconds of flight were uncomfortably noisy and rough, much worse than the Gemini Titan launches. He reported that he found it was hard to hear any voices in his earphones, even with his helmet on.

Twelve minutes into the flight, Apollo-11 entered a near-circular Earth orbit. Within 30 minutes, the astronauts were feeling so relaxed that they were playing with the onboard still and movie cameras as they plunged into the night over Tananarive. The powerful FPQ6 radar at the Carnarvon tracking station in Western Australia confirmed that Apollo-11 was in the planned parking orbit, and on the second orbit over Carnarvon, the Capcom at Houston gave the astronauts the “Go!” for the Trans-Lunar Injection (TLI) burn that would send Apollo-11 on the way to the Moon.

The FPQ6 radar at Carnarvon tracking station that confirmed Apllo-11's initial orbit. This MSFN station also relayed the TLI confirmation to the spacecraft

On the Way to the Moon

With the Apollo-11 crew now on their way to the Moon, I have no more photos from the mission to share, until they return to Earth with their film canisters hopefully filled with wonderful images from the flight.

To quickly summarise the activities since TLI, about 30 minutes post-TLI, Col. Collins performed the transposition, docking, and extraction manoeuvre, needed to free the LM for the voyage to the Moon. Since leaving Earth orbit, the Apollo-11 crew has quickly settled into routine. After the docking with the LM, they astronauts exchanged their bulky pressure suits for their more comfortable white Teflon jump suits and consumed a lunch of beef and potatoes, butterscotch pudding, and brownies washed down with grape punch.

The crew's first in-flight meal included beef and potatoes, made possible by the new thermostabilised wet pack container technique that is expanding the range of available meals for Apollo flights

During that first day in en route for the Moon, the astronauts said that the Moon didn’t seem to be getting bigger, although the Earth was visibly shrinking. At 11 hours and 20 minutes after launch, they settled down for a sleep period, about 2 hours early, made possible by the cancellation of a mid-course correction.

Television Tryout
Just before 23 hours into the flight, the crew’s second day in space began with a wake-up call from Houston. Then, at the 30 hour mark, there was a 50 minute trial television broadcast from the spacecraft using the omni-directional antennae, which was received at the Goldstone tracking station. This impromptu broadcast showed some spectacular colour views of the Earth, I'm told, and provided practice for the crew's first public television broadcast a few hours later. The astronauts also showed themselves “running” in their seats, while asking if the medical team was receiving their heartbeat data. Goldstone reported they could see the astronauts trying to run in their seats, and Capcom Charles Duke in Houston indicated that the medical telemetry was being received.

This marks the point at which I will have to complete this article to send it via telex to the Traveller, so we’ll pick up the second part of story of Apollo-11's great adventure once the mission has returned, hopefully safely and successfully from the Moon.

Just the Beginning
If Apollo-11 achieves all its mission goals, it will be just the first small step in the exploration of our local neighbourhood in space, the true beginning of our road to the stars. 

Neil Armstrong, who will soon become the first person to set foot on another world has said “I think we’re going to the Moon because it’s in the nature of the human being to face challenges. It’s by the nature of his deep inner soul…we’re required to do these things just as salmon swim upstream”. I think he’s right!






[October 28, 1967] Unveiling Venus – at Least a Little (Venera-4 and Mariner-5)



by Kaye Dee

Despite the hiatus in manned spaceflight missions while the Apollo-1 and Soyuz-1 accident investigations continue, October has been a very busy month for space activities – so much so that I’ve had to defer writing about some of this month’s events to an article next month!

Spaceflight Slowdown?

4 October saw the tenth anniversary of the launch of Sputnik-1, the Soviet satellite that surprised the world and ushered in the Space Age and the Space Race. Since that first launch, the pace of space exploration has been breathtaking, far surpassing what even its most ardent proponents in the 1950s anticipated.

In the famous Colliers’ “Man Will Conquer Space Soon” article series, reproduced even here in Australia, Dr Wernher von Braun predicted that the first manned mission to the Moon would not occur until the late 1970s

As part of the USSR’s Sputnik 10th anniversary celebrations, many space-focussed newspaper articles were published.  One of these, written by Voskhod-1 cosmonaut and engineer Dr. Konstantin Feoktistov, strongly hinted that Russia's next major space feat would be the launch of an orbiting space platform. This would certainly be an important development in establishing a permanent human presence in space and put the Soviet Union once again ahead in the Space Race, especially if the US and USSR lunar programmes are faltering.

Earlier this month, the head of the NASA, Mr James Webb, said it was increasingly doubtful that either the United States or the Soviet Union would land people on the Moon in this decade. He delivered a gloomy prognostication for the second decade of the Space Age, saying the entire US programme was “slowing down”. Mr. Webb criticised recent Congressional cuts of 10 per cent to the space-agency budget projected for the year ending next 30 June, saying that NASA was laying off over 100,000 people.

