Tag Archives: nasa

[Apr. 29, 1963] When a malfunction isn't (the flight of Saturn I #4 and other space tidbits)


by Gideon Marcus

Baby's first step… Take Four

Out in Huntsville, Alabama, Von Braun's team is busy making the biggest rockets ever conceived.  The three-stage Saturn V, with five of the biggest engines ever made, will take people to the Moon before the decade is out.  But NASA's is justifiably leery of running before walking.  Moreover, there is use for a yet smaller (but still huge!) rocket for orbital Apollo testing and, also, practice building and launching Saturn rocket components.

Enter the two-stage Saturn I, whose first stage has eight engines, like the Nova, but they are much smaller.  Still, altogether, they produce 1.5 million pounds of thrust — that's six times more than the Atlas that will put Gordo Cooper's Mercury into orbit next month.  The Saturn I's second stage will likely also be the third stage on the Saturn V.

The Saturn I has had the most successful testing program of any rocket that I know of.  It's also one of the most maddeningly slow testing programs (I'm not really complaining — methodical is good, and it's not as if Apollo's ready to fly, anyway). 

The fourth in the series lifted off March 28, and they still aren't fueling the second stage.  They've essentially all been tests of stage #1.  This particular test was interesting because they shut off one of the engines on purpose during the flight to see if the other engines could compensate for the loss.  SA-4 continued to work perfectly, zooming to an altitude of 129 kilometers.

SA-4 was the last of the first-stage-only tests.  Henceforth, we'll get to see what the full stack can do. 

A breath of very thin fresh air

We tend to ignore most of the atmosphere.  After all, the air we breathe and most of the weather are confined to the first few kilometers above the Earth.  But the upper regions of the atmosphere contain the ozone layer, which shields us from deadly radiations; the ionosphere, which bounces radio waves back to Earth; beautiful and mysterious noctilucent clouds, only visible after sunset; and of course, spacecraft have to travel through it on their way up and down.  Knowing the makeup of our atmosphere gives us clues to understand climate, the history of the Earth, the interaction of our planet and the sun, and much more.

And yet, aside from the TIROS weather satellites, which only study the lowest level of the atmosphere, there has never been a dedicated atmospheric study satellite.  Sure, we've launched probes to detect radiation and charged particles and the Earth's magnetosphere.  Some have investigated the propagation of radio waves through the ionosphere.  But none have gone into space just to sample the thin air of the upper atmosphere and find out what's up there and how much.

Until now. 

Explorer 17 is a big, sputnik-looking ball loaded with a bunch of pressure gauges and other instruments.  Its sole purpose is to measure the the pressure and make-up of the upper atmosphere, from about 170 kilometers up. 

Launched on April 3rd, in its first few days of operation, the probe has more than tripled all previous measurements of neutral gases in Earth's upper atmosphere to date.  For instance, the satellite has discovered that the earth is surrounded by a belt of neutral helium at an altitude of from 250 to 1000 miles, a belt no one was sure it existed.  We suspected it, of course — helium, produced in the Earth's crust by the natural radioactive decay of heavy elements, is very light.  Just as helium balloons go up and up, free helium's normal fate is to eventually escape Earth's gravitational influence, leaving behind the heavier gasses. 

This is the first time this hypothesis had a chance to be proven, and by measuring the density of this helium, we should be able to get an idea of how much helium is generated by the Earth each year.  This, in turn, will tell us something about how much radioactive material is left on Earth.  Isn't that neat?  We send a probe far up into space to learn more about what's going on down here.  Your tax dollar hard at work.

The Cosmos opening up for Kosmos

Pop quiz — what did the Soviets accomplish last year in the Space Race?  Right.  The Soviets made big news with the flashy dual mission of Vostoks 3 and 4.  Anything else?  Can you recall a single space accomplishment for the Communists?  In 1962, the United States launched Telstar, the Orbiting Solar Observatory (OSO), three Explorer science probes, three Ranger moon probes, Mariner 2 to Venus, and a couple dozen military satellites, not to mention the orbital Mercury flights of John Glenn, Scott Carpenter, and Wally Schirra.

This year is a different story.  We Americans haven't slackened our pace, but the Russians have finally picked up theirs.  They've got a probe on its way to Mars, as well as a new series of satellites called Kosmos.  This month, they launched three, getting up to Kosmos 16.  They are touted as science satellites, but there has been precious little data from them made public or that's worked its way into scientific papers.  This suggests that the Kosmos program is really a civilian front for a military program.  That's the fundamental difference between the Western and Eastern space efforts.  While the American military takes up its share of the national space budget, we still make sure there's room for pure science.  The Soviets have chosen between guns and science in favor of the former (though, to be fair, if we could only afford one option, would we have made the same choice?)

So why did it take so long for the Soviets to get into the groove after having such a seemingly commanding lead in the Space Race?  And just what are the Kosmos satellites really doing up there? 

According to a NASA scientist, the lack of announced flights doesn't mean the Russians didn't try.  Our Communist friends are notorious for talking only about their successes.  In fact, the Soviets were trying a new four-stage version of the booster that launched Sputnik and Vostok, and the fourth stage kept failing.  There might have been a few failed moon missions in there, too, that we never heard about.  We probably only learned about Luna 4, launched April 2, because it took off just fine — it just missed its target (the Soviet reporting after lunar flyby was notably subdued). 

As for what Kosmos is, Aviation Weekly and Space Report suggests the series is really two types of satellites based on weight and orbital trajectory.  One is a small class of probe that stays up for months.  They could be akin to our Explorers, but again, they don't produce science (whereas ours have revolutionized our knowledge of near-Earth space).  More likely, they are engineering satellites designed to test various components for future missions: communications, cameras, navigation.

The other class is big — as big as the manned Vostoks.  They only fly a few days, too, and their orbits cover most of the globe.  These could be unmanned tests of the next generation of Soviet manned spacecraft.  But they also could be repurposed Vostoks designed to conduct spy missions.  Perhaps the Soviet Union is sending up cosmonauts with camera in hand (as we have done on the Mercury missions).  Sure, it's more expensive than our Discoverer spy sats, but everything's free in a command economy, right?

