Tag Archives: Apollo 4

[April 8, 1968] Ups, Downs and Tragedy: An Eventful Month in Space (Gagarin's crash, Zond-4, OGO-5, Apollo-6)



by Kaye Dee

Despite the continued hiatus in human spaceflight on both sides of the Iron Curtin, March and early April have been a busy time in space exploration. But, sadly, I have to commence this review with the tragic news that Colonel Yuri Gagarin, the first person in space, was killed in a plane crash during a training flight on 27 March. Very little is currently known about the circumstances surrounding Gagarin’s death, which has occurred just one month shy of the first anniversary of the loss of Cosmonaut Vladimir Komarov in the Soyuz-1 accident.

Loss of a Space Hero
There have long been rumours that the Soviet leadership refused to allow Gagarin to fly high performance jets or make another spaceflight due to his invaluable propaganda status as Cosmonaut No. 1. However, it seems that since Gagarin completed an engineering degree in February, he had finally been allowed to resume flight status and was undertaking training flights to regain his lapsed jet pilot qualifications.

According to an official government commission investigating the crash, Col. Gagarin was flying a two seat MiG-15 trainer with Colonel Vladimir Seryogin, 46, described as an experienced test pilot and instructor on the training flight. Taking off at 10 a.m., Gagarin and Seryogin apparently flew east 70 miles from Moscow. After completing the training flight, around 10.30, Gagarin radioed that he was returning to base. The plane was then at 13,000 feet. A minute later ground control could not establish contact.

A MiG-15UTI, the same type as the aircraft Gagarin was flying at the time of the crash

An air search began, and a helicopter found the wreckage in a forest. The plane had dived into the ground at an angle of 65 to 70 degrees and was destroyed, killing both men. No information as to the cause of the crash has so far been forthcoming, but a story has been circulated that Gagarin heroically sacrificed himself, refusing to bail out of his stricken aircraft to guide it away from crashing in a populated area. How much truth there is to this, or whether it is pure propaganda, cannot be determined at this time.

Cosmonaut No. 1 is “flying through space forever”
Following an autopsy, the bodies of Gagarin and Seryogin were cremated the day after the crash and the ashes returned to Moscow, where the urns lay in state for 19 hours in the Red Banner Hall of the Soviet Army. Thousands are reported to have filed past to pay their respects to the world’s first space traveller. Thousands more lined the streets as the flower-covered urns, borne on a caisson drawn by an armoured troop carrier, moved slowly to Red Square along a 2½-mile route. The funeral procession included the Gagarin and Seryogin families and the highest leaders of the Soviet state and Communist Party.

The funeral procession for Gagarin and Seryogin making its way towards Red Square

Gagarin and Seryogin were both interred in the Kremlin Wall, behind Lenin's Tomb in Red Square. In what is said to be a rare honour, car horns, factory whistles and church bells sounded in unison as the urn bearing Gagarin's ashes was inserted into a niche in the red brick wall. Then the nation fell still for a minute of silence, followed by a final salvo of cannon fire. A day of national mourning was also declared, the first time this has ever been done in the USSR for someone not a national leader. President Johnson, UN Secretary General U Thant and other world leaders sent messages of condolence. John Glenn sent a personal letter of sympathy to Col. Gagarin’s wife Valentina.

Seryogin and Gagarin buried side by side in the Kremlin Wall. Their various honours and awards are displayed before their portraits

Gagarin was just 34 years old when he died, leaving two young daughters, aged nine and seven. He was based at the cosmonaut training centre near Moscow, involved in training other cosmonauts when not engaged in official duties as a public figure. Little is known about Col. Seryogin, but he has been described as a Hero of Soviet Union and the commander of an air unit. It is unknown if he is also a member of the Soviet cosmonaut corps or has any other role in the Russian space programme.

Gagarin’s words upon landing after his space flight were “I could have gone on flying through space forever”. Though he never returned to space in this life, his spirit surely resides in the cosmos now.

Making up Lost Ground?
The somewhat mysterious Zond-4 unmanned spacecraft was launched on 2 March. A TASS news agency announcement of the launch described Zond-4 as an “automatic station”, “designed to study the outlying regions of near-earth space.”

Thanks to my friends at the Weapons Research Establishment, here is a photo of a Proton rocket, rumoured to be the type used to launch Zond-4.

