Tag Archives: gus grissom

[January 28, 1967] "Fire in the cockpit!" (The AS-204 Accident)


by Kaye Dee

As I write this, I’m still in shock. It’s only a few hours since the news broke here in Australia of the tragic loss of the crew of Apollo 204 in a fire on the launchpad at Cape Kennedy, during a launch rehearsal. Spaceflight is difficult and dangerous – we know that. Astronauts Freeman, Bassett and See were killed in plane crashes during training; Armstrong and Scott had a narrow escape from inflight disaster during Gemini VIII.

Unconfirmed rumours abound of Soviet cosmonauts who died in unsuccessful space missions before Gagarin, and the Russians have probably had training accidents to which they have not yet admitted. When I wrote about Gemini VIII’s aborted mission, I asked if spaceflight was moving too fast. There’s certainly been a headlong rush on NASA’s part to get to the Moon ahead of the Soviet Union, so perhaps this tragedy is the answer to my rhetorical question.


The first image available showing the fire-ravaged interior of the Apollo 204 spacecraft

Details are still sketchy at this time, although no doubt more information about the accident will emerge in the coming days and weeks as investigations take place. But right now, let’s explore the background to the mission and what we know about the catastrophe.

The Lost Crew
Apollo 204 (AS-204) was intended to be the first manned test flight of the new Apollo Command and Service Modules, the spacecraft that will be used to carry the first NASA astronauts to the Moon within the next few years. As such, two experienced astronaut test pilots were assigned to the flight: USAF Lt. Colonels Virgil “Gus” Grissom, the Command Pilot, and Senior Pilot Edward White. Grissom was the United States’ second space traveller, flying the Mercury MR-4 mission. He also commanded the first manned Gemini mission, Gemini III. Rumour even has it that Grissom was already under possible consideration to command NASA’s first lunar landing mission. Lt. Col. White is famous as the first American to make a spacewalk, during Gemini IV. These veteran astronauts were joined for this mission by rookie US Navy Lt. Commander Roger Chaffee. Chaffee was selected as a member of the third astronaut group and specialised in communications: he had been a CapCom for both Gemini III and IV.


Official Apollo 204 crew portrait, including a model of the new Apollo Command Module which their mission was intended to test. Left to right Ed White, "Gus" Grissom and Roger Chaffee

The Apollo 204 back-up crew consists of experienced Mercury and Gemini astronaut Walter Schirra and first-time fliers Donn Eisele and Walter Cunningham. Astronaut Eisele had originally been assigned in Lt. Commander Chaffee’s role for the Apollo 204 mission but had to be replaced when he needed shoulder surgery in early 1966. I assume that once Apollo missions resume after the accident investigation, this crew will fly the first orbital mission that should have been accomplished by AS-204.

What’s in a Name?
The design for the official Apollo 204 patch, developed by the crew and illustrated by North American Rockwell artist Allen Stevens, carries the designation Apollo 1. At the time that it was approved by NASA, in June 1966, this was the flight’s official name. However, it seems that only recently some doubt arose as to whether the formal designation of the mission would be Apollo 1 after all, which is why it is presently being referred to as Apollo 204, or AS-204. I’ve heard from the Australian liaison officer at NASA, that just last week approval for the patch was withdrawn and that, if this accident had not occurred, the patch might have had to be redesigned, depending on the final mission designation.

But as it stands, the mission patch uses the American flag for a background, with a central image depicting an Apollo spacecraft in Earth orbit. The Moon appears to the right of the Earth, reminding us of the eventual goal of Project Apollo. The designation Apollo 1 and the names of the crew appear in a border around the central image, while the patch is edged with a black border – a touch that is poignantly even more appropriate in view of the loss of the crew. I do hope that this patch, and the designation Apollo 1, will be re-instated as the official insignia of this mission in honour of its lost crew.