In any event, the world once again has two active space superpowers.  What happens next is anyone's guess…




[Mar. 30, 1963] Mercury waltzes Matilda (the tracking and research station at Woomera, Australia)


by Ida Moya

I’m back from a whirlwind of helping the data analysts at Los Alamos get their FORTRAN formulas running on that balky old IBM Stretch computer. I can see why IBM only made 8 of these things. It is miraculous to have a computer that can fit into a single room, but this stretch (pardon the pun) in computing technology still averages only 17 hours uptime a day — and that’s also a stretch (no more, I promise).

When it breaks, this swarm of white-coated men in ties comes in and fusses around with it with a bunch of special tools, as well as the set of ALDs (Automated Logic Diagrams) that come with every IBM computer. The way those diagrams are produced and updated with punch cards and special line printers is an amazing story, but for another time.

Although we at Los Alamos Scientific Laboratory can comfort ourselves that the Stretch is the fastest computer in the world, I’m still envious of the institutions that have the better-engineered IBM 7090 computers. These are being used for calculations for the exciting Mercury program.


IBM 7090 at the Weapons Research Establishment's headquarters at Salisbury, on the northern outskirts of Adelaide in South Australia.

The Mercury spaceships do not have a computer on board – computers are far too heavy – so for figuring out how to re-enter the earth’s atmosphere the astronauts rely on computations sent by radio from the pair of IBM 7090 computers at the Mercury Control Station at Cape Canaveral. It’s an incredible amount of faith to put in one site, so Mercury control has those two redundant IBM computers, plus another set of computers in New Jersey. A third computer gathering information from the flight is on the other side of the globe — in Adelaide processing tracking data collected at at Weapons Research Establishment in Woomera, Australia. There is also another control center at Muchea, in Western Australia.


Control room of the astronaut tracking station at Muchea in Western Australia, part of US Project Mercury

A lot of people haven’t heard of Woomera, so let me tell you a little bit about it. At Woomera, more is being done than track Mercury astronauts. This part's an open secret, but the Brits and the Aussies are working together there on testing (or doing “trials” as they say) on rockets, missiles, and even atomic weapons. That's why they built this testing range in the middle of nowhere, in the outback of Australia.


Woomera Research Establishment Officer’s mess

A few years ago we had a visit from Bill Boswell, the Woomera director, along with a team from Maths Services, and Mary Whitehead, the leader of the Planning and Data Analysis Group. They were visiting various computer installations at Point Mugu, White Sands, and Cape Canaveral. These are all larger-than life place-names, but they really just represent groups of men and women madly making observations, coding the photographs in a way the computer can understand, and using these results to steer the manned spaceships. Mary and I had time to talk about more prosaic things, like her new apartment (or “flat” as they call it down under) in Woomera village, and the troubles of living so far from civilization.


Mary’s new flat at Woomera

Woomera reminds me a lot of Los Alamos. It is a similar purpose-built town, isolated from the surrounding population by remoteness and security. Entire families live there, with houses, apartments, and schools for the kids. There are clubs and mess halls; a bowling alley and community grocery store. The store sells just canned and packaged food; if you want something fresh the closest produce is 50 miles away. The planners made a lot of efforts to plant trees, most of which failed. Honestly, it sounds awful to me. I love the "Land of Enchantment" (New Mexico), where things actually grow. The two science towns also have odd mixed populations – for Los Alamos, it is the influx of American and foreign scientists, local Hispanos, and the San Ildefonso tribe. In Woomera, it is the influx of British scientists, local Aussies, and the aboriginal people. Personally I think Los Alamos does a better job of integrating the native population.


Community store in Woomera

There’s something about space that is so exciting. Space has it all: exploration, discovery, danger, and destiny. There’s so much more to it than my dry work of computers, trajectory calculations, and strangely named groups that I am so mired in. That’s why I am so excited to find science fiction and Galactic Journey’s reviews, which is opening my mind to our real future in space that this work makes possible.




[March 24, 1963] Bumper Crop (A bounty of exciting space results)


by Gideon Marcus

February and March have been virtually barren of space shots, and if Gordo Cooper's Mercury flight gets postponed into May, April will be more of the same.  It's a terrible week to be a reporter on the space beat, right?

Wrong!

I've said it before and I'll say it again.  Rocket launches may make for good television, what with the fire, the smoke, and the stately ascent of an overgrown pencil into orbit…but the real excitement lies in the scientific results.  And this month has seen a tremendous harvest, expanding our knowledge of the heavens to new (pardon the pun) heights.  Enjoy this suite of stories, and tell me if I'm not right…

How hot is it?

Mariner 2 went silent more than two months ago, but scientists are still poring over the literal reams of data returned since its rendezvous with Venus.  The first interplanetary mission was a tremendous success, revealing a great deal about the Planet of Love, whose secrets were heretofore protected by distance and a shroud of clouds. 

Here's the biggie: Preliminary reports suggested that the surface temperature of "Earth's Twin" is more than 400 degrees Fahrenheit.  It turns out that was a conservative estimate.  In fact, the rocky, dry landscape of Venus swelters at 800 degrees — possibly even hotter than the day side of sun-baked first planet, Mercury.  It's because the planet's dense carbon dioxide atmosphere acts like a heat blanket.  There's no respite on the night side of the hot world either; the thick air spreads the temperatures out evenly.

Thus, virtually every story written about Venus has been rendered obsolete.  Will Mariner 3 destroy our conception of Mars, too?

Just checking the lights

On February 25, the Department of Defense turned little Solrad 1 back on after 22 months of being off-line.  The probe had been launched in conjunction with a navigation satellite, Transit, back in June 1960.  For weeks, it had provided our first measurements of the sun's X-ray output (energy in that wavelength being blocked by the Earth's atmosphere and, thus, undetectable from the ground).  DoD has given no explanation for why the probe has been reactivated, or why it was turned off in the first place.  Maybe there's a classified payload involved?

Radio News from the Great White Spacecraft

Last September, the Canadians launched their first satellite — the "top-sounder," Alouette, whose mission was to measure the radio-reflective regions of our atmosphere from above.  The results are in, and to any HAM or communications buff, its huge news.

It turns out that the boundaries of the ionosphere are rougher at higher latitudes than at lower latitudes.  Moreover, Alouette has determined that the Van Allen Belts, great girdles of radiation around our planet, dip closer to the Earth at higher latitudes.  This heats up the ionosphere and causes the roughness-causing instability. — the more active the electrons, the poorer the radio reflection.  Now we finally know why radio communication is less reliable way up north.  The next step will be learning how to compensate for this phenomenon so that communication, both civil and military, can be made more reliable.