TASS reported that Zond-4 was put into an initial 170-mile parking orbit, before being sent on a “planned flight” further into space, apparently reaching the environs of the Moon. According to my contacts at the WRE, Zond 4’s flightpath reached an apogee of 240,000 miles, “comparable to lunar altitude”.

No further information was released by TASS about the mission, which has occurred several years after previous launches in the Zond series: Zond-1 was launched in April 1964, Zond-2 in November that year, and Zond-3 in July 1965. “Zond” is the Russian word for “probe” and these earlier spacecraft were apparently planetary or lunar missions. Could Zond-4 actually have been an attempt by the Soviet Union to make up lost ground with a test of the new Soyuz spacecraft, presumably redesigned or modified following the failed Soyuz-1 mission last year?

Does this cutaway illustration represent mysterious Zond-4? My WRE friends think it might!

It would hardly be the first time that the Soviet Union has concealed real purpose of a space mission behind the name of a different spacecraft series. (paging Mr. Kosmos/Cosmos!). As the Soyuz vehicle is believed to be the USSR’s answer to Apollo, a test of an improved spacecraft out to lunar distance would certainly make sense at this time, with the Apollo 6 mission (see below) testing out the Apollo Command and Service Modules just a few days ago.

Whatever its mission, Zond-4 returned to Earth on 9 March, but there was no official communique on the conclusion of the flight. This silence suggests that the re-entry failed in some way and that the spacecraft was either destroyed on re-entry or crashed on landing. If Zond-4 was a test of the Soyuz vehicle, could its loss have been due to a repeat of the parachute failure that doomed Soyuz-1 last year? If this was the case, it does not bode well for the USSR getting its lunar programme back on track in time to challenge the United States in the race for the Moon.

Go, OGO-5!
Just two days after the launch of Zond-4, the United States launched the latest satellite in its Orbiting Geophysical Observatory (OGO) series of scientific satellites. OGO-5 soared aloft on 4 March, establishing itself in a highly elliptical orbit with a 170 mile perigee and a 92,105 mile apogee. The orbital inclination was 31.1 degrees, with the satellite taking 3796 minutes to complete one orbit. The 1,347 lb satellite carries more experiments than any other automated spacecraft to date.

OGO-5 First day Cover and informational insert, courtesy of my Uncle Ernie, the philatelic collector

OGO-5 is primarily devoted to observation of the Earth’s upper atmosphere and its interaction with conditions in the space environment. Like earlier OGO satellites, it carries instruments for studying solar flares (which can also detect cosmic X-ray bursts) and a gamma-ray detector. This will enable it to examine the hazards and mysteries of Earth's space environment at a time when radiation-producing flares on the Sun are intensifying. It will also chart magnetic and electric forces in space, measure gases in Earth's upper atmosphere, investigate the Aurora Borealis over the North Pole and listen for the puzzling radio noises that have been detected from the planet Jupiter.  Each of OGO-5’s predecessors is still operational at this time, so let’s hope the latest Orbiting Geophysical Observatory also has a long life ahead of it.

Apollo 6: NASA Keeps Moving Forward
If Zond-4 has been an un-announced trial of the USSR’s Soyuz lunar spacecraft, Apollo-6 has been NASA’s very public test flight of the Saturn-5 rocket and some of the modifications to the Apollo Command Module.

Launched on 4 April, Apollo-6 marked the second test flight of the massive Saturn-5 launch vehicle, crucial for reaching Moon. The primary objective of the mission was to test the performance of the Saturn-5 and the Apollo spacecraft, the first time that the Command and Service Modules (CSM) would be fully tested in space. In particular, the mission was intended to demonstrate that the Saturn-5’s S-IVB third stage could send the entire Apollo spacecraft (CSM and Lunar Module) out to lunar distances. Although things didn’t go quite to plan, Apollo-6 did accomplish its basic objectives.

An All-Up Test Flight
The Apollo 6 launch vehicle was the second flight-capable Saturn-5, AS-502, its simulated payload equal to about 80% of a full Apollo lunar spacecraft. The CSM it carried was a Block I (Earth-orbit mission) type, with some Block II (lunar mission) modifications. According to NASA “more than 140 tests since last October showed modifications of the Apollo spacecraft since the 1967 disaster had drastically reduced the hazard to life”.

