Tag Archives: tiros 9

[February 18, 1965] OSO Exciting!  (February 1965 Space Roundup)


by Gideon Marcus

Remember the early days of the Space Race, when launches came about once a month, and there was plenty of time to ruminate over the significance of each one?

Those days are long past, my friends.  Like every other aspect of this crazy modern world we live in, the pace of space missions is only accelerating.  Just look at this grab bag of space headlines, any one of which might have been front page news just a few years ago:

Staring at the Sun

Three years ago, NASA launched the first of its "Observatory Class" satellites, the 200 kg Orbiting Solar Observatory (OSO).  Its mission was unprecedented: to get the first long-term observations of the Sun in all of the frequencies of the electro-magnetic spectrum, not just the narrow windows visible from the Earth's surface.

For two years, OSO gazed at the Sun with its thirteen instruments, dutifully reporting its findings to the ground.  The observatory revolutionized our understanding of our neighborhood star, particularly in finding the correlation between solar flares and the little microflares that precede them. 

OSO 1 went silent last May.  Like nature, NASA abhors a vacuum — at least one without satellites floating through it!  So on February 3, 1965, OSO 2 sailed into orbit to pick up where its predecessor had left off.

The new observatory only has eight instruments, but given that the weight of the craft is similar to that of OSO 1, I have to believe the new load-out is intentional.  Moreover, OSO 2 has some neat developments.  Its Ultraviolet spectrometer, Solar x-ray and UV telescope, and White-light coronagraph are all mounted on the "sail" of the spacecraft, and they can scan the disk of the sun from end to end, like a TV camera.  That should allow for more precision in the measurements.

Also, OSO 2 has a digital telemetry system rather than the analog FM system of OSO 1.  Digital systems are far less prone to error, and more information can be sent over any given length of time.  The new system can dump 3 million bits of data in just 5.5 minutes.

Finally, OSO 2 is smarter — it can accept some 70 commands from the ground instead of just 8.  Just what NASA scientists do with those commands, I don't know.  Maybe OSO brews great coffee.

The most important thing about OSO 2 is the timing of its launch.  Every 11 years, the Sun completes an output cycle, warbling from active to inactive status.  1965 is the Solar minimum, and this year marks a concerted international effort to watch the Sun from many different vantage points to take advantage of the opportunity.

You can bet OSO 2 will have some interesting data for us come 1966!

Requiem for a Vanguard

Hands over hearts, folks.  On February 12, NASA announced that Vanguard 1 had gone silent, and the agency was finally turning off its 108 Mhz ground transceivers, set up during the International Geophysical Year.  The grapefruit-sized satellite, launched March 17, 1958, was the fourth satellite to be orbited.  It had been designed as a minimum space probe and, had its rocket worked in December 1957, would have been America's first satellite rather than its second.  Nevertheless, rugged little Vanguard 1 beat all of its successors for lifespan.  Sputniks and Explorers came and went.  Vanguards 2 and 3 shut off long ago.  Yet the grapefruit that the Naval Research Laboratory made kept going beep-beep, helping scientists on the ground measure the shape of the Earth from the wiggle and decay of Vanguard's orbit.

The satellite's cry had slowly become weaker as its solar cell-charged batteries failed.  Finally, some time last year, Vanguard could be heard no more, though NASA kept listening for several more months.  It's not all sad news, however: Vanguard 1 will remain in orbit for hundreds of years more, and it can still be optically tracked.  That means it still has a long, useful life ahead of it, even now that it is mute.

Whole World in its Eyes

Here's a little TIROS tidbit.  Remember TIROS 9?  The first weather satellite launched into a polar orbit so it can see the whole Earth once a day as the planet rotates underneath?

We now have the very first picture of the world's weather.  It won't be the last:

The joys of being regular

There was a time when space was a hit-and-miss affair.  Seemed every time I opened the paper, there was news of yet another rocket blowing up.  These days, we can practically take success for granted.  Ranger 7 broke a six mission losing streak, the first two Gemini launches went swimmingly, TIROS has gone nine for nine.

Similarly, the Saturn 1 rocket, the biggest booster ever made, has had an impeccable launch record.  The lift-off on February 16 kept the streak going; the eight engine monstrosity delivered what I believe is the biggest satellite ever to be put into orbit.

Called Pegasus, it is an enormous cylinder with giant panels affixed to either side.  The panels occupy some 2300 square feet, and their job is to measure the density of micrometeoroids in orbit over the course of a many-year lifespan.

It sounds pretty mundane when you reduce the mission to its bare essentials.  Pegasus is like a big fly-catcher, spending its orbit running into space rocks.  But it's not the experiment that's so exciting, but the idea that we can now loft giant structures with a single launch.  Imagine that Pegasus was actually a space station module, and that it's wings were solar panels.  Now imagine assembling a few of them together using a maneuverable spacecraft, perhaps a Gemini derivative…

Yes, America is just on the edge of being in the space construction business.

Scenes to Come

Yesterday (February 17, 1965), the eighth Ranger blasted off from Cape Kennedy, destination: Moon.  If we've truly reached an era of reliability, we can expect the craft to hit its target on the morning of the 20th.  Stay tuned — you'll read about it here first!




