Tag Archives: orbiting vehicle

[July 16, 1968] Hitching a Ride to Orbit (Orbiting Vehicle Satellite Series)



by Kaye Dee

The continuing hiatus in American and Soviet manned spaceflight and the present lack of unmanned lunar and interplanetary missions, has been a blessing as well as a disappointment. It's given us an opportunity to focus on some lesser-known US and USSR space programmes that are quietly going about their business largely unreported. One such is the US Air Force’s Orbiting Vehicle programme, which saw its most recent launch just a few days ago. While the Traveller has previously taken a look at some early OV1 series missions, the whole thing is worth looking at–it's really quite exciting!

Hitching a Ride on an ICBM
When the Air Force Office of Aerospace Research (OAR) was looking for a means to conduct space experiments at the lowest possible cost, it conceived the idea of using small satellites of a standardised design, launched as secondary payloads piggybacking on Atlas ICBMs being flown for missile technology development. After all, Atlas vehicles have been used to launch satellites as far back as 1958 (Project SCORE), as well as launching all the orbital missions of NASA’s Mercury programme.

This concept led to the development of Orbiting Vehicle (OV) programme, initially created in the early 1960s under the name SATAR (SATellite for Atmospheric Research). SATAR was an extension of the "Scientific Passenger Pods" (SPP) flown as external payloads on suborbital Atlas missile tests to conduct scientific experiments during their brief time in space. In its original form, SATAR was to use a larger version of the SPP, called the Atlas Retained Structure (ARS), that would carry a small satellite with its own propulsion system. When the Atlas missile reached its apogee, the satellite would be deployed from the ARS, using its propulsion system for orbital insertion.

Renamed the Orbiting Vehicle programme around 1963, this project now includes five separate series of standardised satellites, designated OV1 through OV5, each designed for a specific research goal.

OV1-3 launches in a side pod on an Atlas missile ABRES test flight

Launching OV1
The first series of OV satellites – which has seen the greatest number of launches to date – is OV1, developed by the Convair Division of General Dynamics, which also produces the Atlas vehicle. Initially, OV1 satellites were going to be launched on Atlas missiles testing nosecones for the Advanced Ballistic Re-Entry System (ABRES). However, only OV1-1 and OV1-3 ever flew piggyback on an ABRES mission, mounted in pods on the side of the missile. Both satellites were, unfortunately, unsuccessful.

View of the OV1-2 launch showing the twin top-mounted pods. Although there were two pods, only a single satellite was launched on this flight

The other OV1 missions so far have been launched on dedicated Atlas D and F boosters (retired from the ICBM programme) purchased by the OAR for the OV1 series. These flights use two modified SPP pods mounted side-by-side on top of the Atlas, enabling two satellites to be launched on each OV1 flight. The only exceptions to date have been OV1-6, which flew on the Manned Orbiting Laboratory test flight on 2 November 1966, and OV1-86, carried in a side-mounted pod on the same launch that lofted OV1-11 and OV1-12.

Small but Versatile
Using a standardised satellite design has enabled experiments to move rapidly from proposal to launch, the process taking just fifteen months on average. The operational design of the multi-purpose OV1 spacecraft is a cylinder 4 ft 6.6 in long and 2 ft 3 in in diameter, with a cap on both ends covered with 5000 solar cells producing 22 Watts of power. The satellite is attached to a discardable propulsion module using an Altair 2 solid-fuelled motor for orbital insertion. It has two 1 ft 6 in antennae for command and telemetry, with attitude control provided by hydrogen peroxide thrusters. The use of a Sun sensor to determine the spacecraft's orientation to the Sun commenced with OV1-7, while OV1-13 and OV1-14 introduced advanced digital telemetry, which has improved the data return from the satellites. OV1-1 undergoing a balance test prior to launch

Since the launch of OV1-1, on 21 January(GMT) 1965, 17 OV1 series satellites have so far been launched, with more apparently on the way. Only five have failed in some way. The basic purpose of this series is research into fundamental properties of the upper atmosphere and the space environment. This has meant that, unlike the experiments and results from most USAF satellites (and other OV series), which remain classified, the details of OV1 experiments have been published. But will we ever find out how closely the OV1 missions are related to the classified programs?

