Tag Archives: Apollo 5

[April 8, 1968] Ups, Downs and Tragedy: An Eventful Month in Space (Gagarin's crash, Zond-4, OGO-5, Apollo-6)



by Kaye Dee

Despite the continued hiatus in human spaceflight on both sides of the Iron Curtin, March and early April have been a busy time in space exploration. But, sadly, I have to commence this review with the tragic news that Colonel Yuri Gagarin, the first person in space, was killed in a plane crash during a training flight on 27 March. Very little is currently known about the circumstances surrounding Gagarin’s death, which has occurred just one month shy of the first anniversary of the loss of Cosmonaut Vladimir Komarov in the Soyuz-1 accident.

Loss of a Space Hero
There have long been rumours that the Soviet leadership refused to allow Gagarin to fly high performance jets or make another spaceflight due to his invaluable propaganda status as Cosmonaut No. 1. However, it seems that since Gagarin completed an engineering degree in February, he had finally been allowed to resume flight status and was undertaking training flights to regain his lapsed jet pilot qualifications.

According to an official government commission investigating the crash, Col. Gagarin was flying a two seat MiG-15 trainer with Colonel Vladimir Seryogin, 46, described as an experienced test pilot and instructor on the training flight. Taking off at 10 a.m., Gagarin and Seryogin apparently flew east 70 miles from Moscow. After completing the training flight, around 10.30, Gagarin radioed that he was returning to base. The plane was then at 13,000 feet. A minute later ground control could not establish contact.

A MiG-15UTI, the same type as the aircraft Gagarin was flying at the time of the crash

An air search began, and a helicopter found the wreckage in a forest. The plane had dived into the ground at an angle of 65 to 70 degrees and was destroyed, killing both men. No information as to the cause of the crash has so far been forthcoming, but a story has been circulated that Gagarin heroically sacrificed himself, refusing to bail out of his stricken aircraft to guide it away from crashing in a populated area. How much truth there is to this, or whether it is pure propaganda, cannot be determined at this time.

Cosmonaut No. 1 is “flying through space forever”
Following an autopsy, the bodies of Gagarin and Seryogin were cremated the day after the crash and the ashes returned to Moscow, where the urns lay in state for 19 hours in the Red Banner Hall of the Soviet Army. Thousands are reported to have filed past to pay their respects to the world’s first space traveller. Thousands more lined the streets as the flower-covered urns, borne on a caisson drawn by an armoured troop carrier, moved slowly to Red Square along a 2½-mile route. The funeral procession included the Gagarin and Seryogin families and the highest leaders of the Soviet state and Communist Party.

The funeral procession for Gagarin and Seryogin making its way towards Red Square

Gagarin and Seryogin were both interred in the Kremlin Wall, behind Lenin's Tomb in Red Square. In what is said to be a rare honour, car horns, factory whistles and church bells sounded in unison as the urn bearing Gagarin's ashes was inserted into a niche in the red brick wall. Then the nation fell still for a minute of silence, followed by a final salvo of cannon fire. A day of national mourning was also declared, the first time this has ever been done in the USSR for someone not a national leader. President Johnson, UN Secretary General U Thant and other world leaders sent messages of condolence. John Glenn sent a personal letter of sympathy to Col. Gagarin’s wife Valentina.

Seryogin and Gagarin buried side by side in the Kremlin Wall. Their various honours and awards are displayed before their portraits

Gagarin was just 34 years old when he died, leaving two young daughters, aged nine and seven. He was based at the cosmonaut training centre near Moscow, involved in training other cosmonauts when not engaged in official duties as a public figure. Little is known about Col. Seryogin, but he has been described as a Hero of Soviet Union and the commander of an air unit. It is unknown if he is also a member of the Soviet cosmonaut corps or has any other role in the Russian space programme.

Gagarin’s words upon landing after his space flight were “I could have gone on flying through space forever”. Though he never returned to space in this life, his spirit surely resides in the cosmos now.

Making up Lost Ground?
The somewhat mysterious Zond-4 unmanned spacecraft was launched on 2 March. A TASS news agency announcement of the launch described Zond-4 as an “automatic station”, “designed to study the outlying regions of near-earth space.”