The Mission that Should Have Been
The fire that has killed the Apollo 204 crew occurred during a preflight test ahead of a launch scheduled for 21 February. It was planned to be the first manned orbital test flight of the Apollo Command and Service Modules, launched on a Saturn IB rocket. The mission was to have tested launch operations, ground tracking and control facilities, as well as the performance of the Apollo-Saturn launch vehicle. Depending on how well the spacecraft performed, the mission might have lasted up to two weeks, perhaps equalling Gemini VII's record spaceflight and demonstrating that the Apollo spacecraft could function successfully for the duration of the longest Moon flights currently in planning.


The Apollo 204 crew in front of Pad 34, from which they should have launched, and where they have been killed

The Command Module allocated to Apollo 204, CM-012, was a so-called “Block I” version, originally designed before the lunar orbit rendezvous landing strategy was selected. Block 1 spacecraft aren’t able to dock with a lunar module, but future “Block II” versions will.

Was It a Lemon?
The Apollo Command and Service Modules are undoubtedly far more complex than any previously-built spacecraft, so it isn’t surprising that their development has had many teething problems. Over the last few months, I’ve heard from my former colleagues at the WRE that many issues with the Command Module became evident last year, especially when CM-012 was delivered to Kennedy Space Centre in August to be prepared for its flight. Even before it arrived, the Apollo 1 crew had expressed concerns to Apollo Spacecraft Program Office manager Joseph Shea about the quantity of flammable materials, such as nylon netting and Velcro, being used in the spacecraft cabin to hold tools and equipment in place. It seems that, even though Shea ordered these flammable materials removed, this may not have happened.


The Apollo 204 crew sent Program manager Jospeh Shea a parody of their crew portrait to express their concernes about the spacecraft. They are shown praying, and the picture carried the inscription: "It isn't that we don't trust you, Joe, but this time we've decided to go over your head"

When CM-012 arrived at Kennedy Space Center, there were still 113 significant planned engineering changes to be completed, and another 623 engineering change orders were made following delivery! This suggests that many issues with the spacecraft design were still being resolved. Apparently, the engineers in charge of the spacecraft training simulators just couldn’t keep up with all these changes, and I’ve heard that Lt. Colonel Grissom expressed his frustration about this by bringing a lemon from a tree at his home and hanging it on the simulator.


CM-012, at that time designated Apollo 1, arriving at Kennedy Space Centre

There were several problems with the environmental control unit in the Command Module, which was twice returned to the manufacturer for designed changes and repairs. During a high-speed landing test, when the Command Module was dropped into a water tank to simulate splashdown, its heat shield split wide open, and the ship sank like a stone! There were also apparently concerns about a propellant tank in the Service Module that had ruptured during pre-delivery testing. NASA had it removed and tested at Kennedy Space Centre to be sure there were no further problems. 

CM-012 finally completed a successful altitude chamber test on 30 December and was mated to its Saturn IB launch vehicle on Pad 34 at Cape Kennedy on 6 January. So, was this particular spacecraft a lemon – an accident waiting to happen? Or has this tragedy shown that the design of the Apollo Command Module is inherently flawed? We’ll undoubtedly have to wait for the results of the accident investigation before we know the answer.

Countdown to Disaster
At this point, we still know very little about the disastrous fire or what led to its breakout, but my WRE colleagues have helped me put together some information accident from their contacts at NASA. The fire broke out during what had apparently been a trouble-plagued launch simulation known as a "plugs-out" test. This kind pre-flight simulation is intended to demonstrate that the spacecraft will operate as it should on internal power, detached from all cables and umbilicals, and successfully carrying out this test was essential for confirming the 21 February launch date.


The AS-204 crew in the CM simulator on 19 January, as part of their preparations ahead of the "plugs out" test

Almost as soon as the astronauts entered the Command Module, there were problems when Grissom experienced a strange odour in his oxygen supply from the spacecraft, which delayed the start of the test. Problems with a high oxygen flow indication that kept triggering the master alarm also caused delays. There were also serious communications issues: at first, it was Command Pilot Grissom experiencing difficulty speaking with the control room, but the problems spread to include communications between the operations and checkout building and the blockhouse at complex 34, forcing another hold in the simulated countdown.