Sun Stroke Warning

After a year in orbit, NASA's Orbiting Solar Observatory is still going strong, with 11 of 13 experiments still functioning.  The satellite has probably returned more scientifically useful data than all of the ground-based solar observatories to date (certainly in the UV and X Ray spectra, which is blocked by the atmosphere).

Moreover, OSO 1 has returned a startling result.  It turns out that solar flares, giant bursts of energy that affect the Earth's magnetic field, causing radio storms and aurorae, are preceded by little microflares.  The sequence and pattern of these precursors may be predictable, in which case, OSO will give excellent advance warning of these distruptive events.

Tax money at work, indeed!

Galaxy, Galaxy, Burning Bright

In the late 1950s, astronomers began discovering some of the brightest objects in the universe.  It wasn't their visible twinkle that impressed so much as their tremendous radio outbursts.  What could these mysterious "quasi-stellar sources" be?

Now we have a pretty good guess, thanks to a recent scientific paper.  Cal Tech observers using the Mt. Wilson and Mt. Palomar observatories turned their gaze to object 3C 273, a thirtheenth magnitude object in the constellation of Virgo.  It turns out that 3C 273's spectrum exhibits a tremendous "red shift," that is to say, all of the light coming from it has wavelengths stretched beyond what one would expect.  This is similar to the decrease in pitch of a railroad whistle as the engine zooms away from a listener.

The only way an object could have such a redshift is if it were of galactic proportions and receding from us at nearly 50,000 km/sec.  This would place it almost 200,000,000 light years away, making it one of the most distant (and therefore, oldest) objects ever identified.

At some point, astronomer Hubble's contention that the universe is expanding is likely to be confirmed.  These quasi-stellar objects ("quasars"?) therefore represent signposts from a very young, very tiny universe.  What exciting times we live in!

Five years of Beep, Beep

St. Patricks Day, 1958 — Vanguard 1 was the fourth satellite in orbit, but it was the first civilian satellite, and it is the oldest one to remain up there.  In fact, it is the only one of the 24 probes launched in the 1950s that still works.

What has a grapefruit-sized metal ball equipped with a radio beacon done for us?  Well, plenty, actually.  Because it has been tracked in orbit so long, not only have we learned quite a bit about the shape of the Earth (the variations in Vanguard's orbit are due to varying gravities on the Earth, the measurement of which is called "geodetics"), but the satellite's slow decay also tells us a lot about the density of the atmosphere several hundred miles up.

So, while Sputnik and Explorer might have had the first laughs, Vanguard looks likely to have the last for a good long time.

Telstar's little brother does us proud

RCA's Relay 1, launched in December, is America's second commercial communications satellite.  It ran into trouble immediately upon launch, its batteries producing too little current to operate its transmitter.  Turns out it was a faulty regulator on one of the transponders; the bright engineers switched to the back-up (this is why you carry a spare!), and Relay was broadcasting programs across the Atlantic by January.  660 orbits into its mission and 500 beamed programs later, NASA announces that Relay has completed all tests. 

Nevertheless, why abandon a perfectly good orbital TV station?  Relay will continue to be used to transmit shows transcontinentally, especially now that Telstar has finally gone silent (February 21).  There is even talk that Relay could broadcast the Tokyo Olympics in 1964, if it lasts that long!

In a sea of Blue, a drop of Red

On March 12, 3-12 at the Spring Recognition Dinner of Miracle Mile Association, in Los Angeles, Cal Tech President, Lee DuBridge, noted that the United States has put 118 probes into space, while the Russians have only lofted 34 (that we know of).  He also pointed out that virtually no scientific papers have resulted from the Soviets' "science satellites." 

As if in reply, on March 21 the Soviets finally, after 89 days without a space shot, launched Kosmos 13.  (To be fair, it's been kind of quiet on the American side, too).  The probe was described as designed to "continue outer space research."  No description of payload nor weight specifications were given.  Its orbit is one that allows it to cover much of the world.  While it may be that some of the Kosmos series are truly scientific probes, you can bet that, like America's Discoverer program, the Kosmos label is a blind to cover the Russians' use of spy satellites.  Oh well.  Turnabout is fair play, right?

[Next up, don't miss Mark Yon's spotlight of this month's New Worlds!  And if I saw you at Wondercon, do drop me a line…]




[October 4, 1962] Get to work!  (The Mercury Flight of Sigma 7)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Five years ago, satellite launches were quarterly events that dominated the front page.  Now, the Air Force is launching a mission every week, and NASA is not far behind.  The United Kingdom and Canada have joined the U.S. and U.S.S.R. in the orbital club, and one can be certain that Japan and France aren't far behind.  It's truer than ever that, as I've said before, unmanned spaceflight has become routine.

Yesterday, the same thing happened to manned missions.

39 year-old Navy Commander Walter M. "Wally" Schirra blasted off early the morning of October 3, 1962, flew for six orbits, and splashed down safely in the Pacific near Midway Island less than half a day later.  His Sigma 7 capsule was in space twice as long as Glenn and Carpenter's Mercury ships and, to all accounts, it was a thoroughly uneventful trip.  Aside from the whole nine hours of weightlessness thing.

While the newspapers all picked up the mission, radio and television coverage was decidedly less comprehensive than for prior flights.  Part of it was the lack of drama.  Shepard was the first.  Grissom almost drowned.  Glenn's mission had the highest stakes, it being our answer to the Soviet Vostok flights, and his capsule ran the risk of burning up on reentry.  For a couple of hours, Carpenter was believed lost at sea.

But the upshot of Schirra's mission seemed to be that, as the Commander put it, a chimpanzee could have flown it.  The giant Atlas rocket blasted off just 15 minutes late (the delay was due to a radar malfunction at a overseas tracking station), and that was the most remarkable snag.  One of Schirra's tasks was to make observations of various points of interest on the ground and snap shots with his camera.  Unfortunately, mother nature was not accommodating, clouds obscuring most of Schirra's targets (further reducing his active scientific role).  The pilot did see Glenn's "fireflies," though, which have since been determined to be ice crystals shaken loose from the capsule. 