Thanks to my friends at the Weapons Research Establishment, here is a photo of a Proton rocket, rumoured to be the type used to launch Zond-4.

TASS reported that Zond-4 was put into an initial 170-mile parking orbit, before being sent on a “planned flight” further into space, apparently reaching the environs of the Moon. According to my contacts at the WRE, Zond 4’s flightpath reached an apogee of 240,000 miles, “comparable to lunar altitude”.

No further information was released by TASS about the mission, which has occurred several years after previous launches in the Zond series: Zond-1 was launched in April 1964, Zond-2 in November that year, and Zond-3 in July 1965. “Zond” is the Russian word for “probe” and these earlier spacecraft were apparently planetary or lunar missions. Could Zond-4 actually have been an attempt by the Soviet Union to make up lost ground with a test of the new Soyuz spacecraft, presumably redesigned or modified following the failed Soyuz-1 mission last year?

Does this cutaway illustration represent mysterious Zond-4? My WRE friends think it might!

It would hardly be the first time that the Soviet Union has concealed real purpose of a space mission behind the name of a different spacecraft series. (paging Mr. Kosmos/Cosmos!). As the Soyuz vehicle is believed to be the USSR’s answer to Apollo, a test of an improved spacecraft out to lunar distance would certainly make sense at this time, with the Apollo 6 mission (see below) testing out the Apollo Command and Service Modules just a few days ago.

Whatever its mission, Zond-4 returned to Earth on 9 March, but there was no official communique on the conclusion of the flight. This silence suggests that the re-entry failed in some way and that the spacecraft was either destroyed on re-entry or crashed on landing. If Zond-4 was a test of the Soyuz vehicle, could its loss have been due to a repeat of the parachute failure that doomed Soyuz-1 last year? If this was the case, it does not bode well for the USSR getting its lunar programme back on track in time to challenge the United States in the race for the Moon.

Go, OGO-5!
Just two days after the launch of Zond-4, the United States launched the latest satellite in its Orbiting Geophysical Observatory (OGO) series of scientific satellites. OGO-5 soared aloft on 4 March, establishing itself in a highly elliptical orbit with a 170 mile perigee and a 92,105 mile apogee. The orbital inclination was 31.1 degrees, with the satellite taking 3796 minutes to complete one orbit. The 1,347 lb satellite carries more experiments than any other automated spacecraft to date.

OGO-5 First day Cover and informational insert, courtesy of my Uncle Ernie, the philatelic collector

OGO-5 is primarily devoted to observation of the Earth’s upper atmosphere and its interaction with conditions in the space environment. Like earlier OGO satellites, it carries instruments for studying solar flares (which can also detect cosmic X-ray bursts) and a gamma-ray detector. This will enable it to examine the hazards and mysteries of Earth's space environment at a time when radiation-producing flares on the Sun are intensifying. It will also chart magnetic and electric forces in space, measure gases in Earth's upper atmosphere, investigate the Aurora Borealis over the North Pole and listen for the puzzling radio noises that have been detected from the planet Jupiter.  Each of OGO-5’s predecessors is still operational at this time, so let’s hope the latest Orbiting Geophysical Observatory also has a long life ahead of it.

Apollo 6: NASA Keeps Moving Forward
If Zond-4 has been an un-announced trial of the USSR’s Soyuz lunar spacecraft, Apollo-6 has been NASA’s very public test flight of the Saturn-5 rocket and some of the modifications to the Apollo Command Module.

Launched on 4 April, Apollo-6 marked the second test flight of the massive Saturn-5 launch vehicle, crucial for reaching Moon. The primary objective of the mission was to test the performance of the Saturn-5 and the Apollo spacecraft, the first time that the Command and Service Modules (CSM) would be fully tested in space. In particular, the mission was intended to demonstrate that the Saturn-5’s S-IVB third stage could send the entire Apollo spacecraft (CSM and Lunar Module) out to lunar distances. Although things didn’t go quite to plan, Apollo-6 did accomplish its basic objectives.

An All-Up Test Flight
The Apollo 6 launch vehicle was the second flight-capable Saturn-5, AS-502, its simulated payload equal to about 80% of a full Apollo lunar spacecraft. The CSM it carried was a Block I (Earth-orbit mission) type, with some Block II (lunar mission) modifications. According to NASA “more than 140 tests since last October showed modifications of the Apollo spacecraft since the 1967 disaster had drastically reduced the hazard to life”.