Fire Erupts
It was not until five and a half hours after the simulation began that the countdown finally resumed, and when it did instruments apparently showed an unexplained rise in the oxygen flow into the crew’s spacesuits. Within seconds, there were calls from the spacecraft indicating that a fire had broken out in the cabin and that the astronauts were facing a serious emergency, trying to escape. The final transmission from inside the spacecraft ended with a cry of pain.

Of course, there are emergency escape procedures for the Command Module, but with the triple spacecraft hatch, it requires at least 90 seconds to get it open, and it seems that the crew had never been able to accomplish the escape routine in that minimum time. There is some evidence that Lt. Col. White was trying to carry out his assigned emergency task of opening the hatch, but in the pure oxygen atmosphere of the spacecraft, the fire became incredibly intense very rapidly and rising internal pressure would have made it difficult, if not impossible to open the inward-opening hatch.


Picture taken shortly after the fire was extinguished showing the external damage to the Command Module caused by the hull rupture resulting from the fire

In less than 20 seconds from the first detection of the fire, the pressure inside CM-012 rose to the point where it actually ruptured the hull of the spacecraft, sending flame, heat and dense smoke into the pad service structure. The ground crew bravely tried to rescue the astronauts, but the dangerous conditions and unsuitable emergency equipment made it virtually impossible. Many were later treated for smoke inhalation. There were fears the CM had exploded, and that the fire might ignite the solid fuel rocket in the launch escape tower above it. If this happened, it could set fire to the entire service structure.

It took about five minutes for the ground crew to finally get the spacecraft hatch open, but their efforts were in vain, as the astronauts were already dead. The exact cause of death has yet to be determined: it may have been physical burns from the fire, or carbon monoxide asphyxia, from the fire's by-products.

Whatever the cause, three brave men have died, and an exhaustive investigation of the fire and its causes will now take place as part of the accident investigation. Exactly what effect this tragedy will have on the future of the Apollo programme will very much depend upon the findings of that investigation. If the design of the Command Module is found to be intrinsically flawed, the necessary redesigns could delay the programme for years, causing NASA to miss President Kennedy’s deadline for a Moon landing, and allowing the Soviet Union to overtake the United States again in the Space Race.

Grissom and White have both said in past interviews that they recognized the possibility that there could be catastrophic failures and accidents in spaceflight and that they accepted that possibility and continued with their work. I’d just like to give the last word in this article to Astronaut Frank Borman, who said in a 1965 interview "I hope that the people in the US are mature enough that when we do lose our first crews they accept this as part of the business". It would not honour the loss of the Apollo 204 crew if this tragedy led to the termination of the Apollo programme.





[March 24, 1965] New Leaps Forward in Space (Voskhod 2, Europa F-3, Ranger 9, and Gemini 3)


by Kaye Dee

Returning to university kept me pretty busy in February, so I knew I wouldn’t have time to write, but this past month has seen yet more leaps forward in space exploration with the world’s first spacewalk and the launch of NASA’s first manned Gemini mission.

Soviet Space Achievements

It’s hard to believe that it’s just under four years since Yuri Gagarin rocketed into orbit as the first man in space. In that short time we’ve seen six flights in the Soviet Union’s Vostok program, including the first dual missions with two space capsules in orbit at the same time, and the first woman in space (how I’d love to meet Valentina Tereshkova!)


The first man and the first woman in space, Soviet cosmonauts Yuri Gagarin and Valentina Tereshkova

Just last year, the USSR gave us the first flight of its new Voskhod spacecraft, carrying a crew of three. At that time, my fellow writer, Gideon Marcus asked, what would the Soviets follow it up with? (see October 1964 entry)

Now we know. On March 18, the USSR launched a new Voskhod mission that has once again denied the United States a significant space first. This time, the Voskhod 2 mission included the world’s first spacewalk – about a year ahead of when NASA has anticipated accomplishing the same feat.

A Mystery Spacecraft


One of the few Voskhod images released so far, showing the inside of Voskhod 1. The orange cladding may be covering up many of the spacecraft's instruments

We don’t know a lot about the Voskhod spacecraft as the Soviet Union has released few pictures of it or statistics about it. It clearly must be substantially larger than the Vostok, since it has proved capable of carrying three people on its first flight, and two cosmonauts plus an airlock device on the recent spacewalking mission. We do know that, according to official figures, Voskhod 1 weighed 11,728lb, while Voskhod 2 weighed in at 12, 527lb – presumably because of the extra weight of the airlock it carried.