After Carpenter's flight, wherein a combination of engine malfunction and pilot exuberance led to Aurora 7 running out of fuel on reentry, Schirra chose to let his capsule drift.  When Sigma 7's heat shield began to glow on contact with the atmosphere, it still had a tank that was 78% full.  The spaceship landed less than a mile from the carrier recovery fleet, well within view of television cameras on the deck of the U.S.S. Kearsarge (I felt a brief eerie sensation at the thought that almost exactly twenty years ago, American carriers had patrolled these same waters — to do battle with their Japanese counterparts.)

It was, as Schirra termed it, a "textbook flight."  If you read the Press Kit, you might well have skipped watching the news.  And yet, it is the lack of drama that makes the flight so dramatic.  Now, instead of biting our fingernails, wondering if our rockets will work, our ships will function, our pilots will survive…now we can focus on getting the work of spaceflight done.  We've passed the Wright Flyer stage — now we're ready to put our craft to use.

There will probably be just one more Mercury flight, this one to last a full day.  The pilot has not been chosen for this mission, but it had been broadly hinted that it will be L. Gordon Cooper, the remaining active Mercury astronaut (Donald K. Slayton having been removed from the roster for heart trouble).  After that, we move on to two-man flights aboard the aptly named Gemini.

Whether we beat the Soviets to that stage of the Space Race remains to be seen…




[August 27, 1962] Bound for Lucifer (the flight of Mariner 2)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

If familiarity breeds contempt, then enigma must breed fascination.  So it has been with the planet Venus.  "Earth's twin" in size and density, the second planet out from the sun is, in fact, the closest planet to us.  Yet, thanks to its shroud of clouds, very little can be determined of its nature.  At least, such was the state when I wrote my first article on the planet just three years ago.

Things are changing.

Opened eyes improve vision of Venus

Until recently, humanity was limited to examining the universe in the narrow band of light frequencies discernible to the eye.  That's actually a tiny portion of the electromagnetic (EM) spectrum, which ranges from super-high frequency gamma rays, down through X-Rays, microwaves, and ultraviolet light, passes quickly through the visual light spectrum, and then to the lower-frequency infrared and radio waves.

In the last decade, we have developed ways of probing many of these EM bands from the Earth's surface, and they have begun to reveal Venus' true nature.  For instance, measuring microwave emissions from the planet, we find that the dark side simmers at a whopping 650 degrees Kelvin (710 degrees Fahrenheit).  Radio wave measurements seem to confirm this figure. 

The atmospheric pressure at "sea level" is some 50 times greater than on Earth.  It is not certain what components make up the Venusian atmosphere, but likely gases are Carbon Dioxide, Nitrogen, and water, in order of amount.  This combination is what causes the planet to swelter so – the air creates a greenhouse effect, trapping heat like a blanket.  The surface of Venus is probably like an oven, extremely dry (despite the potential for water vapor in high clouds), dimly lit by a blurry yellow sun, largely windless, and extremely inhospitable.  So much for the jungle-covered Amtor of Edgar Rice Burroughs.

Using radar, scientists have learned that Venus is more reflective than the moon (presumably the surface, or whatever the waves are bouncing off of, is smoother).  It has also been determined that Venus, if it rotates at all, does so extremely slowly.  A Venusian day may well be as long as its year: 225 days.  Scientists have used radar observations to confirm the greenhouse atmospheric model over others that had been advanced in the absence of data.  Radar also has given us a better idea exactly how far away the planet is from us, a critical piece of information for plotting the course of investigating spacecraft.  Which brings us to…

Let the onslaught begin

Every 19 months, the Earth and Venus are as favorably aligned in their orbits as they can get; that is the opportunity to send the heaviest spacecraft (i.e. with the most experiments) to investigate.  The first chance of the Space Age to send a probe to Venus took place in summer of 1959 – too soon for either superpower to loft a probe.  The United States did send up Pioneer 5 to the orbit of Venus in March 1960 to test long distance communications, however. 

The next alignment took place in February 1961.  No American probe was ready, but the Soviet http://galacticjourney.org/tag/venera-1/Venera 1 almost made it to Venus before mysteriously going silent. 

19 months have elapsed again, and this time, both major participants in the Space Race are ready.  Just a few days ago, the Soviets launched another Venera.  It failed to depart Earth's orbit and will likely decay in a few days, but I can't imagine it will be their only attempt.  Last month, America's first try, Mariner 1, veered off course and had to be destroyed after only five minutes in flight.

Of course, I wouldn't be talking about this if I didn't have good news.  This morning, a new Mariner rose to the heavens atop an Atlas Agena rocket, and this one is safely on a course for the Planet of Love.

It's a little probe, really a close cousin to the Ranger probes that have had such ill luck with the moon.  NASA had hoped to send a larger spacecraft, but the new Centaur second stage booster isn't ready yet.  So the Agena-propelled Mariner carries just 40 pounds of equipment.  There's no camera onboard, for Mariner lacks the cargo to carry a strong enough transmitter to send pictures. 

But there are several experiments that will be just as valuable.  For instance, there is a pair of radiometers that will tell us, once and for all, just how warm Venus really is.  There are a series of particle counters that will measure radiation both on the way to and in the vicinity of the planet.  This kind of exploration of interplanetary space has only been done once before, and it tells us volumes about the sun and how it affects us.  We will also learn about the fields of electrical force surrounding Venus.

To that end, Mariner 2 also carries a magnetometer, designed to tell us the strength and disposition of Venus' magnetic field.  I've got a personal stake in this little experiment as two good friends, Chuck Sonett and Paul Coleman, are vital members of the team that built it.  These fine fellows worked in the private sector on Pioneer 5, and now NASA has seduced them onto the government payroll.  A win for the United States, I'd say!

So stay tuned.  Mariner will reach Venus in December, and if the probe still be active come then, you can bet there will be a bonanza of scientific results – and you'll be able to read all about it at Galactic Journey!




[July 29, 1962] What a Diff'rence a Month Made (July 1962 in spaceflight)

[if you’re new to the Journey, read this to see what we’re all about!]


by Gideon Marcus

Sometimes, the future comes so fast, it bewilders.

This rushing feeling I've had all month must be similar to what my grandparents felt when the Wright Brothers first took off.  For millennia, people have dreamed of flight, envying the birds.  Yet flying was always the province of make-believe, of fanciful stories.  Then, on one day in 1903, airplanes became a reality, and the world was transformed.