Possibly the most important modification was a new crew hatch, intended to be tested under lunar return conditions. This new hatch incorporated the heat shield and crew compartment hatches of the original Apollo design into a single hatch, called the "unified" design. This has been in response to the Apollo-1 investigation board finding that the dual hatches were too difficult to open in case of emergency and had contributed to the deaths of the crew.

Apollo-6's redesigned unified hatch, photographed during a post-flight inspection of the Commend Module

Like the earlier Apollo-5 test flight, Apollo-6 carried a simulated Lunar Module (LM) which lacked the descent-stage landing gear. It also had no flight systems, and its fuel and oxidiser tanks were liquid-ballasted. While the LM remained inside the Spacecraft-Lunar Module Adapter throughout the flight, its ascent stage was instrumented to determine the craft’s structural integrity and the vibration and acoustic stresses to which it was subjected.

Apollo-6's "legless Lunar Module", formally called the Lunar Test Article LTA-2R

A few weeks prior to launch, NASA announced that, to further reduce fire hazards that contributed to the deaths of Apollo-1 astronauts, it intended to change to a mixture of 60% oxygen and 40% cent nitrogen in the Command Module, while the spacecraft and its crew are on the ground and during launch. Once their spacecraft left the launch pad, the astronauts would switch to pure oxygen. Since the gas mixture will be used in the spacecraft only during ground operations, NASA has not planned any change in the existing environmental control system, so the decision did not affect the Apollo 6 mission.

Apollo 6: What Was Planned
The original Apollo 6 mission plan intended to send the CSM and simulated lunar module into a trans-lunar trajectory. (That trajectory, although passing beyond lunar orbit distance, would not encounter the Moon, which was in another part of its orbit at the time.) The Saturn-5’s S-IVB third stage would be fired for trans-lunar injection, with the CSM separating from the S-IVB soon after. The Service Module engine would then fire to slow the CSM, reducing its apogee to 11,989 nmi.

NASA illustration showing the CSM and LM inside the Spacecraft-Lunar Module Adapter, as they would be at trans-lunar injection

The CSM would then return to Earth as if it had experienced “direct-return” abort during a Moon mission. As it returned, the SM engine would fire again, accelerating the CSM to simulate the conditions that an Apollo spacecraft would encounter on its return from the Moon: a re-entry angle of −6.5 degrees and velocity of 36,500 ft/s. The entire test flight was planned with a duration of about 10 hours.

Not Quite Going to Plan
After the launch was delayed for some days due to problems with guidance system equipment and fuelling, Apollo 6 made a smooth lift-off from Kennedy Space Centre. However, during the last ten seconds of first stage firing, the vehicle severely experienced a type of longitudinal oscillation known as “pogo”. Pogo occurs when a partial vacuum in a rocket’s fuel and oxidiser feed lines reaches the engine firing chamber, causing the engine to “skip”. The pogo phenomenon is well-known, since rockets have experienced it since the early days of spaceflight, and it occurred in launchers such as Thor and Titan II (used for the Gemini program).

While the Apollo-4 Saturn-5 also experienced a mild form of pogo, Apollo-6 was subjected to extreme pogo vibrations. It appears that these oscillations, travelling along the length of the huge Moon rocket, caused multiple problems with the vehicle. Two engines in the second stage shut down early, although the vehicle's onboard guidance system was able to compensate by burning the remaining three engines for 58 seconds longer than planned. The S-IVB engine also experienced a slight performance loss and had to burn for 29 seconds longer than usual. Intense vibrations were felt in the Command Module that could have caused injuries had a crew been onboard. There was also some superficial structural damage to the Spacecraft Lunar Module Adaptor (SLA). A chase plane image of the Apollo-6 launch, taken at approximately the time of the pogo oscillations. It shows an area of discoloration on the SLA indicative of superficial damage and what appears to be falling pieces of debris, perhaps a panel or two shaken lose by the pogo vibrations

The underperformance of the apparently pogo-damaged engines resulted in the third stage being inserted into an elliptical parking orbit, rather than the planned 100 nmi circular orbit. Although Mission Control decided that this did not prevent the mission from continuing, when the vehicle was ready for trans-lunar injection, the apparently damaged S-IVB engine failed to restart.