OV1 Highlights
Notable missions of the OV1 series so far have included OV1-4, launched 30 March (GMT) 1966, which carried three Tissue Equivalent Ionization Chambers, similar to one flown on Gemini 4, NASA’s first spacewalk mission. This data has helped to quantify the radiation hazard that astronauts face on long-duration missions in orbit.

OV1-6, launched on a Titan IIIC with the Manned Orbiting Laboratory test flight in November 1966, uniquely carried several inflatable balloons. Once ejected into orbit, they served as optical targets for ground-based observations, apparently to determine the value of inflatable decoys in confusing anti-missile systems.

PasComSat , or OV1-8, was launched on 14 July (GMT) 1966 and used for passive communications tests, designed to compare the advantages of a grid-sphere satellite against a balloon similar to the Echo series. Its non-standard design comprised a 30ft diameter open spherical grid of soft aluminium wires embedded in an inflatable plastic balloon. The entire satellite, with its unique propulsion module, weighed just 23lb. The satellite’s structure was also intended to demonstrate the feasibility of erecting an open grid structure in space, as the polybutyl methacrylate plastic of the balloon was designed to break down after a few days under the sun's strong ultraviolet rays, leaving the open aluminium structure in orbit. Tests indicate that the grid-satellite will remain in orbit for at least 11 years and have measured its reflective power as five times greater than that of a solid sphere.

OV1-9, launched in December 1966, carried a number of radiation experiments and was still aloft in late May 1967, during an intense period of solar and magnetic activity. Its data proved the existence of the Earth's electric field, which had long been theorised. OV1-10, OV1-9’s launch twin, returned the most comprehensive set of solar X-ray observations to date and also carried a cosmic ray telescope.

A unique “triple launch” took place on 27 July (GMT) 1967, with OV1-86 flying in a side-mounted pod and OV1-11 and OV1-12 positioned on top of the Atlas D launch vehicle. OV1-86 was an opportunistic mission composed of the unused satellite body originally intended as OV1-8, coupled with the unused OV1-6 propulsion module, which was not required for its Titan IIIC launch. The satellite carried a cosmic ray telescope, as well as equipment measuring the temperature radiation properties of different types of Earth terrain, mapping the Earth in the near-infrared spectrum. Although OV1-11 failed to orbit, OV1-12 carried the Flare Activated Radio-biological Observatory, equipped with a suite of eleven experiments to study the radiation hazard from solar flares.

The first Atlas F launch of the OV1 series placed OV1-13 and OV1-14 in orbit on 6 April (GMT) 1968. Both satellites were designed to focus on measuring radiation in space, although OV-14 ceased operating after one week in service. OV1-13 recently measured increases in the energy and intensity of electrons during a geomagnetic storm that took place 10 June 1968, and it is hoped that its data will shed light on how the particle flow caused by solar storms creates these high altitude increases. OV1-14


Spades and Cannonballs
The most recent OV1 launch took place on 11 July, carrying both a standard satellite and the second non-standard spacecraft in this series. OV1-15 has a suite of experiments developed by The Aerospace Corporation designed to study the response of the upper atmosphere to solar and magnetospheric disturbances. It is hoped that the Solar Perturbation of Atmospheric Density Experiments Satellite (SPADES) group of complementary experiments will help to identify the cause of large and sudden fluctuations encountered in satellite trajectories, he ultimate goal being an ability to predict these fluctuations and their magnitude. OV1-16 is another non-standard satellite, also known as LOADS (LOw Altitude Density Satellite) and Cannon Ball. This unique satellite is designed to have a large a mass/area ratio, so that they can remain in orbit at lower altitudes than conventional satellite, enabling measurements of the atmospheric properties at around 65-90miles altitude. This lower thermosphere region is a largely unknown part of the atmosphere. Cannon Ball lives up to its nickname, as a sphere with a diameter of only 24 inches, although its total weight is 600 lb, largely due to a 1.5 inch thick shell of brass! Concerns about heating by sunlight and atmospheric heating caused by orbiting at low altitude meant that the satellite body has been painted black (to increase radiation) with some gold-plated circular areas. If this experiment goes well, there may be further OV satellites of this type.