Possibly the most important modification was a new crew hatch, intended to be tested under lunar return conditions. This new hatch incorporated the heat shield and crew compartment hatches of the original Apollo design into a single hatch, called the "unified" design. This has been in response to the Apollo-1 investigation board finding that the dual hatches were too difficult to open in case of emergency and had contributed to the deaths of the crew.

Apollo-6's redesigned unified hatch, photographed during a post-flight inspection of the Commend Module

Like the earlier Apollo-5 test flight, Apollo-6 carried a simulated Lunar Module (LM) which lacked the descent-stage landing gear. It also had no flight systems, and its fuel and oxidiser tanks were liquid-ballasted. While the LM remained inside the Spacecraft-Lunar Module Adapter throughout the flight, its ascent stage was instrumented to determine the craft’s structural integrity and the vibration and acoustic stresses to which it was subjected.

Apollo-6's "legless Lunar Module", formally called the Lunar Test Article LTA-2R

A few weeks prior to launch, NASA announced that, to further reduce fire hazards that contributed to the deaths of Apollo-1 astronauts, it intended to change to a mixture of 60% oxygen and 40% cent nitrogen in the Command Module, while the spacecraft and its crew are on the ground and during launch. Once their spacecraft left the launch pad, the astronauts would switch to pure oxygen. Since the gas mixture will be used in the spacecraft only during ground operations, NASA has not planned any change in the existing environmental control system, so the decision did not affect the Apollo 6 mission.

Apollo 6: What Was Planned
The original Apollo 6 mission plan intended to send the CSM and simulated lunar module into a trans-lunar trajectory. (That trajectory, although passing beyond lunar orbit distance, would not encounter the Moon, which was in another part of its orbit at the time.) The Saturn-5’s S-IVB third stage would be fired for trans-lunar injection, with the CSM separating from the S-IVB soon after. The Service Module engine would then fire to slow the CSM, reducing its apogee to 11,989 nmi.

NASA illustration showing the CSM and LM inside the Spacecraft-Lunar Module Adapter, as they would be at trans-lunar injection

The CSM would then return to Earth as if it had experienced “direct-return” abort during a Moon mission. As it returned, the SM engine would fire again, accelerating the CSM to simulate the conditions that an Apollo spacecraft would encounter on its return from the Moon: a re-entry angle of −6.5 degrees and velocity of 36,500 ft/s. The entire test flight was planned with a duration of about 10 hours.

Not Quite Going to Plan
After the launch was delayed for some days due to problems with guidance system equipment and fuelling, Apollo 6 made a smooth lift-off from Kennedy Space Centre. However, during the last ten seconds of first stage firing, the vehicle severely experienced a type of longitudinal oscillation known as “pogo”. Pogo occurs when a partial vacuum in a rocket’s fuel and oxidiser feed lines reaches the engine firing chamber, causing the engine to “skip”. The pogo phenomenon is well-known, since rockets have experienced it since the early days of spaceflight, and it occurred in launchers such as Thor and Titan II (used for the Gemini program).

While the Apollo-4 Saturn-5 also experienced a mild form of pogo, Apollo-6 was subjected to extreme pogo vibrations. It appears that these oscillations, travelling along the length of the huge Moon rocket, caused multiple problems with the vehicle. Two engines in the second stage shut down early, although the vehicle's onboard guidance system was able to compensate by burning the remaining three engines for 58 seconds longer than planned. The S-IVB engine also experienced a slight performance loss and had to burn for 29 seconds longer than usual. Intense vibrations were felt in the Command Module that could have caused injuries had a crew been onboard. There was also some superficial structural damage to the Spacecraft Lunar Module Adaptor (SLA). A chase plane image of the Apollo-6 launch, taken at approximately the time of the pogo oscillations. It shows an area of discoloration on the SLA indicative of superficial damage and what appears to be falling pieces of debris, perhaps a panel or two shaken lose by the pogo vibrations

The underperformance of the apparently pogo-damaged engines resulted in the third stage being inserted into an elliptical parking orbit, rather than the planned 100 nmi circular orbit. Although Mission Control decided that this did not prevent the mission from continuing, when the vehicle was ready for trans-lunar injection, the apparently damaged S-IVB engine failed to restart.