Ditto space travel.  That dream has been alive since the Ancient Greeks, yet it was entirely a theoretical concern until the Soviets pierced the heavens with their first beeping Sputnik.  It is easy to forget, now that there have been well over one hundred successful orbital missions, that just five years ago, there had been none.

The advances made just this month are tremendous, each one as significant as the breakthroughs I've just detailed.  Let's review:

Ma Bell, Orbital Division

Unless you've been living under a rock the last few weeks, you can't have missed virtually non-stop coverage of the first civilian communications satellite, AT&T's Telstar.  Launched July 10, it circles the Earth every 90 minutes; for 20 minutes of every orbit, North America and Europe are linked via the dappled spheroid.

Now, it's not as if the two continents had been completely cut off before.  However, the only way to communicate was via undersea phone line (expensive, not useful for television), or shortwave radio (no pictures).  If the UK wants to watch reruns of The Twilight Zone, or if we wanted to see airings of Danger Man or Supercar, we have to wait for videotapes to be shipped/airmailed across the Pond.  News from abroad is often days out of date.

That's about to change.  Starting with a fairly humdrum broadcast of a flag in France, Telstar's programming has now included a host of shows including a Presidential address and a sports match.  And everyone can receive them (so long as the local stations rebroadcast the feed).  Over the next few years, expect satellite coverage to become continuous.  Arthur C. Clarke's dream of comsats fixed in the sky, 22,500 miles overhead, will soon become a reality, and the world shall be connected as never before.

Jousting Space Shutterbugs

Since April, the Soviets have been orbiting a series of disparate probes under the unified designation, "Kosmos," the latest being Kosmos 7, which launched yesterday.  Details on these flights have been sketchy, and while they are all billed as scientific missions, it is beyond doubt that some or all of them have been spy satellites.  I infer this based on the fact that at least one of them was deorbited and recovered a few days after launch – the same modus operandi as our Discoverer film-return satellites.

Speaking of which, yesterday we launched the 47th in the Discoverer series.  As usual, the Air Force did not announce the flight, but it was in the papers anyway.  It's really hard to hide a rocket launch in the middle of California.

It is unlikely that the two satellites took pictures of each other, but wouldn't that be a snapshot to develop?

Getting to Space the Old-Fashioned Way

Until this month, the only way into the deep black was at the tip of a rocket, as Messrs. Shepard, Grissom, Glenn, Carpenter, Gagarin, and Titov can attest.  But on July 17, Major Robert White flew his X-15 rocket plane to an altitude of 59 miles.  For NASA, that's close enough to outer space to count, and they're giving the Major a pair of astronaut wings to wear on his flight suit. 

White experienced three minutes of weightlessness during his flight, and the stars were brilliant and unwinking at the journey's apex.  While this is close to the highest the X-15 can ever fly, it strongly suggests that, in the not too distant future, the next generation of spaceplanes will zoom into orbit from a conventional runway.

Just try not to live right under the take-off point.  That could get loud.

Bits and Pieces

The Apollo moonship design is moving right along.  One lingering question, however, was how the thing would get to the moon.  After all, it is the heaviest manned spacecraft yet developed.  The original concept involved building a giant version of the already giant Saturn booster.  This eight-engine monster is dubbed Nova, and it would take Apollo directly to the moon.  Appropriately, this mode is called "Direct Ascent."

A cheaper idea involves using two Saturn C-5s (a simpler, 5-engine variant), one carrying the Apollo, and the other carrying the fuel.  The two would meet in Earth orbit before jetting off to the moon.  This mode is called "Earth Orbit Rendezvous."

But it was the plucky underdog idea that was ultimately chosen this month.  Called Lunar Orbit Rendezvous, it requires just one Saturn C-5.  At its tip will be an Apollo, some fuel, and a teeny Lunar Excursion Module (or LEM).  The Apollo, itself, won't land on the moon.  Instead, two astronauts of the three will cram into the LEM for the landing. 

This mode was, at first, deemed too complicated to be practicable.  Computers are getting better these days, however, and the cost savings are significant.  Moreover, there's less to go wrong with one rocket than two.

I'm wholly in favor of this move.  After all, anything with the acronym LEM must be incredible.

Conquered by (the Planet of) Love

The one bit of sad news accompanies the loss of Mariner 1, our first planned mission to Venus.  Launched on July 22, its Atlas Agena rocket, the biggest one we've got right now (save for the still-in-testing Saturn 1), glitched during take-off and had to be destroyed five minutes into the flight.

Unlike Pioneer 5, which two years ago flew to Venus' orbit and demonstrated the possibility of long-range telecommunications, Mariner 1 would have flown by the planet, itself.  It would not have been able to take pictures; the Atlas Agena combination isn't powerful enough to lift a spacecraft with a big enough radio to send scans of photos.  We'll have to wait for the beefier Atlas Centaur for that.

Instead, Mariner 1 is really a retool of the first generation of Ranger moon probes, carrying a slew of particle and electromagnetic wave detectors.  If an "R-type" Mariner makes it to Venus, we won't get a look under the planet's shroud of clouds, but we will, at least, finally know hot the world is and get some information on its magnetic field.

The good news?  Mariner 2 is scheduled for launch next month.  Let's hope that one works – otherwise, we'll have to wait another year and a half for Earth and Venus to be in favorable position for a mission.

Live via Visi-Phone!

Courtesy of Telstar and the miracle of Visi-phone(tm) technology, the Journey had a smashing second Tele-Conference on July 29, covering a wide range of topics: from news of the day, to discussion of the upcoming Hugo Awards, to talking about this Summer's blockbusters.

If you missed the live broadcast, catch the rerun.  Check your local listings for details.

Congratulations go out to Mark Yon and Nathan "Rocky" Anderson for asking the best questions!  You can expect your prizes to arrive over the next few weeks.  And to the rest of our audience, warm thanks from the Galactic Journey staff.  We look forward to seeing you again when we do our third Tele-Conference in 2-3 months.

In the meantime, enjoy this revolutionary new era.  The future is only going to come more quickly, I predict…




[February 20, 1962] American Made (John Glenn and the flight of Friendship 7)


by Gideon Marcus

And the Free World exhales.  At long last, an American has orbited the Earth.  This morning, Astronaut John Glenn ascended to the heavens on the back of an Atlas nuclear missile.  He circled the globe three times before splashing down in the Atlantic Ocean.