Unlucky So Far!
The OV2 series could be considered the “unluckiest” of the Orbiting Vehicle projects to date. Out of four flights, two have failed and two were canceled! The series was originally devised within the ARENTS (Advanced Research Environmental Test Satellite) programme, with the satellites intended to complement the Vela programme, monitoring for violations of the 1963 Partial Test Ban Treaty. However, with the cancellation of ARENTS, OV2 became something of an “orphan” series, its initial three satellites each tasked with quite different research.

OV2-1 shortly before launch, with its experiment package labelled

OV2-1, launched 15 October (GMT) 1965, was intended to monitor the biological hazards of near Earth charged particles, but failed to separate from its launcher. OV2-2, planned to conduct optical measurements from orbit, was cancelled, as was the OV2-4 satellite, added to the programme and designed to observe radiation from trans-lunar orbit. OV2-3, intended to undertake radiation studies, failed when contact was lost after launch on 21 December (GMT) 1965. A fifth OV2 satellite has been authorised and is due for launch later this year to conduct astronomical research and radiation studies. Produced by Northrop and launched on Titan III test flights, the spin-stabilised OV2 satellites had cubic bodies made of aluminium honeycomb, approximately 2ft on a side. Attached to each of the four upper corners of the satellite are 7ft 6in paddle-like solar panels each carrying 20,160 solar cells, although the satellites also have Nickel-Cadmium to operate while in the Earth’s shadow.

Taking a Scout
In a departure from the earlier series, OV3 satellites have all been launched on Scout boosters, used with many civilian satellite programmes, such as the Explorer series. OV3-1 to OV3-4 were built by the Space General Corporation (part of Aerojet), while OV3-5 and 6 were constructed by the Air Force Cambridge Research Laboratory (AFCRL), which also managed the entire series.

Octagonal prisms in shape, the first four OV3 satellites were 2ft 5in in length and the same dimensions wide, with their experiments carried on long booms. With a design life-span of one year, the satellites were covered with 2560 solar cells. OV3-5 and OV3-6 were a little smaller than their predecessors, being only 1ft 9in in length.

The initial group of OV3-1 to 4 were devoted to radiation studies and launched across 1966. OV3-2 made important charged particle observations in conjunction with the 12 November 1966 South American solar eclipse that was also observed by Gemini 12. Other observations and auroral research were also co-ordinated with airborne observations by AFCRL KC-135 aircraft and sounding rocket flights by the National Research Council of Canada.

VLF receiver data from OV3-3 determined the location of the plasmapause (the outer boundary of the Earth's inner magnetosphere), while the satellite also carried out radiation studies using the same suite of instruments as the failed OV2-1. OV3-4 data contributed to the refinement of theoretical models of astronaut radiation dosage.

The final two OV3 missions, in 1967, were focussed on ionospheric research. While OV3-5 failed to achieve orbit, OV3-6, launched 5 December (GMT) 1967 was quite successful. Also known as Atmospheric Composition Satellite (ATCOS)-2, its data is being used to create more accurate atmospheric models.

Despite keeping costs low by using off-the-shelf components, the OV3 programme was phased out after OV3-6, in favour of the cheaper OV1 programme.

Whispering Galleries
Just as particular physical conditions create the “whispering gallery” phenomenon under the dome of a building, the OV4 series satellites was initially created to investigate long range radio propagation in the charged atmosphere of the ionosphere. Each OV4 launch was intended to consist of a pair of satellites, one being the transmitting spacecraft, the other a receiver. However, only the OV4-1 mission was flown in this way with the OV4-2 pair cancelled. OV4-1R and OV4-1T shortly before launch

The OV4-1 satellite pair were both cylindrical, 1ft 5in in diameter, with domed upper ends. 2ft 11in long, they were powered by silver oxide/zinc batteries which gave them a 50-day lifespan.

Launched on a Manned Orbiting Laboratory (MOL) test flight on 3 November (GMT) 1966, OV4-1T carried a transmitter broadcasting on three frequencies in the 20-50 MHz range. To maximise its orbital separation from the OV4-1R receiver satellite, OV4-1T incorporated a small rocket motor. The two satellites were launched into slightly different 190-mile orbits, allowing them to test “whispering gallery” communications over a range of distances. This enabled the OV4-1 satellites to evaluate using the ionosphere's F layer as way to facilitate HF and VHF transmissions between satellites not in line of sight of each other.