Administrator Webb also cast doubt on some proposed NASA planetary exploration missions. “The serious question is whether or not this country wants to start a Voyager mission to Mars in 1968”, he is reported to have said. The Voyager programme is a 10-year project that envisages sending two spacecraft to Mars (one to orbit around it, the other to land on its surface), with the additional possibility of landing a spacecraft on Venus and exploring Jupiter. These would undoubtedly be exciting missions that would reveal new knowledge about these planets, but Mr Webb said he had virtually no money for the Voyager programme as a result of the budget cut.

Parallel Planetary Probes: Venera-4 and Mariner-5

But possible future downturns in space activity can’t detract from this month’s big news: the safe arrival of two spacecraft at Venus!

Back in June, a suitable launch window meant that both the USSR and NASA sent spacecraft on their way to our closest planetary neighbour. First off the blocks was the Soviet Union, which launched its Venera-4 mission (generally known in the West as Venus-4) on 12 June from the Baikonur Cosmodrome in Kazakhstan. NASA’s Mariner-5 followed two days later, on 14 June, launched from Cape Kennedy.

Pre-launch photo of Venera-4

Venera-4 is the most recent Soviet attempt to reach the planet after Venera-2 and 3 failed to send back any data in March last year. There is some speculation that, since its previous Venus mission employed twin spacecraft, Russia may have also intended this Venus shot to be a two-spacecraft mission. It’s possible that the short-lived Cosmos 167 spacecraft, launched on 17 June, was Venera-4’s twin that failed to leave orbit, although with the secrecy that surrounds so much of the Soviet space program, who knows if we’ll ever get the truth of it? Venera-4 was itself first put into a parking orbit around the Earth before being launched in the direction of Venus. A course correction was performed on 29 July, to ensure that the probe would not miss its target.


Mariner-5 being prepared for launch

Mariner-5 is NASA’s first Venus probe since Mariner-2 in 1962. Originally constructed as a backup for the Mariner-4 Mars mission, that probe’s success meant that the spacecraft could be repurposed to take advantage of the 1967 Venus launch window. Interestingly, I understand from my friends at the Sydney Observatory that there were initial suggestions to send the Mariner back-up spacecraft to either comet 7P/Pons–Winnecke or comet 10P/Tempel, before the Venus mission was decided upon. While it’s useful to have additional data from Venus, it would have been fascinating to send an exploratory mission to a comet, since we know so little about these transient visitors to our skies. 

At its closest, Venus is just 36 million miles from Earth, but Mariner-5 followed a looping flightpath of 212 million miles, to enable it to fly past Venus at a distance of around 2,500 miles (about 10 times closer than Mariner-2’s flyby). Australia’s Deep Space Network (DSN) stations at Tidbinbilla, near Canberra, and Island Lagoon, near the Woomera Rocket Range, were respectively the prime and back-up monitoring and control stations for Mariner-5’s mid-course correction burn that placed it on its close flyby trajectory. 

Keys to Unlock a Mystery

Venus has always been a planet shrouded in mystery since its thick, cloudy atmosphere prevents any telescopic observation of its surface. For this year’s launch window, one could almost believe that Cold War tensions had been overcome and the USSR and USA had agreed to work together on a Venus exploration program, given that their two spacecraft effectively complement each other.

Venera-4’s mission was announced as “direct atmospheric studies”, with Western scientists speculating that this meant that it would follow Venera-3 in attempting to land on the planet’s surface. The spacecraft’s arrival at Venus has proved this speculation to be correct, and the few images of Venera-4 now available show the 2,436 lb spacecraft to be near-identical to Venera-3. 11 ft high, with its solar panels spanning 13 ft, Venera-4 carried a 1 metre (3 ft 3 in) spherical landing capsule that was released to descend through the atmosphere while the main spacecraft flew past Venus and provided a relay station for its signals.
Soviet models of the Venera-4 spacecraft and its descent capsule

The 844 lb descent capsule was equipped with a heat shield, capable of withstanding temperatures up to 11,000°C (19,800 °F) and had a rechargeable battery providing 100 minutes of power for the instruments and transmitter. During the flight to Venus the battery was kept charged by the solar panels of the carrier spacecraft. Supposedly, the entire Venera-4 probe was sterilised to prevent any biological contamination of Venus, but some Western scientists have cast doubt on this claim. The capsule was pressurized up to 25 atmospheres since the surface pressure on Venus was unknown until Venera-4’s arrival.
Picture of the Venera-4 descent capsule released by the USSR. Western scientists are wondering what that heat shield is made of

Information recently released by the Soviet Academy of Sciences has said that the descent vehicle carried two thermometers, a barometer, a radio altimeter, an atmospheric density gauge, 11 gas analysers, and two radio transmitters. Scientific instruments on the main body of the spacecraft included a magnetometer and charged particle traps, both for measuring Venus' magnetic field and the stellar wind on the way to Venus, an ultraviolet spectrometer to detect hydrogen and oxygen gases in Venus' atmosphere, and cosmic ray detectors.