Repeating Apollo-4
Without the ability to continue with the original flight plan, Mission Control decided to complete some of the mission objectives by adopting a flight plan similar to that of Apollo-4. The SM's Service Propulsion System (SPS) was used to raise the spacecraft into an orbit with a 11,989 nmi apogee, from which it would re-enter. However, the SPS engine did not have enough fuel for a second burn to accelerate the atmospheric re-entry and the spacecraft was only able to enter the atmosphere with a velocity of 33,000 ft/s, instead of the planned 36,500 ft/s that would simulate a lunar return.

With the SM was jettisoned just before atmospheric re-entry, the CM splashed down 43 nmi from the planned landing site north of Hawaii, ten hours after launch. It was recovered by the USS Okinawa.

A Rocket's Eye View
Unlike earlier unmanned missions, the Apollo-6 Saturn-5 was fitted with several cameras intended to be ejected and later recovered. Three of the four cameras on the first stage failed to eject and were lost and only one of the two cameras on the second stage was recovered. Fortunately, this camera provided spectacular views of the separation of the first and second stages.

Two spectacular views of the interstage between the first and second stages falling away, taken from Apollo-6's second stage camera. How amazing that we can now see events happening during a launch that cannot be observed from the ground!

The CM also carried two cameras: a motion picture camera, intended to be activated during launch and re-entry and a 70mm still camera. Unfortunately, as the technical issues meant that the mission took about ten minutes longer than planned, the re-entry events were not filmed. However, the still camera, pointed at the Earth through the hatch window provided impressive photos of parts of the United States, the Atlantic Ocean, Africa, and the western Pacific Ocean. Advanced film and filters, improved colour balance and higher resolution have provided images that are a significant improvement on the photographs taken on previous American crewed missions and demonstrated that future imagery from space will be useful for cartographic, topographic, and geographic studies.

A view of the Dallas-Fort Worth area in Texas, taken from the Command Module's 70mm still camera. Special thanks to the Australian NASA representative for providing me with rush copies of these incredible Apollo-6 images for this article

What’s Next for Apollo?
NASA announced in mid-March that its first Earth-orbiting Apollo mission will be launched on a Saturn 1 vehicle and spend as long as ten days in orbit. The flight, which could come as early as mid-August, will be crewed by astronauts Walter Schirra, Donn Eisele and Walter Cunningham. If that mission goes well and the Saturn-5 is cleared for manned launchings, astronauts James McDivitt, David Scott and Russell Schweickart will ride a Saturn-5 into Earth orbit two or three months later to conduct flight test of the lunar module.

Following the return of Apollo-6, Apollo Programme Director Samuel C. Phillips said, “there's no question that it's less than a perfect mission”, although the Saturn-5’s demonstration of its ability to reach orbit despite the loss of two engines, was “a major unplanned accomplishment”. However, Marshall Space Flight Centre Director Wernher von Braun has recognised that the “flight clearly left a lot to be desired. … We just cannot go to the Moon [with this problem],” referring to the extreme pogo experienced on the flight. This means that solving the pogo phenomenon is now a major priority for NASA in order to keep the Apollo program on track and bolster confidence in the Saturn-5 vehicle. Can they do it? 










[January 24, 1968] On Track for the Moon (Apollo 5 and Surveyor 7]




by Kaye Dee

As we approach the first anniversary of the shocking loss of the crew of Apollo 1, the success of the recent Apollo 5 mission reminds us that the spirit of Grissom, White and Chaffee lives on as NASA continues developing and testing the technology to make a manned lunar landing a reality.

Apollo 1's Legacy
Although the fire that engulfed Apollo 1 and killed its crew destroyed its Command Module, the accident took place on the launchpad during a launch simulation, and fortunately the Saturn IB booster intended to loft that mission into orbit remained undamaged. Because that AS-204 vehicle was the last Saturn IB with full research and development instrumentation, NASA decided that this rocket would be re-assigned to Apollo 5, the much-delayed first test flight of the Lunar Module – the spacecraft essential for successfully landing astronauts on the Moon – while manned Apollo missions continue on hold.