It is impossible to understate what this means for us.  The Soviets have been ahead of us in the Space Race since it started in 1957: First satellite, first lunar probe, first space traveler.  Last year, the best we could muster was a pair of 15 minute cannonball shots into the edges of space.  For two months, Glenn has gone again and again into his little capsule and lain on his back only to emerge some time later, disappointed by technical failure or bad weather.  Each time, the clock ticked; would the Soviets trump us with yet another spectacular display of technological prowess?

But this morning, everything was fine – the weather, the booster, the spacecraft, and the astronaut.  As I went to sleep last night, Glenn woke up.  He had the traditional low residue breakfast of orange juice, toast, eggs over-easy, fillet mignon, and Postum, before suiting up and entering the capsule.  That was at 5 AM his time (2 AM mine).  For five hours, the patient Colonel waited as his Atlas rocket, only recently tamed sufficiently for human use, was prepared and tested for flight.

At 9:47 AM his time, at last we saw the fire shoot out from beneath the missile, saw the Atlas and its black-painted cargo lift off, leaving its support gantry shrouded in white smoke.  For several minutes, the flight of mission Mercury-Atlas #6 was a strictly aural affair, the TV cameras' only subject being the now-empty launchpad.  But we heard the confident communication between Alan Shepard on the ground and Glenn hurtling skyward, America's first and American's latest spacemen, and we knew everything was still going well.

The sky went quickly from blue to black as Glenn struggled against six times his normal weight.  First, the Atlas' two side engines exhausted their fuel and detached.  A few minutes later, the central sustainer engine's job was complete, and the Mercury capsule, dubbed Friendship 7 by Glenn, flung itself from its empty booster.  Glenn was now in orbit, weightless, and cleared for his full three-orbit, five-hour mission.

For the first time, an American flight was long enough for the public to contemplate, to be worthy of news flashes.  And even though the last Soviet flight had spanned a full day, it was shrouded in secrecy until after its completion.  Glenn's mission was, on the other hand, entirely open.  Cockpit chatter was broadcast in the clear; each success and potential failure was presented for the world to hear.  Space travel had become a spectator sport.

The world participated.  Indeed, it had to.  An orbital mission requires global tracking.  Glenn's flight was monitored as he passed over exotic locales like Zanzibar, Woomera, Hawaii.  The citizens of the west Australian city of Perth turned their lights on for the astronaut's passage, providing a virtual streetlamp as he whizzed overhead at 18,000 miles per hour. 

Three sunsets and three sunrises greeted Colonel Glenn, though he was given precious little time to appreciate them, so crowded was his schedule with experiments and ship operations.  As the Mercury spacecraft's functions began to degrade in its third orbit, the value of an experienced human pilot became evident.  Glenn manually configured and trimmed the vessel to make the most of the journey and ensure the mission could be completed. 

Glenn's biggest challenge came at the end of the mission.  Sailing backwards over the Earth, the astronaut prepared to fire the ship's retrorockets, a blast of fire that would slow the craft such that it could break out of orbit and back toward ground.  But an indicator suggested that the Mercury's heat shield was loose.  If that were true, then there could be no returning for the astronaut – he would burn up on reentry. 

Was there anything the astronaut could do about the situation?  Well, the retrorocket package was held tight against the bottom of the bell-shaped craft (and thus, its heat shield) by a series of straps.  Normally, the retrorockets would be discarded before reentry.  This time, on the advisement of ground control, Glenn left the retrorockets strapped in.  The hope was that the straps would keep the shield attached, if it was indeed loose.

What a terrifying display that must have been for the pilot, watching flaming chunks of the retrorockets fly past his window as he tore through the white-hot outer layers of the atmosphere.  Glenn had plenty of other things to worry about.  The "G" forces spiked as the craft decelerated, and the ionization of the air cut off radio contact.  We all waited, white-knuckled, for some sign that the astronaut had survived the journey…or had been vaporized.

Then his voice crackled over the air again, the Mercury's striped parachutes were deployed, and we began breathing again.  A ship of the recovery fleet, the little destroyer called the U.S.S. Noa, was already close at hand when Friendship 7 touched down in the waves.  Once the capsule was hoisted aboard, the astronaut popped the side hatch, the one that had exploded prematurely for second astronaut Grissom.  An overheated but grinning Glenn stepped out of the Mercury, and into history.

Mercury's primary mission, to orbit and safely return a human, has been completed.  Nevertheless, there is obviously much life left in the bird.  Three more three-orbit flights are planned to shake out the bugs that plagued the latter portion of Glenn's flight.  Then 12, 24 hour, and perhaps multi-day flights are slated. 

Of course, the Soviets may soon respond with a flight that trumps ours, perhaps even a two-person mission.  But for now, the hour rightfully belongs to the West.  The democracies of the world at last have their emissary to the stars. 

Godspeed, John Glenn!

[February 1, 1962] Silver Lining (January Space Race round-up!)


by Gideon Marcus

January has been a frustrating month in the Space Race.  We are no closer to matching the Soviets in the manned competition, much less beating them, and our unmanned shots have been a disappointment, too.  That said, it's not all bad news in January's round-up: stick to it through the end, and you'll see cause for cheer!

Quintuplets fail to deliver

The Air Force has been playing around with combined launches for a while now.  After all, if you're going to spend millions of dollars to throw a booster away, you might as well get multiple bangs for your buck.  Sadly, the latest attempt, a Thor Ablestar launch on January 24 dubbed "Composite 1," failed when the top stage tumbled in orbit and failed to separate from its payloads.

What we lost: SolRad 4, for measuring solar X-rays (only visible above the curtain of the atmosphere); Lofti 2, which would have examined the effects of Earth's ionosphere on Very Low Frequency radio transmissions; Surcal, a strictly military probe designed to calibrate the navy's communications net in orbit; the wholly civilian Injun 2, which would help map the Van Allen belts (see below); and Secor, a big balloon that would have helped the Army with their ranging equipment.

Copies of these probes will end up at some point, either launched together on a big rocket or separately on little ones.

Moon Miss-ion

It's been a bad run of luck for NASA's latest moon program, Project Ranger.  After the failure of the first two Ranger missions, designed to test the probe's engineering and return sky science, there were high hopes for the lunar flight, launched January 26. 