Much smaller than Venera-4, the 5401b Mariner-5 was designed to flyby Venus taking scientific measurements: it was not equipped with a camera, as NASA considered this un-necessary in view of the planet’s cloud cover. NASA controllers initially planned a distant flyby of Venus, to avoid the possibility of an unsterilised spacecraft crashing into the planet, but the final close flyby was eventually chosen to improve the chances of detecting a magnetic field and any interaction with the solar wind.

As Mariner-4’s backup, Mariner-5 has the same basic body – an octagonal magnesium frame 50 in diagonally across and 18 in high. However, since it was heading to Venus instead of Mars, Mariner-5 had to be modified to cope with the conditions much closer to the Sun. Due to its trajectory, Mariner-5 needed to face away from the Sun to keep its high-gain antenna pointed at Earth. Its solar panels were therefore reversed to face aft, so they could remain pointed at the Sun. They were also reduced in size, since closer proximity to the Sun meant less solar cells were needed to generate the same level of power. Mariner-5's trajectory also required the high-gain antenna to be placed at a different angle and made moveable as part of the radio occultation experiment. A deployable sunshade on the aft of the spacecraft was used for thermal control, and Mariner-5 was fully attitude stabilized, using the sun and Canopus as references.
View from below showing the main components of Mariner-5

Mariner-5’s prime task was to determine the thickness of Venus’ atmosphere, investigate any potential magnetic field and refine the understanding of Venus’ gravity. Its suite of instruments included: an ultraviolet photometer, a two-frequency beacon receiver, a S-Band radio occultation experiment, a helium magnetometer, an interplanetary ion plasma probe and a trapped radiation detector. The spacecraft instruments measured both interplanetary and Venusian magnetic fields, charged particles, and plasmas, as well as the radio refractivity and UV emissions of the Venusian atmosphere.

During its 127-day cruise to Venus, Mariner-5 gathered data on the interplanetary environment. In September and October, observations were co-ordinated with measurements made by Mariner-4, which is on its own extended mission, following its 1965 encounter with Mars. Similar observations were made by Venera-4 during its flight to Venus, which found that the concentration of positive ions in interplanetary space is much lower than expected. 

Missions Accomplished

A few days before it arrived at Venus, the Soviet Academy of Sciences requested assistance from the massive 250 feet radio telescope at the Jodrell Bank Observatory in the UK, asking the facility to track Venera-4 for the final part of its voyage. This has provided Western scientists with some independent verification of Soviet claims about the mission. Jodrell Bank even announced the landing of the Venera-4 descent capsule more than seven hours before it was reported by the Soviet news agency Tass!

On 18 October, Venera-4’s descent vehicle entered the Venusian atmosphere, deploying a parachute to slow its fall onto the night side of the planet. According to a story that one of the Sydney Observatory astronomers picked up from a Soviet colleague at a recent international scientific conference, because there was still the possibility that, beneath its clouds Venus might be largely covered by water (one of the main theories about its surface), the capsule was designed to float if it did land in water. Uniquely, the spacecraft’s designers made the lock of the capsule using sugar, which would dissolve in liquid water and release the transmitter antennae in the event of a water landing.

Although the Venera-4 capsule had 100 minutes of battery power available and sent back valuable data as it fell through the atmosphere, Jodrell Bank observations, and the official announcement from Tass, indicated that the signal cut off around 96 minutes. While it was initially thought that this meant that the capsule had touched down on the surface, and there were even early reports claiming it had detected a rocky terrain, questions are now being raised as to whether it actually reached the surface, or if the spacecraft failed while still descending. Tass has said that the capsule stopped transmitting data because it apparently landed in a way that obstructed its directional antenna. A recording of the last 20 seconds of signal received at Jodrell Bank was delivered to Vostok-5 cosmonaut Valery Bykovsky during a visit to the radio telescope on 26 October. Perhaps once it is fully analysed, the question of the capsule’s fate will be clarified. Of course, if the landing is confirmed, Venera-4 will have made history with the first successful landing and in-situ data gathering on another planet.

Diagram illustrating the major milestones during the Mariner-5 encounter with Venus on 19 October
Mariner-5 swept past Venus on 19 October, making a close approach of 2,480 miles. At 02:49 GMT the Island Lagoon DSN station commanded Mariner 5 to prepare for the encounter sequence and 12 hours later its tape recorder began to store science data. Tracked by the new 200 in antenna at NASA’s Goldstone tracking station, Mariner reached its closest encounter distance at 17:35 GMT, and minutes later entered the “occultation zone” before passed behind Venus as seen from the Earth. 17 minutes later, Mariner-5 emerged from behind Venus and completed its encounter at 18:34 GMT.