Newly Revealed Cosmonauts

The crew for this historic space flight were two cosmonauts whose names were previously unknown to us in the West: Colonel Pavel Belyayev, the mission Commander, and Lt. Colonel Alexei Leonov, who performed the actual spacewalk, or Extravehicular Activity (EVA) as NASA terms it. Leonov’s name will now go down in the history books as the first person ever to step outside a spacecraft into open space. Soviet cosmonaut biographies don’t really tell us very much, but both men are apparently Air Force fighter pilots, and are married with children. At 39, Col. Belyayev is the oldest person so far to make a space flight; he is also the oldest and highest ranking of the cosmonauts we know about.


Official TASS photo of Belyayev (left) and Leonov (right) with Yuri Gagarin at a radio interview after their historic flight

Onboard Airlock

Voskhod 2 was launched at 07.00GMT (5pm Australian Eastern Standard Time) and it was just 90 minutes later, on the second orbit, that the spacewalk took place. At the time, Voskhod 2 was about 300 miles above the earth – the highest orbit by a manned spaceflight to date. Soviet sources describe the airlock that Leonov used to exit the ship as being mounted on the outside of the spacecraft and entered from the Voskhod cabin via a hatch. After the completion of the spacewalk, the airlock was jettisoned before the ship returned to Earth. Because the spacewalk would expose the crew to the vacuum of space if the airlock malfunctioned, both cosmonauts wore spacesuits for the duration of the mission, unlike the Voskhod 1 crew, who made their space flight in lightweight suits, which would seem to be an indication of Soviet confidence in the performance of the spacecraft.


Belyayev (left) and Leonov (right) in their spacesuits on the way to the launch site. Voskhod 1 cosmonaut Vladimir Komarov is between them

Stepping into the Void

According to the TASS news agency, Lt. Col. Leonov spent 20 minutes “in conditions of outer space”. Since his actual spacewalk lasted about 10 minutes, the rest of the time must have been spent in the airlock. I’ve heard a rumour from my friends at the WRE that the spacewalk did not go as smoothly as the Soviets would like us to believe, and that Leonov actually had some difficulty re-entering the airlock, which might explain the times reported by TASS. But stories of Soviet coverups of problems with their cosmonaut program occur after every mission, so it’s hard to know quite where the truth lies in this instance.


Lt Colonel Alexei Leonov floating in the void of space during the historic first spacewalk, seen in frames from the film taken by a camera mounted on Voskhod 2

Whether he had a problem or not, Leonov spent about 10 minutes floating in the void, attached to Voskhod 2 by a long umbilicus, to prevent him drifting away. His breathing oxygen was supplied from a tank on his back. Leonov said that he could look down and see from the Straits of Gibraltar to the Caspian Sea. The spacewalk was filmed and photographed from the Voskhod and I imagine that very few of the readers of this article will not have seen the breathtaking footage of Leonov somersaulting and making swimming movements as he floats in space with the Earth behind him (actually below, of course).

Problems in Orbit?

Voskhod 2 completed 17 orbits before returning to the Earth on 19 March, but there was a mysterious silence from Moscow about the mission after the 13th orbit, which has led to some speculation that there was a problem with the spacecraft, especially as it was not until about five hours after the crew had landed in the vicinity of Perm, west of the Ural Mountains, that their safe return was reported. Belyayev is reported to have brought the Voskhod back to Earth using manual controls. Although official statements said that this was part of the planned research programme, it might also be a hint that the mission experienced problems.


Official TASS photo of Leonov (right) and Belyayev (left) after their return from the Voskhod 2 mission. Leonov is holding folders containing congratulatory messages

But whatever problems the mission may have encountered cannot detract from Lt. Col. Leonov’s historic achievement in making the first spacewalk, a technique that will be needed to advance future space activities. I wonder what new surprises Voskhod 3 will bring….