Repeating Apollo-4
Without the ability to continue with the original flight plan, Mission Control decided to complete some of the mission objectives by adopting a flight plan similar to that of Apollo-4. The SM's Service Propulsion System (SPS) was used to raise the spacecraft into an orbit with a 11,989 nmi apogee, from which it would re-enter. However, the SPS engine did not have enough fuel for a second burn to accelerate the atmospheric re-entry and the spacecraft was only able to enter the atmosphere with a velocity of 33,000 ft/s, instead of the planned 36,500 ft/s that would simulate a lunar return.

With the SM was jettisoned just before atmospheric re-entry, the CM splashed down 43 nmi from the planned landing site north of Hawaii, ten hours after launch. It was recovered by the USS Okinawa.

A Rocket's Eye View
Unlike earlier unmanned missions, the Apollo-6 Saturn-5 was fitted with several cameras intended to be ejected and later recovered. Three of the four cameras on the first stage failed to eject and were lost and only one of the two cameras on the second stage was recovered. Fortunately, this camera provided spectacular views of the separation of the first and second stages.

Two spectacular views of the interstage between the first and second stages falling away, taken from Apollo-6's second stage camera. How amazing that we can now see events happening during a launch that cannot be observed from the ground!

The CM also carried two cameras: a motion picture camera, intended to be activated during launch and re-entry and a 70mm still camera. Unfortunately, as the technical issues meant that the mission took about ten minutes longer than planned, the re-entry events were not filmed. However, the still camera, pointed at the Earth through the hatch window provided impressive photos of parts of the United States, the Atlantic Ocean, Africa, and the western Pacific Ocean. Advanced film and filters, improved colour balance and higher resolution have provided images that are a significant improvement on the photographs taken on previous American crewed missions and demonstrated that future imagery from space will be useful for cartographic, topographic, and geographic studies.

A view of the Dallas-Fort Worth area in Texas, taken from the Command Module's 70mm still camera. Special thanks to the Australian NASA representative for providing me with rush copies of these incredible Apollo-6 images for this article

What’s Next for Apollo?
NASA announced in mid-March that its first Earth-orbiting Apollo mission will be launched on a Saturn 1 vehicle and spend as long as ten days in orbit. The flight, which could come as early as mid-August, will be crewed by astronauts Walter Schirra, Donn Eisele and Walter Cunningham. If that mission goes well and the Saturn-5 is cleared for manned launchings, astronauts James McDivitt, David Scott and Russell Schweickart will ride a Saturn-5 into Earth orbit two or three months later to conduct flight test of the lunar module.

Following the return of Apollo-6, Apollo Programme Director Samuel C. Phillips said, “there's no question that it's less than a perfect mission”, although the Saturn-5’s demonstration of its ability to reach orbit despite the loss of two engines, was “a major unplanned accomplishment”. However, Marshall Space Flight Centre Director Wernher von Braun has recognised that the “flight clearly left a lot to be desired. … We just cannot go to the Moon [with this problem],” referring to the extreme pogo experienced on the flight. This means that solving the pogo phenomenon is now a major priority for NASA in order to keep the Apollo program on track and bolster confidence in the Saturn-5 vehicle. Can they do it? 










[November 12, 1967] Still in the Race! (Apollo-4, Surveyor-6, OSO-4 and Cosmos-186-188)



by Kaye Dee

As I noted in my previous article, October was such a busy month for space activity that I had to hold over several items for this month. But November has already provided us with plenty of space news as well. Even though both American and Soviet manned spaceflight is currently on hold while the investigations into their respective accidents continue, preparations for putting astronauts and cosmonauts on the Moon are ongoing and the Moon race is still on!

“Oh, it’s terrific, the building’s shaking!”

Opening the door to human lunar exploration needs an immensely powerful booster, and the successful launch of Apollo-4 a few days ago on 9 November has demonstrated that NASA has a rocket that is up to the task. Although the Saturn 1B rocket intended to loft Apollo Earth-orbiting missions has already been tested, Apollo-4 (also designated SA-501) marked the first flight of a complete Saturn V lunar launcher.