The following day, Mariner-5 began to transmit its recorded data back to Earth. Over 72½ hours there were three playbacks of the data to correct for missed bits. Mariner-5's flight path following its Venus encounter is bringing it closer to the Sun than any previous probe and the intention is for to be tracked until its instruments fail.

A Peep Behind the Veil

So what have we learned about Venus from these two successful probes? There has long been controversy among astronomers as to whether Venus is a desert planet, too hot for life, or an ocean world, covered in water. The data from both Venera and Mariner has come down firmly on the side of the desert world hypothesis.
Astronomical artist Mr. Chesley Bonestell's 1947 vision of a desert Venus

The effects of Venus’ atmosphere on radio signals during Mariner-5’s occultation experiment have enabled scientists to calculate temperature and pressure at the planet's surface as 980°F and 75 to 100 Earth atmospheres. These figures disagree with readings from Venera 4 mission, which indicate surface temperatures from 104 to 536°F and 15 Earth atmospheres’ pressure, but both sets of data indicate a hellish world, with little evidence of water and an extremely dense atmosphere.

Venera has established that Venus’ atmosphere consists almost exclusively of carbon dioxide with traces of hydrogen vapour, very little oxygen, and no nitrogen. Mariner-5's data indicates that the atmosphere of Venus ranges from 52 to 87 per cent carbon dioxide, with both hydrogen and oxygen in the upper atmosphere: it found no trace of nitrogen. It detected about as much hydrogen proportionately as there is in the Earth's atmosphere. Mariner scientists, however, have pointed out that further analysis and refinements of both Russian and American data could clear up the apparent discrepancies.

Although Mariner’s instruments could not penetrate deeply enough into Venus’ atmosphere to obtain surface readings, they determined that the outer fringe of the atmosphere, where atoms were excited by direct sunlight, had a temperature of 700°F, below which was a layer close to Zero degrees, lying about 100 miles above the surface. Chemicals in the atmosphere, or electrical storms far more intense than those of Earth, give the night side of the planet an ashen glow.
A view of the Mariner-5 control room at JPL during the Venus encounter

A fascinating finding is that the dense atmosphere acts like a giant lens, bending light waves so they travel around the planet. Both American and Russian researchers agree that astronauts standing on the surface would feel like they were “standing at the bottom of a giant bowl”, with the back of their own heads a shimmering mirage on the horizon. Vision would be so distorted that the sun would appear at sunset to be a long bright line on the horizon: its light could penetrate the atmosphere, but not escape because of scattering, so that it would appear as a bright ball again for a time at sunrise until the atmosphere distorted its rays.

Neither spacecraft found any evidence of radiation belts comparable to the Van Allen belts around the Earth, and both established that Venus has only a very slight magnetic field, less than 1% that of the Earth. Observing how much Venus' gravity changed Mariner 5's trajectory established that Venus’ mass is 81.5 % that of Earth. Tracking of radio signals from Mariner-5 as it swept behind Venus, has shown that the planet is virtually spherical, compared with Earth's slightly pear-shape. (Other celestial mechanics experiments conducted with Mariner-5 obtained improved determinations of the mass of the Moon, of the astronomical unit, and improved ephemerides of Earth and Venus).

Life on Venus?

Although neither spacecraft was equipped to look for life on Venus, their findings will undoubtedly contribute to the growing scientific controversy over whether life does, or can, exist there. Based on its Venera results, the Soviet Union has said that Venus is “too hot for human life”, although Sir Bernard Lovell, the Director of Jodrell Bank Station, has suggested that future probes might find remnants of some early organic development, even if conditions today make life highly unlikely. However, German/American rocket pioneer and space writer Dr Willy Ley, has suggested there might be the possibility of “a very specialised kind of life on Venus”, possibly at the poles, which he believes would be cooler that the currently measured temperatures. The USSR’s Dr Krasilnikov has said that Earth bacteria could withstand the atmospheric pressure on Venus and might even be able to survive the intense heat. 


But just as Mariner-4 demolished fantasies of canals made by intelligent Martians, so the results from Venera-4 and Mariner-5, in allowing us a glimpse behind its cloudy veil, have swept aside any number of science fiction visions of Venus. Edgar Rice Burroughs’ verdant Amtor, with its continents and oceans, and Heinlein’s swampy Venus are no more. They have been replaced by a new vision of a hellish Venus, almost certainly inimical to life, with fiery storms raging in a dense, metal melting atmosphere which traps and bends light waves in a weird manner. I wonder where the SF writers of the future will take it?