The Latest ELDO Test Flight

On 22 March, the ELDO program at Woomera also took another step forward with the third successful flight of the Blue Streak first stage of the Europa launcher. Launched at 8.30am local time, the rocket flew 985 miles, reaching a maximum altitude of 150 miles. This flight completes the first phase of the launcher development program: the next phase will begin with an all-up test of a live first stage with dummy upper stages.


The Blue Streak first stage for the ELDO Europa vehicle on the pad awaiting launch


America hits a Double


by Gideon Marcus

Three for Three

Despite the clear success represented by Voskhod 2, it would be folly to overlook the fact that it has been a tremendous week for NASA.  The Ranger program, once the most ill-starred of NASA endeavors, has just completed its third successful mission in a row.  Less than six hours ago, at 3:08 AM PDT, Ranger 9 crashed into the crater Alphonsus in the lunar highlands.

The prior two successful Rangers, 7 and 8, were largely handmaidens to the Project Apollo.  They returned thousands of photographs of potential landing sites for the crewed lunar program.  Ranger 9, on the other hand, was the first mission with a primarily scientific aim.  In order for us to understand the Moon, its construction, and its history, we need close-up information on as many different types of terrain as possible — and no two regions of the Moon are more distinct from each other than the mountains of the lunar highlands and the relatively flat Maria or "seas".  Alphonsus is particularly interesting as it has a large central peak that may be evidence of lunar vulcanism from an ancient period.

Launched at 1:37 PM PDT on March 21, the Atlas Agena carrying Ranger 9 quickly disappeared into the cloudy sky.  The reliable booster's aim was true, propelling the spacecraft first into Earth orbit, and then off toward its final destination.  The next day, Ranger fired its own engines, correcting its course to mathematical perfection. 

Today, at Impact -20 Minutes, Ranger 9 warmed up its television cameras.  Images began appearing at the JPL auditorium…and around the nation, broadcast to anyone who was up to see it (and who had an online TV station to tune into!) This was the first time a robotic mission had been simulcast, and it was very exciting.  Now if only they could time their missions to be more accommodating to the aged thirty-nine year old science writers who cover them…

There were originally supposed to be 12, or even 15 Rangers, but because it took so long for them to work properly, there are now more advanced missions that are superseding them, namely Lunar Orbiter and Surveyor.  This is just as well.  While Ranger has been a triumph of engineering and science, bearing unexpected dividends in the successful spinoff spacecraft, Mariner 2, there is only so much one can learn from TV pictures.  Indeed, initial reports suggest that while Ranger 9's photos discovered new craters within Alphonsus that might be evidence for vulcanism, as Dr. Harold Urey quipped, it won't be until we have chemists on the Moon that we can draw solid conclusions.

In any event, bravo NASA, and bravo Ranger. 

Two in Three

After the spectacular mission of Comrades Tereshkova and Bykovsky in June 1963, there was a long pause in crewed spaceflight.  The Mercury program had ended in May '63 with the day-long mission of Gordo Cooper in Faith 7.  Talk of extending Mercury was poopooed (though you can get an idea of what might have happened if you read the excellent novel, Marooned).  For more than a year, as Mercury's 2-seat successor, Gemini, suffered delay after delay, we waited for Khruschev's shoe to drop.

And the Soviets did beat us back to space with their three-man flight last October, though the success of that mission was somewhat eclipsed by the Soviet coup that took place just a couple hundred miles beneath the orbiting space capsule.  Voskhod 2, with its remarkable space walk, only seems to further the Soviet lead.

Yet the American turtle still has ambitions to beat the Red Hare.  The third Gemini mission (the first and second were uncrewed test flights) had been planned for this month for some time, and yesterday morning, Gemini 3 took off from Cape Canaveral carrying astronauts Gus Grissom and John Young for a three-orbit test flight. 

A lot has changed since John Glenn's pioneering three-orbit flight in Friendship 7, just three years ago.  Both Grissom and Young were kept busy with a slew of biological experiments to conduct in orbit.  Grissom got to conduct the very first spacecraft maneuver, firing the ship's engines once per orbit to change its altitude and velocity.  Neither Mercury nor Vostok had this capability, and I haven't read anything that suggests Voskhod has it, either.  Score one for the home team!