From LEM to LM
The spacecraft we now call the Lunar Module (LM) became part of the Apollo programme in 1962, when NASA decided to adopt the technique of lunar orbit rendezvous (LOR) for its Moon landing missions. First proposed in 1919 by Ukrainian engineer and mathematician Yuri Kondratyuk, the LOR technique uses two spacecraft that travel together to the Moon and then separate in lunar orbit, with a lander carrying astronauts from orbit to the Moon’s surface. The LOR method allows the use of a smaller and lighter lander than the large, all-on-one spacecraft originally proposed for Apollo, and also provides for greater flexibility in landing site selection.

An early diagram comparing the size of a lunar landing vehicle using the Direct Ascent method of reaching the Moon and a LOR lunar excursion vehicle

The version of lunar orbit rendezvous suggested to NASA by engineer John C. Houbolt called for a landing vehicle consisting of two parts: a landing stage, that would accomplish the descent from orbit and remain on the Moon’s surface, and an ascent stage that would carry the astronauts back to the main spacecraft in orbit. This design gave us the Command Service Module as the Moon orbiting spacecraft, and what was originally called the Lunar Excursion Module (LEM, pronounced as a word, not as the individual letters) as the vehicle that would land astronauts on the Moon.

Dr. Houbolt illustrating the main spacecraft needed for his Lunar Orbit Rendezvous proposal for the Apollo programme

In June 1966, NASA changed the name to Lunar Module (LM), eliminating the word “excursion”. My friends at the WRE tell me that this was because there were concerns that using “excursion” might make it sound like the lunar missions were frivolous, and so reduce support for the Apollo programme! Despite the official name change, the astronauts, as well as staff at Grumman, still call it “the lem”, which certainly feels easier to say.

Delays…Delays…
However, the two-stage LEM/LM has proved much harder to develop and manufacture than the contractor Grumman originally anticipated, because of the complexity and level of reliability required of the hardware. Originally, NASA planned for the automated test flight of LM-1, the first Lunar Module, to occur in April 1967, but the delivery of the spacecraft was repeatedly delayed: the two stages of LM-1 did not arrive at Cape Kennedy until late June last year.

The separately-crated stages of LM-1 arriving at Kennedy Space Centre on board a Super Guppy cargo plane. The stages were mated to each other four days later

A team of 400 engineers and technicians then checked out the spacecraft to ensure that it met specifications. The discovery of leaks in the ascent stage propulsion system meant that the ascent and descent stages were demated and remated multiple times for repairs between August and October. LM-1 was finally mounted on its Saturn IB booster on 19 November and a launch date was set for the latter part of January 1968.

LM-1, encased in its SLA, being hoisted up for mounting on its launch vehicle

Lift Off at Last!
Although the launch was delayed for 10 hours when the countdown was held up by technical difficulties, Apollo 5 finally lifted off on 22 January 1968 (23 January for us here in Australia). The mission was designed to test the LM's descent and ascent propulsion systems, guidance and navigation systems, and the overall structural integrity of the craft. It also flight tested the Saturn V Instrument Unit.

Because they would not be needed during the Apollo 5 test flight, LM-1 had no landing legs, which helped to save weight. NASA also decided to replace the windows of LM-1 with aluminium plates as a precaution, after one of the windows broke during testing last December. Since the mission was of short duration, only some of LM-1’s systems were fully activated, and it only carried a partial load of consumables. 

LM-1's "legless" configuration is clearly seen in this view of it during checkout at Kennedy Space Centre

The Apollo 5 flight did not include Command and Service Modules (CSM), or a launch escape tower, so pictures of the launch vehicle show it to look more like its predecessor AS-203 than AS-202, which tested the CSM. The Apollo 5 stack had an overall height of 180ft and weighed 1,299,434 lbs. The LM was contained within the Spacecraft Lunar Module Adapter (SLA), located just below the nose cap of the rocket. The SLA consists of four panels that open like petals once the nose cap is jettisoned in orbit, allowing the LM to separate from the launcher.

The Saturn IB worked perfectly, inserting the second stage and LM into an 88-by-120-nautical-mile orbit. After the nose cone was jettisoned, LM-1 coasted for 43 minutes 52 seconds, before separating from the SLA into a 90-by-120-nautical-mile orbit. NASA’s Carnarvon tracking station in Western Australia tracked the first six orbits of the mission, while the new Apollo tracking station at Honeysuckle Creek, near Canberra, followed LM-1’s first orbit.