The sheer power of the massive rocket took everyone by surprise. When Apollo-4 took off from Pad 39A at the John F. Kennedy Space Centre, the sound pressure waves it generated rattled the new Launch Control Centre, three miles from the launch pad, causing dust to fall from the ceiling onto the launch controllers’ consoles. At the nearby Press Centre, ceiling tiles fell from the roof. Reporting live from the site, Walter Cronkite described the experience: “… our building’s shaking here. Our building’s shaking! Oh, it’s terrific, the building’s shaking! This big blast window is shaking! We’re holding it with our hands! Look at that rocket go into the clouds at 3000 feet! … You can see it… you can see it… oh the roar is terrific!”

Firing Room 1 in the Launch Control Centre at Kennedy Space Centre, under construction in early 1966. The Apollo-4 launch was controlled from here

Could it be that the sound of a Saturn V launch is one of the loudest noises, natural or artificial, ever heard by human beings? (Apart, perhaps, from the explosion of an atomic bomb?) I hope I’ll get the opportunity to hear, and see, a Saturn V launch for myself at some point in the future.

The Power for the Glory

Developed by Dr. Wernher von Braun’s team at NASA’s George C. Marshall Space Flight Centre, everything about the Saturn V is impressive. The 363-foot vehicle weighs 3,000-tons and the thrust of its first-stage motors alone is 71 million pounds! No wonder it rattled buildings miles away at liftoff!

The F-1 rocket motor, five of which power the Saturn V’s S1-C first stage, is the most powerful single combustion chamber liquid-propellant rocket engine so far developed (at least as far as we know, since whatever vehicle the USSR is developing for its lunar program could have even more powerful motors).

The launcher consists of three stages. The Boeing-built S1-C first stage, when fully fuelled with RP-1 kerosene and liquid oxygen, has a total mass of 4,881,000 pounds. Its five F-1 engines are arranged so that the four outer engines are gimballed, enabling them to turn so they can steer the rocket, while the fifth is fixed in position in the centre. Constructed by North American Aviation and weighing 1,060,000 pounds, the S-II second stage has five Rocketdyne-built cryogenic J-2 engines, powered by liquid hydrogen and liquid oxygen. They are arranged in a similar manner to the first stage engines, and also used for steering. The Saturn V’s S-IVB third stage has been built by the Douglas Aircraft Company and has a single J-2 engine using the same cryogenic fuel as the second stage. Fully fuelled, it weighs approximately 262,000 pounds. Guidance and telemetry systems for the rocket are contained within an instrument unit located on top of the third stage.

Soaring into the Future

This first Saturn V test flight has been tremendously important to the ultimate success of the Apollo programme, marking several necessary first steps: the first launch from Complex 39 at Cape Kennedy, built especially for Apollo; the first flight of the complete Apollo/Saturn V space vehicle; and the first test of Apollo Command Module’s performance re-entering the Earth's atmosphere at a velocity approximating that expected when returning from a lunar mission. In addition, the flight enabled testing of many modifications made to the Command Module in the wake of the January fire. This included the functioning of the thermal seals used in the new quick-release spacecraft hatch design.

 
Up, Up and Away!

Apollo-4 lifted off on schedule at 7am US Eastern time. Just 12 minutes later it successfully placed a Command and Service Module (CSM), weighing a record 278,885 pounds, into orbit 115 miles above the Earth. This is equivalent to the parking orbit that will be used during lunar missions to check out the spacecraft before it embarks for the Moon.

After two orbits, the third stage engine was re-ignited (itself another space first) to simulate the trans-lunar injection burn that will be used to send Apollo missions on their way to the Moon. This sent the spacecraft into an elliptical orbit with an apogee of 10,700 miles. Shortly afterwards, the CSM separated from the S-IVB stage and, after passing apogee, the Service Module engine was fired for 281 seconds to increase the re-entry speed to 36,639 feet per second, bringing the CSM into conditions simulating a return from the Moon.


An image of the Earth taken from an automatic camera on the Apollo-4 Command Module

After a successful re-entry, the Command Module splashed down approximately 10 miles from its target landing site in the North Pacific Ocean and was recovered by the aircraft carrier USS Bennington. The mission lasted just eight hours 36 minutes and 54 seconds (four minutes six seconds ahead of schedule!), but it successfully demonstrated all the major components of an Apollo mission, apart from the Lunar Module (which is still in development) that will make the actual landing on the Moon’s surface. In a special message of congratulations to the NASA team, President Johnson said the flight “symbolises the power this nation is harnessing for the peaceful exploration of space”.