In addition to the ordinary drama that attaches to every space mission, the astronauts created some of their own.  A couple of hours into the flight, as Gemini drifted along its second orbit, it was time for the astronauts to sample their carefully prepared space food.  This meal was lavishly prepared by NASA scientists to be nutritious, compact, and resistant to creating crumbs that could drift into and short vital ship components. 

Whereupon astronaut John Young pulled out a corned beef sandwich from his pocket, ate a bite, and offered it to his commander.  Grissom took a polite nibble, commenting on the sandwich's inability to stay together, and quickly put the thing in his pocket.  Apparently, this was all the brainchild of Schirra, the most renowned prankster of the Mercury 7. 

Beyond this incident, the very name Grissom chose for the first crewed Gemini was something of a scandal.  Christening a spacecraft has always been the privilege of its commander, and Grissom, sensitive to the fate of his last ship, chose an appropriate name: "Molly Brown."  This, of course, was the name of the eponymous character from The Unsinkable Molly Brown, a popular broadway musical about a survivor of the Titanic disaster.

NASA felt that the name lacked dignity and insisted on a change.  Grissom dug in his heels, insisting that if he had to change the name, it would be to Titanic.  NASA gave in.

Gemini 3 completed its three orbits without incident and reentered the atmosphere four and a half hours after leaving it.  Unfortunately, Molly Brown plunged back into the atmosphere somewhat off course.  Grissom tried to steer the capsule (such as it is possible to maneuver a shuttle-cock shaped craft) closer to the Atlantic recovery fleet, but the craft ultimately splashed down some 84 kilometers short.  It took a good half hour for the carrier, U.S.S. Intrepid, to arrive.  In the interim, Grissom and Young sweltered, the commander unwilling to open the capsule and risk another swamped spacecraft.  It is my understanding that Molly Brown is still decorated with Schirra's sandwich…

Minor issues aside, Gemini 3 was a fully successful flight, officially man-rating the Gemini spacecraft.  The next mission, currently scheduled for late spring, will feature the American version of the vacuum shuffle.  The first American spacewalk was originally planned for next year, but Leonov's jaunt changed all that.  Sometimes the rabbit gives the turtle a little goose…

(If you're wondering why the second Mercury astronaut got the honor of commanding the mission, it's because Alan Shepard, the first Mercury astronaut, has been taken off flight status due to an inner ear disease, and astronaut Slayton, the only Mercury astronaut who hasn't flown a mission, was grounded earlier for a heart condition.  I'd assumed that Wally Schirra would command Gemini 4 (Glenn retired to go into politics; Carpenter retired to become an aquanaut), and that Cooper would take Gemini 5.  Apparently, however, Ed White of the second group of astronauts so impressed his peers that he will command the next Gemini mission.  Because of the shifting Gemini schedules, Cooper is still taking Gemini 5, but Schirra is going after him, commanding Gemini 6.)

The Score

So there you have it.  In the last six months, the Soviets have orbited five men, one of whom stepped into Outer Space.  The Americans orbited just two, but they autonomously drove their own spacecraft.  Meanwhile, Ranger 9 raised the total of close-up pictures of the Moon to nearly 20,000 whereas the Russians still haven't added to the handful provided by Luna 3 more than five years ago!

I guess we'll see what happens.  Will the next flight be Gemini 4 or Voskhod 3?



We'll be talking about these space flights and more at a special presentation of our "Come Time Travel with Me" panel, the one we normally do at conventions, on March 27 at 6PM PDT.  Come register to join us!  It's free and fun…and you might win a prize!




[July 22, 1961] Into Space – and the Deep Blue (The Flight of Liberty Bell 7)


by Lawrence Klaes

After three failed attempts just this week, yesterday (July 21, 1961), astronaut Virgil I. “Gus” Grissom finally became this nation’s second (and the world's third) man to reach outer space.  Grissom achieved another sort of milestone when his spacecraft unexpectedly sank after splashdown – and almost took the astronaut with it to the bottom of the Atlantic Ocean!