Putting LM-1 Through its Paces
Since it had no astronaut crew, the LM-1 test flight had a mission programmer installed, which could control the craft remotely. The first planned 39-second descent-engine burn commenced after two orbits, only to be aborted by the Apollo Guidance Computer after just four seconds, as the spacecraft was not travelling at its expected velocity. Exactly why this occurred is now being investigated. Of course, if there had been a crew onboard, the astronauts would probably have been able to analyse the situation and decide whether the engine should be restarted.

Instead, Mission Control, under Flight Director Gene Kranz, decided to conduct the engine and "fire-in-the-hole" tests under manual control, as without these test firings the mission would be deemed a failure. The "fire in the hole" test verified that the ascent stage could fire while attached to the descent stage, a procedure that will be used to launch from the Moon’s surface, or in the event of an aborted lunar landing. It involves shutting down the descent stage, switching control and power to the ascent stage, and firing the ascent engine while the two stages are still mated.

Apollo 5 Flight Director Gene Kranz (right) with future Lunar Module crew Astronauts McDivitt (left) and Schweickart (centre) discussing LM-1's control issues

Both the ascent and descent engines were fired multiple times during the flight to demonstrate that they could be restarted after initial use. Eight hours into the mission, a problem with the guidance system did cause the ascent stage to spin out of control, but the vital engine test burns had been completed by then. LM-1 also demonstrated its ability to maintain a stable hover, and the guidance and navigation systems controlled the spacecraft's attitude and velocity as planned.

At the conclusion of the flight testing, the separated ascent and descent stages were left in a low orbit, with the anticipation that atmospheric drag would naturally cause their orbits to decay so that the craft would re-enter the atmosphere. The ascent stage re-entered and was destroyed on 24 January, but as I write the descent stage is still in orbit.

Another Step on the Road to the Moon
NASA considers that the LM performed well during its test flight, and have deemed Apollo 5 a success. One wonders now if the second unmanned test flight with LM-2, planned for later this year, will need to go ahead. NASA also plans to return astronauts to space with a test flight of the redesigned Command Module in September this year. Once that goal is accomplished, every part of the Apollo system will have been tested in spaceflight and it will finally be “Go!” for astronauts to shoot for the Moon. I can’t wait!

Lunar map showing the landing sites of all the successful Surveyor missions

So Long Surveyor!
As the Apollo programme powers forward, the last of NASA’s automated lunar exploration programmes is coming to an end, with Surveyor 7 now in operation on the Moon. The Surveyor project was developed with the goal of demonstrating the feasibility of soft landings on the Moon's surface, ensuring that it would be safe for Apollo crews to touch down in their Lunar Modules. The Surveyor landings have complemented the Lunar Orbiter programme (which drew to a close in the latter part of last year), which imaged the Moon from orbit, mapping the lunar surface and providing detailed photographs of many proposed Apollo landing sites.

Making It Safe for a LM Landing
Of the seven Surveyor missions, five achieved their objectives, returning valuable data and images from the lunar surface. Surveyor 1, launched on 30 May (US time) in 1966, was the first American spacecraft to soft land on the Moon (following the successful landing of the USSR’s Luna 9 on 31 January that year), returning 11,237 images of the lunar surface. Unfortunately, its successor, Surveyor 2, failed in September 1966, impacting onto the lunar surface when a malfunction of the guidance system caused an error in the mid-course correction as it travelled to the Moon.

Surveyor 1's panorama of the lunar surface, which captured its shadow, cast by the light of the Earth

Surveyor 3, which lifted off on 17 April 1967, was the first to conduct in-situ experiments on the lunar soil, using its extendable arm and scoop. The spacecraft also returned over 6,000 images, including the famous "Surveyors Footprint" shot, showing its footpad on the lunar surface. The probe had a lucky escape as it tried to land: a problem with its descent radar caused the descent engine to cut off late, resulting in the lander bouncing twice on the lunar surface before settling down to a final safe landing!