Goodbye Lunar Orbiters…

While Apollo’s chariot was readied for its first test flight, NASA has continued its unmanned exploration of the Moon, to ensure a safe landing for the astronauts. In August, Gideon gave us an excellent summary of NASA’s Lunar Orbiter programme, the first three missions of which were designed to study potential Apollo landing sites. Lunar Orbiter-3, launched back in February this year, met its fate last month when the spacecraft was intentionally crashed into the lunar surface on 9 October. Despite the failure of its imaging system in March, Lunar Orbiter-3 was tracked from Earth for several months for lunar geodesy research and communication experiments. On 30 August, commands were sent to the spacecraft to circularise its orbit to 99 miles in order to simulate an Apollo trajectory.

Lunar Orbiter-3 image of the Moon's far side, showing the crater Tsiolkovski

Each Lunar Orbiter mission has been de-orbited so that it will not become a navigation hazard to future manned Apollo spacecraft. Consequently, before its manoeuvring thrusters were depleted, Lunar Orbiter 3 was commanded on 9 October to impact on the Moon, hitting the lunar surface at 14 degrees 36 minutes North latitude and 91 degrees 42 minutes West longitude. Co-incidentally, Lunar Orbiter-4, which failed back in July and could not be controlled, decayed naturally from orbit and impacted on the Moon on 6 October. Lunar Orbiter-5, launched in August, remains in orbit.

…Hello Surveyor 6

A month after the demise of the Lunar Orbiters, NASA’s Surveyor-6 probe has made a much softer landing on the lunar surface, achieving a “spot on” touchdown in the rugged Sinus Medii (Central Bay – it’s in the centre of the Moon's visible hemisphere) on 10 November (Australian time; 9 November in the US). This region is a potential site for the first Apollo landing, but since it appeared to be cratered and rocky, mission planners needed to know if its geological structure (different to the ‘plains’ areas where earlier Surveyor missions have landed) could support the weight of a manned Lunar Module.

Only an hour after landing safely, Surveyor-6 was operational and sent back pictures of a lunar cliff about a mile from its landing point, which has been described as “the most rugged feature we have yet seen on the Moon”. The first panoramas from Surveyor indicate that the landing site is not as rough as anticipated, and seems suitable for an Apollo landing.

Deep Space Network stations in Australia are helping to support the Surveyor-6 mission, as well as Surveyor-5, that landed in the Mare Tranquilitatis (Sea of Tranquillity) in September and is still operational. Hopefully both spacecraft will survive the next lunar night, commencing two weeks from now. NASA plans to send one more Surveyor probe to the Moon, in January, so look out for a review of the completed Surveyor programme early next year.

Watching the Sun for Astronaut Safety

With the Sun moving towards its maximum activity late next year or early in 1969, and likely to still be very active when the Apollo landing missions are occurring (assuming that the programme resumes some time within the next 12 months), NASA has wasted no time in launching another spacecraft in its Orbiting Solar Observatory (OSO) series, to help characterise the effects of solar activity in deep space. A NASA spokesman was recently quoted as saying that “A study of solar activity and its effect on Earth, aside from basic scientific interest, is necessary for a greater understanding of the space environment prior to manned flights to the Moon”.

OSO-4 under construction

Launched on 18 October, OSO-4 (also known as OSO-D) is the latest satellite developed under the leadership of Dr. Nancy Grace Roman, NASA’s first female executive, who is Chief of Astronomy and Solar Physics. The satellite is equipped to measure the direction and intensity of Ultraviolet, X-ray and Gamma radiation, not just from the Sun, but across the entire celestial sphere.

The OSO-4 spacecraft, like its predecessors, consists of a solar-cell covered “sail” section and a “wheel” section that spins about an axis perpendicular to the pointing direction of the sail. The sail carries a 75 pound payload of two instruments that are kept pointing on the centre of the Sun. The wheel carries a 100 pound payload of seven instruments and rotates once every two seconds. This rotation enables the instruments to scan the solar disc and atmosphere as well as other parts of the galaxy. The satellite’s extended arms give it greater axial stability.