Following a very similar mission profile to that of his predecessor, Alan Shepard, back on May 5, Grissom rode his Mercury vessel, which he christened Liberty Bell 7 (complete with a painted white crack on the hull) in an arcing flight across the Atlantic Ocean from Cape Canaveral’s Launch Complex 5 (LC-5) in Florida.

The reliable Redstone booster hurled the ton-and-a-half craft, some 262.50 nautical miles downrange and 102.76 nautical miles above the Earth’s surface Grissom’s 15-minute suborbital flight lasted just nine seconds longer than Shepard’s.  Of course, both flights were far shorter than Cosmonaut Gagarin's 90-minute flight in April.  That's because the Redstone simply isn't powerful enough to send a Mercury into orbit, unlike the unnamed ICBM the Soviets are using. 

Grissom’s flight was relatively short in both duration and distance, but our second American astronaut did get to experience a few moments of weightlessness, move his ship around, and view our home planet and the blackness of space as few have yet to do.  His view was better than Shepard's: The two portholes on Freedom 7 were replaced with a larger single window. 

The other improvement on Liberty Bell 7 was an explosive side hatch, to be activated in the event of emergency after landing.  It was a wise precaution, but it almost caused the Mercury program's first fatality.

After Grissom's splashdown in the Atlantic, while he waited inside his space vessel to be rescued by four Sikovsky UH-34D helicopters dispatched from the aircraft carrier USS Randolph, the explosive release on the Liberty Bell 7 side hatch suddenly activated, blowing the heavy metal door across the water like a skipping stone.  The Atlantic Ocean rushed into the now open spacecraft.

The Mercury astronaut prudently abandoned his vessel and waved frantically at the hovering helicopters to hoist him out of the drink: Grissom’s spacesuit was filling with sea water due to an open oxygen inlet connection and it began weighing him down.  The rolls of Mercury dimes Gus had taken along in his suit to later hand out as souvenirs were also contributing to his inexorable dip beneath the ocean surface.

Unfortunately, the lead helicopter pilot interpreted Grissom’s reaction as an indication that he was okay, so they focused on trying to rescue the sinking Liberty Bell 7 by attaching a cable to it>.

The flooding Mercury spacecraft soon became too heavy for the helicopter to lift from the water, and it threatened to bring down the chopper and its crew as well.  With no other choice, the rescue team detached Liberty Bell 7, which quickly sank to the bottom of the ocean over seventeen thousand feet below. 

Attention finally returned to the desperate astronaut.  Grissom grasped for the lowered harness.  Exhausted, he slumped in the harness as he was retrieved for his trip back to the rescue ship. 

It remains to be determined whether the premature explosion of the side hatch was caused by a mechanical defect or by manual release by Grissom, perhaps in a momentary panic.  Gus himself swears he was lying calmly inside the spacecraft when the incident occurred.  Whatever the real story, engineers will need to check the hatch escape system thoroughly to make sure it does not happen again – especially in space!  Perhaps this system will be more fully tested during the next Mercury mission, another suborbital flight scheduled for September, with John Glenn the anticipated pilot.

Intriguingly, in his post-flight briefing this morning, attended by his family and fellow astronauts, Grissom admitted to feeling “scared” when his vessel lifted off towards space.  The Mercury spacemen were chosen for their exceptional bravery and flying skills.  Yet, in the end, they are human.  Did Gus, who flew 100 combat missions during the Korean War and has had a long reputation as a top-notch pilot, have a moment of weakness when confronting the unknowns of outer space?  Is this what contributed to the release of the spacecraft hatch that caused the loss of the Liberty Bell 7 and nearly the astronaut as well?  Are there aspects about the vast realm beyond Earth that may make it impossible for a man to extensively explore and colonize space?

At the moment only three human beings have actually ventured into the alien void.  All have returned alive and unharmed; however, in all of these cases they made only the briefest of ventures into space.  Can someone survive the longer durations entailed in extended orbital missions?  What about manned expeditions to the Moon and other worlds in our Solar System?  Can man make it to those places in person and live to tell the tale?

In the end, there can be only one way to find out: by sending qualified men and eventually even women into the Final Frontier to confront what may be there and conquer it for the good of humanity.