[January 28, 1965] Castor, Pollux, and TIROS (Gemini 2 and TIROS 9)

January's been exciting, space-wise.  Read on about two of the month's biggest developments!


by Gideon Marcus

Up and Down

Almost two years ago, Gordo Cooper orbited the Earth for a full day in his spacecraft called Faith 7.  This marked the end of the Project Mercury, America's first manned space program.  Work was already apace on Project Apollo, a three-seat spaceship scheduled to land on and return from the Moon before 1970.  However, with the Soviets launching spectacular Vostok flights with discouraging regularity, President Kennedy was not about to let several years go by while the Communists continued to rack up a lead in the Space Race.

Plus, it's important to walk before running.  Mercury was barely a crawl — we provided a minimum capsule for a single human to spend no more than a day in space.  The craft was a technological dead end (though there is some talk of turning the surplus four capsules into space telescopes). 

Meanwhile, the Apollo system consists of four components: the Command Module where the astronauts sit, the Service Module with engines and life support, the Lunar Module that will land on the Moon (itself comprising two parts!) and the trans-stage that will boost the whole stack from the Earth.  To successfully get this unwieldy affair safely across half a million miles of space will require the ability to change orbits, rendezvous, dock, and other complicated maneuvers.

Some kind of bridge is necessary.  It now exists, and it's called Gemini.

The two-seat Gemini is a real spacecraft, literally able to fly rings around a Mercury…or a Vostok for that matter.  In the ten or so planned flights, its pilots will not only learn the skills necessary for Apollo missions (and thus become the prime candidates when those missions happen), but they will also be in space far longer than anyone has been before.  Missions of up to two weeks are possible with Gemini!

As with Mercury, uncrewed test missions are necessary to make sure Gemini is up for human use.  Unlike Mercury, there were only two such Gemini missions planned — a dividend of Project Mercury (and there may have been a chimponaut strike, too).

Mission One was an orbital test, mostly to make sure the new Titan II missile worked properly as a spaceship booster.  Launched almost a year ago, on April 8, 1964, the mission went exactly as planned: Gemini 1's instrument pallets went silent after three hours of battery-powered transmission, the craft burned up a few days later upon reentry, and the holes drilled into the heat shield that adorned its hind end ensured its fiery doom.

Of course, it's all very nice that Gemini goes up, but could it come down?  That was the goal of the Gemini 2 mission.  Like Alan Shepard's flight into space back in May 1961, Gemini 2 was a suborbital jaunt planned to last all of 19 minutes. 

At four minutes after 9 AM, Eastern Time, the Gemini-Titan booster staged at Cape Kennedy's Launch Complex 19 flared to life.  Twin Aerojet engines blasted 215,000 pounds of thrust, hurling the rocket into the air at ever increasing speed as the red launch tower swung down from vertical to horizontal.  152 seconds after lift-off, the engines went silent, and the second stage cast off the first with an explosive disdain.  Just three minutes after that, stage two also went silent, and the Gemini capsule was cast off to fly freely. 

Gemini 2 wasted no time in turning itself around, and just seven minutes after launch, at T +415 seconds, the spacecraft fired its retrorockets, sending the ship on a collision course with the Earth.  It was a steep landing, designed to burden the heat shield with a load higher than what any human crew might experience.  But the little ship that Douglas built was up to the task, crashing through the layers of the atmosphere without incident, unfurling its parachutes and landing in the Atlantic Ocean almost three thousand miles downrange.

It had not quite been a perfect flight: a fuel cell that would have been the spacecraft's electricity supply during a long flight failed before lift-off, and the ship's cooling system ran hot.  But it was good enough for government work.  Astronauts Gus Grissom and John Young, the former already a space veteran, are scheduled to go up on Gemini 3 come spring.  With luck, we could see as many as three more launches before year's end.

I in the Sky

Since 1960, TIROS TV satellites have been keeping tabs on Earth's weather.  Zooming around the Earth every couple of hours, they have snapped shots of incipient hurricanes, raging storms, and swathes of clear skies in a way that was pure science fiction just half a decade before.

Scheduled to be superseded by the advanced NIMBUS satellites, NASA decided that there's no reason to stop using what works!  So TIROS just got upgraded, and the first of a new line was launched on January 22, 1965.

The ninth in the series, also called "TIROS I", is special for a number of reasons.  Firstly, it is the first TIROS to be launched into a polar orbit.  Instead of cruising East to West like most satellites, it circles North to South, with the Earth rotating underneath it.  This allows TIROS to photograph every part of the planet once a day.

Moreover, the TIROS I is of a new "cartwheel" design, spinning in space for stabilization with its axis perpendicular to Earth.  From the ground, it appears to roll around in the sky, its twin TV cameras mounted on the spinning rim to snap a shot once every three seconds.

Everyone complains about the weather.  Thanks to the new TIROS, now we can do more about it (or at least react with warning!) than ever before.  Sure, Gemini and Apollo will grab the headlines over the next few years, but it's the hard-working robotic satellites that are really ushering in the future.

[If you have a membership to this year's Worldcon (in New Zealand) or did last year (Dublin), we would very much appreciate your nomination for Best Fanzine!  We work for egoboo…]