Things went badly from the beginning.  Ranger 3 was pushed into a bad trajectory by a faulty guidance system.  Not only did it rush past the moon, failing both to hit the target or end up in orbit, but it was pointed the wrong way the entire length of the journey.  No useful data or pictures were obtained.  That nifty seismometer that makes up Ranger's Rudolph nose went completely unused. 

Ranger 4, a carbon copy of #3, should launch in the next few months.  Hopefully, they'll have the kinks worked out by then.  This is one of those clear places where the Communists are ahead in the space race, having pioneered both lunar orbit and the moon's surface several years ago.

A rain check for Mercury

The third time turned out also not to be the charm for Major John Glenn.  His orbital Mercury mission has now been postponed three times.  It's a good thing the Marine is so good-natured; I know I'd be frustrated.

The first delay happened on January 22 when there was a failure in the spacecraft's oxygen system.  Definitely something I'd like working on a five hour flight!  On the 27th, cloud cover prevented the launch, and just today, there was a problem with the temperamental Atlas booster.  The next opportunity to launch won't come until February 13.

So much is riding on this flight.  The Soviets have already launched two of theirs into orbit while we flutter futilely on the ground.  Newspapers and talking heads are already opining that we'll have a Red-staffed space station and a Red-dominated moon before long if we don't hurry to catch up. 

Explorer 12: Reaping the harvest

Here's the good news: I've said before that the most exciting thing about a satellite is not its fiery launch but the heap of data it returns.  That's where the taxpayer gets one's money's worth and where the scientist sees the payoff.  Explorer 12 was the latest in the series of probes (starting with America's first, Explorer 1) sent into orbit to probe the hellish fields of charged particles that circle the Earth.  The spacecraft is still up there, though it went silent in December.  However, in its four months of life, it learned a great deal about the furthest reaches of our planet's influence.

For one, Explorer 12 found that the outer of the two "Van Allen" belts around our planet is made mostly of protons rather than electrons (though there are still plenty of the latter — enough to make hanging around a dangerous proposition for astronauts).  Those protons, particularly the less energetic ones, have been linked to solar magnetic storms, which result in spectacular auroras on Earth.

Perhaps even more interesting is that the probe found the edge of the Earth's magnetosphere.  "What's that?" you ask.  Well, our planet is a giant magnet, probably the result of a dense iron core that spins deep inside the Earth.  These magnetic lines of force extend far beyond the Earth's crust and 70,000 kilometers into space where they trap the wind of high energy particles from our sun.  This keeps them from scouring away our atmosphere. 

Where our magnetic field meets the field carried on the solar wind, called the magnetopause, there is an area of turbulence and disorganized magnetism. It is now believed that the sun's wind smashes against the Earth's field, creating a bow shock – the kind you'd see when a blunt body is smacked by a supersonic gas.  Moreover, the Outer Van Belt "breathes" inward and outward, responding to waves in the solar wind.

And speaking of magnetic fields, NASA scientists just released findings from the intentionally short-lived Explorer 10 found a magnetic "shadow" behind the Earth.  Specifically, the solar wind seems to hit our planet's magnetosphere and deflect around the Earth, but the magnetic field acts as kind of an umbrella, shielding a large portion of near-Earth space. 

The general contours of Earth's magnetic environment have thus been mapped.  Neat stuff, eh?

[November 30, 1961] Man vs. Machine (November 1961 Space Round-up)


by Gideon Marcus

November 1961 been an exciting month for space buffs with several sequels to exciting missions as well as one brand new satellite. 

For instance, the fourth Transit navigational satellite went up on November 15.  Not only did it carry a little nuclear reactor for power, but it also had a piggyback pal.  Called Transit Research and Attitude Control (TRAAC), it's a little research probe designed to try a new method of stabilization.  You see, an object launched into orbit will have a tendency to tumble.  There are active methods to right a satellite, like engines or gyroscopes.  TRAAC uses a passive method, employing just its shape and the tidal force of the Earth.  It's an exciting experiment.

The Air Force was two for three this month with their reconnaissance programs.  Discoverer 34, on November 5, and Discoverer 35, on November 15, were sent into space to spy on the Soviet Union.  Each had a little camera on board and a capsule for sending film back to Earth.  Both craft made it into orbit, and at least the latter mission's payload was recovered in a daring (but now routine) mid-air catch by a plane.  Only the boys in blue know whether the targets were a Soviet base or skinny dippers on the Black Sea.  Samos 4, launched November 22, failed to orbit.

By the way, it's going to get harder for me to give you the skinny on military missions.  While Eisenhower was rather cavalier about letting the Soviets know what we're up to, probably to show off, President Kennedy has put a lid on spy flights.  Newspapers aren't covering them much anymore, and the details we do get are sketchy.  Just be aware that, at any given time, there are robot shutterbugs in orbit, taking snapshots of Nikita.  And maybe of you.

On to the civilian world: the second Moon probe Ranger probe was a bust, just like the first.  It's a shame because these two missions, comprising the first iteration of the probe known as "Block 1," were designed to do some excellent sky science.  They weren't aimed at our celestial neighbor.  Rather, they were to be flung into high orbits for engineering tests and cosmic investigation.  The next mission, a Block 2 lunar impactor, is planned for January 1962.

But the real NASA news this month involves a little primate named Enos.  Yesterday, for the second time, an Atlas booster roared into the orbit from Cape Canaveral with a Mercury capsule at its tip.  Unlike the last one, however, Mercury-Atlas #5 (the first three had been suborbital missions) carried a passenger.  The 37.5 pound chimpanzee circled the Earth twice before safely splashing down some 255 miles southeast of Bermuda.

Just as the launch of a chimp presaged Alan Shepard's suborbital flight in May, so Enos' jaunt paves the way for astronaut John Glenn to be the first American in orbit in just a few weeks (weather permitting).  Now, the flight was not entirely flawless.  A roll reaction jet failed, and one of the components of the electrical system overheated.  As a result, Enos' capsule returned to Earth after just two of the planned three orbits.  But, had a human been on board, he could have compensated for these issues, easily. 

That's the bigger story, to me.  I know some people wonder why we bother to send people up into space when electric implements have proven capable enough, and cheaper.  And there is certainly a segment of the flyboy population that snickers at the thought of test pilots relegated to following in the furry shoes of ape predecessors. 