Surveyor 3's footprint and footpad on the lunar surface, showing how it bounced on landing. The extendable arm and scoop are visible on the left of the picture

Just three months later, in July, Surveyor 4 was not so lucky. After a textbook flight to the Moon, contact was lost with the spacecraft just 2.5 minutes before touchdown in the Sinus Medii (Central Bay) region and it crashed onto the lunar surface. It’s believed that the solid-fuel descent engine may have exploded.

Launched on 8 September, Surveyor 5 also encountered engine problems on descent to the lunar surface, with a leak in the spacecraft's thruster system. Fortunately, it survived to make a safe landing and returned over 20,000 photographs over three lunar days. Instead of a sampler arm, Surveyor 5 carried an alpha backscattering experiment, and had a bar magnet attached to one landing pad. It carried out the first off-Earth soil analysis and made one of the most significant finds of the Surveyor missions — that the Moon's surface is likely basaltic, and therefore suitably safe for human exploration.

Surveyor 5's alpha backscattering experiment, sometimes described as a chemical laboratory on the Moon

Surveyor 6 landed safely near the Surveyor 4 crash site in November 1967 carrying an instrument package virtually identical to Surveyor 5. The spacecraft transmitted a total of 30,027 detailed images of the lunar surface, as well as determining the abundance of the chemical elements in the lunar soil. As an additional experiment, Surveyor 6 carried out the first lift-off from the Moon. Its engines were restarted, lifting the probe 12 ft above the lunar surface, and moving it 8 ft to the west, after which it landed again safely, and continued its scientific programme. 

Surveyor 7 – a Last Hurrah!
The successful completion of the Surveyor 6 mission accomplished all the goals that NASA had set for the Surveyor programme as an Apollo precursor. The JPL Surveyor team therefore decided that for the final mission they would aim for a riskier landing site, in the rugged highlands near the Tycho Crater. The engineers gave Surveyor 7 a less than 50-50 chance of landing upright due to the rough terrain in the area!

Tycho crater was the challenging landing site for NASA's last Surveyor mission

Launched on 7 January, Surveyor 7 is the last American robot spacecraft scheduled to land on the Moon before the Apollo astronauts. Its instrument package combines all the experiments used by its predecessors, in order to determine if the rugged terrain would be suitable for a future Apollo landing site.

During its first lunar day, the spacecraft’s camera has returned more than 14,000 images, including some views of the Earth! One of Surveyor 7’s innovations is the use of mirrors to obtain stereoscopic lunar photos. Laser beams directed at the Moon from two sites in the United States have also been recorded by cameras aboard Surveyor 7.

A view of the Earth captured by Surveyor 7's camera

Getting a Scoop
Surveyor 7’s versatile soil mechanics surface sampler is a key instrument on this mission. Designed to pick up lunar surface material, it can move samples around while being photographed, so that the properties of the lunar soil can be determined. It can also dig trenches up to 18 inches into the lunar surface to determine its bearing strength and squeeze lunar rocks or clods. The sampler is a scoop with a container which can be opened or closed by an electric motor. The scoop has a sharpened blade and includes two embedded magnets, to search for ferrous minerals and determine the magnetic characteristics of the lunar soil. So far, the moveable arm and scoop have performed 16 bearing tests, seven trenching tests, and two impact tests.

Only a few Surveyor 7 pictures are currently available, but this view of Surveyor 3 digging a trench into the Moon's surface shows how the scoop carries out this task

The scoop is mounted below the spacecraft’s the television camera so that it can reach the alpha-scattering instrument in its deployed position and move it to another selected location. In fact, the scoop helped to free the alpha-scattering instrument when it failed to deploy on the lunar surface. It has also been used to shade the alpha-scattering instrument and move it to different positions to evaluation other surface samples. During 36 hours of operation between January 11 and January 23, 1968, the sampler has performed flawlessly. Soil analyses have been conducted, as well as experiments on surface reflectivity and surface electrical properties. 

Surveyor 7 is now “sleeping” through its first lunar night. If it survives this period of intense cold, hopefully it will continue to produce significant results during its next lunar day. But if it doesn’t, the scientists and engineers at NASA’s Jet Propulsion Laboratory are already describing the Surveyor programme as a “treasure house of information for landing a man on the Moon before the end of this decade”. This has to be a fitting epitaph for any space mission.