Apart from being designated as part of the OV4 series, OV4-3 launched on the same Titan III flight as the OV4-1 pair, was a quite different spacecraft, being the boiler plate model of the Manned Orbiting Laboratory. The reconditioned Gemini 2 (originally flown on a sub-orbital flight on 19 January 1965), was attached to the MOL model. Little Stars
The most recent of the Orbiting Vehicle programme to date, with the smallest satellites, the OV5 series is a continuation of the Air Force's earlier Environmental Research Satellite (ERS) series. OV5 satellites are upgraded versions of the original ERS satellites developed by Space Technology Laboratories (part of TRW Inc), modified with a command receiver, allowing instructions to be sent from the ground, and advanced digital telemetry.
Spin-stabilized, for improved communications and solar power reliability, OV5 series satellites are tetrahedral in shape and made of aluminium struts. Just under 1ft in width, each satellite carries 816 solar cells distributed over its eight triangular faces. Power is stored in a nickel–cadmium battery and experiments are mounted on the vertices of the tetrahedron.

Passive thermal control keeps the inside of the spacecraft at around 59 °F, and an on-board timer is designed to shut off each satellite after 18 months of operation. Telemetry is broadcast on frequencies compatible with NASA Spacecraft Tracking and Data Acquisition Network (STADAN) stations, enabling the satellite data to be received at multiple locations.

The first two OV5 satellites, OV5-1 and OV5-3 were launched on 28 April (GMT) 1967 on a Titan IIIC vehicle. OV5-1, also known as ERS 27 is an X-ray measuring microsatellite associated with the US Air Force's “space weather” prediction programme. OV5-3, also known as ERS 28, is a materials science research project, carrying a variety of metal samples and Teflon, to investigate how they are affected by long-term exposure to the space environment. OV5-2, another materials science research experiment, is due to be launched later this year.

While the Orbiting Vehicle programme has developed somewhat differently from the original concept, insofar as it has largely transitioned away from hitchhiking on various test launches, the OV1, 3 and 5 series satellites have demonstrated the value of using standardised designs as a means for cheap and relatively rapid development and launch of space research instruments. The OV1 and OV5 programmes look set to continue for some years to come and will hopefully contribute further significant data towards our understanding of the space environment. 

So, here's to "micro" satellites–perhaps they presage the future of cheap space development!



[December 20, 1966] Above and beyond (January 1967 Fantasy and Science Fiction and a space roundup)

[Today is the last day you can sign up at the reduced rate for next year's Worldcon.  Don't miss your chance to vote in next year's Hugos!]


by Gideon Marcus

Science Fact

In '57, Asimov stopped being a full-time science fiction writer to become a full-time science columnist, a change in vocation that has largely been a positive one.  Why did the creator of Nightfall, Foundation, and Susan Calvin make the leap?  Because, with the launch of Sputnik, science fiction had suddenly become reality, and the front page of the newspaper contained some of the most thrilling SF headlines going.

That trend has only accelerated.  This month, we entered the next stage of space travel, not with a flashy Gemini launch (though those are nifty!) or our first manned trip to the Moon, but with something called ATS.

NASA's "Advanced Technology Satellite" went up on December 7, 1966.  Some satellites, like TIROS, are weather satellites.  Some, like SYNCOM, relay communications.  ATS is the first to do both, and from geostationary orbit.  At its altitude of 36,000 km, it takes exactly 24 hours to circle the Earth.  Thus, from the ground, it appears to be standing still.  Equipped with a "spin-scan" camera, every 20 minutes, ATS sends back a full-globe image of the Earth with a resolution of just 3km.  For the first time, we have essentially real-time weather coverage of an entire hemisphere.

No less ambitious, but sadly less successful, was last week's three-day "Biosatellite" mission.  Biosat is the first in a series of spacecraft that will observe the long term effects of orbital life on a variety of organisms.  On board are a menagerie of bugs (including the ever popular fruit flies) as well as seeds and plants.  The plan was to launch the mission on the 14th and then bring it back on the 17th, observing the effects of weightlessness and radiation on the living cargo.  A retrorocket malfunction stranded the satellite in orbit, however.  I suspect the SPCA is filing a lawsuit as we speak…

NASA isn't the only American agency conducting science.  Last week, the Air Force launched two satellites at once in its low-cost "Orbiting Vehicle" series, OV1-9 and OV1-10.  Normally, these go into polar orbits, but the latest duo follow more conventional paths.  For the most part, these little guys investigate radiation, radio propagation, and other near-Earth conditions.  This is all of great interest to an organization that wants to put flyboys in a Manned Orbiting Laboratory next year, but there's also a valuable scientific yield for the rest of us.