Hopefully, OSO-4 will have a long lifespan, producing data as solar activity increases across the Sun’s cycle, and enhancing safety for the Apollo and Soviet crews who will venture beyond the protection of the van Allen belts on their way to the Moon.

What are the Soviets Up To?

The USSR has been remarkably quiet about its manned lunar programme. One could almost think that they had given up racing Apollo to the Moon, if not for the rumours and hints that constantly swirl around. Rumours abounded at the time of the tragically lost Soyuz-1 mission that it was intended to be a space spectacular, debuting in the Soyuz a new, much larger spacecraft which would participate in multiple rendezvous and docking manoeuvres, and possibly even crew transfers, with one or more other manned spacecraft.

Such a space feat has yet to occur, but the mysterious recent space missions of Cosmos-186 and 188 suggest that the Soviets have something of the sort in mind for the future, and are still quietly working to develop the techniques that they will need for lunar landing missions and/or a space station programme.

It Takes Two to Rendezvous

On 27 October, Cosmos-186 was launched into a low Earth orbit, with a perigee of 129 miles and an apogee of 146 miles and an orbital period of 88.7 minutes. Cosmos-187 was launched the following day, and there has been speculation that it was intended to be part of a rendezvous and docking demonstration with Cosmos-186 but was placed into an incorrect orbit. However, as is so often the case with Cosmos satellites, the Soviet authorities only described their missions as continuing studies of outer space and testing new systems, so the actual purpose of this mission remains a mystery.


A rare Soviet illustration of what is believed to be the Cosmos-186-188 docking

However, Cosmos-186 was joined by a companion on 30 October, when Cosmos-188 was placed into a very similar orbit with a separation of just 15 miles. This clearly demonstrates the precision with which the USSR can insert satellites into orbit. The two spacecraft then proceeded to perform the first fully automated space docking (unlike the manual dockings performed by Gemini missions from Gemini-8 onwards), just an hour after Cosmos-188 was launched. Soviet sources, and some electronic eavesdropping by the now-famous science class at Kettering Grammar School in England, using surprisingly unsophisticated equipment, indicate that Cosmos-186 was the ‘active’ partner in the docking. It used its onboard radar system to locate, approach and dock with the ‘passive’ Cosmos-188.

While the two spacecraft were mechanically docked, it seems that an electrical connection could not be made between them, and no other manoeuvres appear to have been carried out while Cosmos-186 and 188 were joined together. Perhaps there were technical issues surrounding the docking, but an onboard camera on Cosmos-186 did provide live (if rather low quality) television images of the rendezvous docking and separation, and some footage was publicly broadcast.

After three and a half hours docked together, the two satellites separated on command from the ground and continued to operate separately in orbit. Cosmos-186 made a soft-landing return to Earth on 31 October, lending credence to the speculations that it was testing out improvements to the Soyuz parachute system, while Cosmos-188 reportedly soft-landed on 2 November.

Speculating on Soviet Space Plans

Was Cosmos-186 a Soyuz-type vehicle, possibly testing out modifications made to prevent a recurrence of the re-entry parachute tangling that apparently led to the loss of Soyuz-1 and the death of Cosmonaut Komarov? Building on speculations from the time of the Soyuz-1 launch, there have even been suggestions that Cosmos-186, while unmanned, was a spacecraft large enough to hold a crew of five cosmonauts. There is also speculation that Cosmos-188 may have been the prototype of a new propulsion system for orbital operations. Does this mean, then, that the USSR is planning some kind of manned spaceflight feat in orbit to celebrate the 50th anniversary of the Communist Revolution? Or that it will soon attempt a circumlunar flight, to reach the Moon ahead of the United States?

Whatever their future plans may be, the automated rendezvous and docking of two unmanned spacecraft in Earth orbit shows that the USSR’s space technology is still advancing rapidly. The joint Cosmos 186-188 mission proves that it is possible to launch small components and assemble them in space to make a larger structure, even without the assistance of astronauts. This means that massive rockets like the Saturn V might not be required to construct space stations in orbit, or even undertake lunar missions, if the project is designed around assembling the lunar spacecraft in Earth orbit. Has the Cosmos 186-188 mission therefore been a hint of what the USSR's Moon programme will look like, in contrast to Apollo? Only time will tell…