Yet, in MA-5, we have the reason.  No monkey and, as yet, no machine can react with the speed and intellect of a human.  Moreover, no machine can think creatively, adapting to an evolving situation beyond a few set scenarios programmed into its core.  Imagine if an astronaut were flying the Discoverer missions.  He'd have the discretion of choosing the targets to photograph.  He'd be able to bring a film capsule home with him rather than relying on complicated automatic systems and aerial recovery planes. 

When John Glenn flies, he will return far more information about the universe than any experiment or animal could, not just scientific, but about the human condition.  For 270 minutes, he will be an outpost of the Free World in space.  What will it mean to him, to all of us, his three circuits of the globe? 

We can't know until he gets there, but I'm betting it will be profound.

[October 28, 1961] Heavy Lifting (Saturn C-1 SA-1)


by Rosemary Benton

It's a great leap forward for the United States.  This morning, October 28th 1961, one can open the newspaper and learn about yesterday's launch of the Saturn C-1.  Some of us even saw the live coverage of the launch on television, watching as the giant rocket blasted off from Cape Canaveral in Florida and flew 95 miles into the air before plunging into the Atlantic Ocean.  A rocket this powerful has never been launched before, and I can only imagine that the scientific community must be trembling like the ground beneath Saturn C-1's S-1 first-stage cluster of nine tanks and eight engines. 

It was, quite simply, the biggest rocket ever launched.  By far.

As the world reaches farther and farther past the stratosphere, I wanted to take a look into the recent past in order to better appreciate where we are today.  The development of this impressive rocket was a potent combination of money, ambition, and potential, beginning in December 1957 when renowned rocket scientist Dr.  Wernher von Braun and his team proposed the creation of a booster with one million five hundred thousand pounds of thrust – that's five times that of the Atlas (the rocket that will take an American astronaut into orbit).  The Department of Defense listened, and by August 15, 1958 the Advanced Research Projects Agency (ARPA) began work at the Redstone Arsenal to create the vehicle that would culminate in the tower of flame that lifted slowly, inexorably, from its Florida launchpad yesterday.

The initial design of the booster was something of a lash-up, fusing the liquid oxygen and fuel tanks from the Redstone and Jupiter missiles with the tried and true S-3D engine from the Thor and Jupiter missiles.  After significant retooling, the upgraded S-3D engine was clearly a new beast.  So it got a new name: H-1.  As the development of the H-1 continued through 1958, ARPA began to take a more ambitious approach to the aims of the project.  It would not be enough to develop a booster capable of propelling enormous payloads.  Instead they set their sights on creating a multistage carrier vehicle for a long term manned expedition to space.  The result was the October 1958 project tentatively called Juno V, the name indicating the booster's kinship with its predecessor Juno rockets) based on the Jupiter missile.  The project quickly outgrew any resemblance to the Jupiter family.  On February 3, 1959 that the ARPA renamed the project after the next planet out from the Sun: Saturn. 

Saturn's development has been nothing less than breakneck.  Dr.  Von Braun's group at the Army Ballistic Missile Agency (ABMA) delivered the first production H-1 engine on April 28, 1959 and successfully tested it on May 26.  The Department of Defense prioritized the civilian Saturn.  July of that year was a particularly productive month.  At Cape Canaveral there began construction on a blockhouse for the project's Launch Complex 34, and the Redstone Arsenal shops shifted their focus away from Jupiter rockets in favor of the Saturn project.  By the end of July, the Army Ordnance Missile Command (AOMC) was ordered to cease work on the Titan second stage boosters in favor of the Saturn project. 

NASA stepped in to assume direction of the Saturn Project from ARPA on March 16, 1960.  From the start NASA saw the three stage Saturn C-1 as a starting point in the creation of more powerful, larger vehicles.  Through April and March of 1960, success after success met the Saturn project.  As is tradition, private companies were brought on board to design and construct components of the vehicle.  Contracts between NASA, Douglas Aircraft Company, and Pratt & Whitney, were drawn up in July and August of 1960 respectively.  Douglas Aircraft Company would be responsible for the conceptualization and production of the four-engine S-IV stage of Saturn C-1.  Pratt and Whitney would produce the LR-119 engines to be used in the S-IV and S-V stages. 

As forward thinking as he is driven, Dr. von Braun had bigger plans for the Saturn C-1.  In January 1960, shortly after Convair Astronautics submitted a proposal for an S-V upper stage for the Saturn vehicle, Dr. von Braun floated the idea past NASA administration that the developing lunar project “Apollo” did not need a three-stage C-1; two would be sufficient for the early orbital missions planned for the spacecraft.  His proposal was approved, and NASA removed the S-V stage.  But the S-V stage was not completely scrapped.  In May 1961 the S-1 stage of the vehicle was modified to allow the Saturn C-1 to be a two or three-stage vehicle, increasing its versatility. 

Even before its launch on October 27th, the Saturn C-1 design was already being improved upon in the form of the bigger C-2 and C-3 plans.  In March 1961, considerations were well under way to make use of the Centaur's LR-115 engines in Saturn C-2 rather than the more expensive LR-119 engines developed for Saturn C-1.  Fins were added to the C-2 design in order to make it more structurally sound, and the thrust capacities of the S-1 stage were reviewed for improvement.  Work continued to accelerate on the Saturn C-2 design until recently on June 23, 1961, when Dr. von Braun announced that the C-3 would hold priority over the C-2 due to the preferable use of the C-3 for the later stages of the Apollo project.

Even as the first of its family, the Saturn C-1 launch is a milestone of astronautics.  First and foremost it represents a great leap into the future of propulsion.  Developed under the guiding hand of Dr. von Braun, the The Saturn C-1 rocket itself is one hundred sixty two feet tall, four hundred sixty tons in weight, and packs one point three million pounds of thrust.  The payload of this particular rocket is 10 tons — far outstripping that of any previously launched rocket. 

More than anything, however, is the fact that the Saturn C-1 was a success on its first flight (albeit with a dummy 2nd stage — that will get tested next year).  This bodes well for future Saturn projects.  In terms of the evolution of rocket science, the C-1 has broken new ground in all aspects of rocket design, execution and function. 

The Saturn project has brought us one step closer to manned expeditions beyond orbital space.