Science Fiction (and Fantasy)

After all that exciting real-world news, could an SF magazine hope to provide the same thrills?  Turns out the first 1967 issue of Fantasy and Science Fiction does!


by Gray Morrow

The Little People (Part 1 of 3), John Christopher

Bridget Chauncey is the heir to a most unusual estate in rural Ireland: a run-down country home built on the site of a ruined castle.  Enchanted with the place and its commercial opportunities, she essays a trial season running the place as a vacation lodge.  An odd assemblage of characters are introduced: a bickering middle-aged couple and their daughter on the edge of womanhood, a ruddy Wehrmacht veteran and his half-Jewish wife, Bridget's practical fianceé, Daniel, the estate handler's son, Mat, and the cook and maid. 

The Little People is slow to start, author Christopher allowing us to settle into the heads of each member of this queer group.  But when a two-inch sandaled footprint is discovered, and linked to the recent rash of minor thefts, the identity of the culprit(s) quickly is determined.

Fairies are real.

This is where we leave off this compelling chapter.  I look forward to the ramifications of "first contact" between giant and wee folk.  Four stars.

The Star Driver, J. W. Schutz

Less impressive is this tale of a man stranded on an asteroid with rapidly diminishing air reserves.  Rescue depends on propelling a beacon to orbital velocity.  This Analog-ish tale would have been better served had the ending not been spoiled from the start by editor Ferman (and to some degree, the title). 

On the other hand, I don't want to discourage F&SF from publishing, well, SF.  So, a low three stars.

Interplanetary Dust, Theodore L. Thomas

Thomas suggests that the flux of micrometeoroids around the Earth might be netted up and squashed into a planetoid to live on.  I don't think he's researched how thin that flux actually is.

Two stars.

The Disenchanted Symphony, James G. Huneker

Here's a reprint from the turn of the century!  A Russian composer, infatuated with the link between music and mathematics, creates a symphony that punches a hole through the fourth dimension, whisking his wife and his orchestra away from our plane of existence.  Can he get them back?

I was impressed with how modern this story felt.  Judith Merril expressed in her Books column this month that SF owes much of its present sparkle to works created more than fifty years ago.  She was talking about H.G. Wells.  This sentiment could easily be said of Mssr. Huneker as well.

Four stars.

Bait, Bob Leman

Sometimes what a door-to-door salesman is peddling isn't the product he has on display.  This is a deliciously subtle tale that gets better after a night's thought on it.

Four stars.

The Knight-Errant, the Dragon, and the Maiden, Gahan Wilson

Sometimes the dragon is a chaperone, not a jailer.

Cute.  Three stars.

Right Beneath Your Feet, by Isaac Asimov

We're back to lists and geographical tidbits from The Good Doctor this month, this time describing what places lie directly opposite others on the globe.  Well, at least I learned the etymology of the word "antipodes" (still don't know how to pronounce it, though…)

Three stars.

Kingdom Come, Inc., Robert F. Young

Last up, a Christmas story.  Robert F. Young has never found a myth he hasn't wanted to shoehorn into a science fictional story.  This time, he adapts a reliable well: Christianity.  On the Seventh Heaven pleasure satellite, an angelic fellow named Mike shows up looking for a job.  He and his six brothers (Gabe the trumpter, Raf, etc.) are out of work of late since no one has gotten into their particular establishment for many years. 

It's an obvious tale and a tedious one, opting for the easiest, least challenging conclusion.  Two stars.

Back to Earth

With the exception of the final tale (accepted more for its fortuitous length and timely theme, perhaps), this is a quite good issue.  And with the unusual inclusion of a serial, there's all the more reason to look forward to the February issue when it arrives early next month.

Happy New Year, indeed!


by Gahan Wilson



[Today is the last day you can sign up at the reduced rate for next year's Worldcon.  Don't miss your chance to vote in next year's Hugos!]