Tag Archives: space

[August 17, 1961] Voyages of Discovery (Explorer 12)

Every so often, a discovery comes along that shatters our conception of the universe.  Galileo turned his telescope to the heavens and discovered moons around Jupiter – suddenly, it was clear that Earth was not the center of everything.  Roentgen and Curie showed that matter was not entirely stable, leading to our modern understanding of physics (and the challenges that come with the harnessing of atomic energy).  Columbus sailed to find Asia; instead, he was the first to put the Americas on European maps.

Until 1958, space was believed to be a sterile place, a black void in which the planets and stars whirled.  Maybe there was an odd meteoroid or two, and far away, one might find a big cloud of gas, but otherwise space was synonymous with vacuum. 

Then Explorer 1, America's first space mission, went into orbit around the Earth.  Its particle detectors, designed to measure the free-floating electrons and cosmic rays whizzing around up there, quickly became saturated.  Girdling the planet were hellish streams of energy, particles ionized by the sun and trapped by the Earth's magnetic field. 

Overnight, our idea of space was revolutionized; a few scientists had speculated as to the existence of the "Van Allen Belts," but the idea was hardly mainstream.  More probes were sent up to determine the nature of these belts.  Pioneer 5 went beyond far into interplanetary space and sent back news of a solar atmosphere that extended far beyond the shiny yellow bits – a field of particles and rays that went beyond even Earth's orbit.  Other probes returned maps of the turbulent region where the sun's field met Earth's. 

Space was hardly empty – it was a new ocean filled with waves, eddies, and unknowns to be explored.

Yesterday, Explorer 12 zoomed into orbit, NASA's latest voyager to ply the charged sea of space.  While it practically grazes the Earth at its closest point in its orbit, at its furthest, Explorer 12 zooms out a full 50,000 miles – a fifth of the way to the Moon.  Twice every 31 hours, the satellite studies the Van Allen Belts as well as the region of cislunar space, that variable region in which the Earth and the Sun fight for magnetic dominance. 

Armed with a battery of instruments like that carried by its spiritual predecessor, Explorer 6, the new probe also has several strips of solar cells covered with varying levels of shielding.  These will help determine the extent to which the Van Allen Belts will affect ship's equipment as they travel through the deadly particles.  The data will be of particular use to Apollo astronauts on their way to the Moon.

If Explorer 1 was the satellite Columbus of the Van Allen Belts, and Explorer 6 was John Cabot, then Explorer 12 will be Amerigo Vespucci, fully determining the contours of a new ocean whose depths had been but briefly surveyed before. 

Shiver me timbers, laddie.  It's an exciting time to be a sailor!

[July 22, 1961] Into Space – and the Deep Blue (The Flight of Liberty Bell 7)


by Lawrence Klaes

After three failed attempts just this week, yesterday (July 21, 1961), astronaut Virgil I. “Gus” Grissom finally became this nation’s second (and the world's third) man to reach outer space.  Grissom achieved another sort of milestone when his spacecraft unexpectedly sank after splashdown – and almost took the astronaut with it to the bottom of the Atlantic Ocean!

Following a very similar mission profile to that of his predecessor, Alan Shepard, back on May 5, Grissom rode his Mercury vessel, which he christened Liberty Bell 7 (complete with a painted white crack on the hull) in an arcing flight across the Atlantic Ocean from Cape Canaveral’s Launch Complex 5 (LC-5) in Florida.

The reliable Redstone booster hurled the ton-and-a-half craft, some 262.50 nautical miles downrange and 102.76 nautical miles above the Earth’s surface Grissom’s 15-minute suborbital flight lasted just nine seconds longer than Shepard’s.  Of course, both flights were far shorter than Cosmonaut Gagarin's 90-minute flight in April.  That's because the Redstone simply isn't powerful enough to send a Mercury into orbit, unlike the unnamed ICBM the Soviets are using. 

Grissom’s flight was relatively short in both duration and distance, but our second American astronaut did get to experience a few moments of weightlessness, move his ship around, and view our home planet and the blackness of space as few have yet to do.  His view was better than Shepard's: The two portholes on Freedom 7 were replaced with a larger single window. 

The other improvement on Liberty Bell 7 was an explosive side hatch, to be activated in the event of emergency after landing.  It was a wise precaution, but it almost caused the Mercury program's first fatality.

After Grissom's splashdown in the Atlantic, while he waited inside his space vessel to be rescued by four Sikovsky UH-34D helicopters dispatched from the aircraft carrier USS Randolph, the explosive release on the Liberty Bell 7 side hatch suddenly activated, blowing the heavy metal door across the water like a skipping stone.  The Atlantic Ocean rushed into the now open spacecraft.

The Mercury astronaut prudently abandoned his vessel and waved frantically at the hovering helicopters to hoist him out of the drink: Grissom’s spacesuit was filling with sea water due to an open oxygen inlet connection and it began weighing him down.  The rolls of Mercury dimes Gus had taken along in his suit to later hand out as souvenirs were also contributing to his inexorable dip beneath the ocean surface.

Unfortunately, the lead helicopter pilot interpreted Grissom’s reaction as an indication that he was okay, so they focused on trying to rescue the sinking Liberty Bell 7 by attaching a cable to it>.

The flooding Mercury spacecraft soon became too heavy for the helicopter to lift from the water, and it threatened to bring down the chopper and its crew as well.  With no other choice, the rescue team detached Liberty Bell 7, which quickly sank to the bottom of the ocean over seventeen thousand feet below. 

Attention finally returned to the desperate astronaut.  Grissom grasped for the lowered harness.  Exhausted, he slumped in the harness as he was retrieved for his trip back to the rescue ship. 

It remains to be determined whether the premature explosion of the side hatch was caused by a mechanical defect or by manual release by Grissom, perhaps in a momentary panic.  Gus himself swears he was lying calmly inside the spacecraft when the incident occurred.  Whatever the real story, engineers will need to check the hatch escape system thoroughly to make sure it does not happen again – especially in space!  Perhaps this system will be more fully tested during the next Mercury mission, another suborbital flight scheduled for September, with John Glenn the anticipated pilot.

Intriguingly, in his post-flight briefing this morning, attended by his family and fellow astronauts, Grissom admitted to feeling “scared” when his vessel lifted off towards space.  The Mercury spacemen were chosen for their exceptional bravery and flying skills.  Yet, in the end, they are human.  Did Gus, who flew 100 combat missions during the Korean War and has had a long reputation as a top-notch pilot, have a moment of weakness when confronting the unknowns of outer space?  Is this what contributed to the release of the spacecraft hatch that caused the loss of the Liberty Bell 7 and nearly the astronaut as well?  Are there aspects about the vast realm beyond Earth that may make it impossible for a man to extensively explore and colonize space?

At the moment only three human beings have actually ventured into the alien void.  All have returned alive and unharmed; however, in all of these cases they made only the briefest of ventures into space.  Can someone survive the longer durations entailed in extended orbital missions?  What about manned expeditions to the Moon and other worlds in our Solar System?  Can man make it to those places in person and live to tell the tale?

In the end, there can be only one way to find out: by sending qualified men and eventually even women into the Final Frontier to confront what may be there and conquer it for the good of humanity. 

[July 12, 1961] Reaction time (The launches of MIDAS 3 and TIROS 3)

My brother, Lou, used to tell me that the only way to beat a bully is to not fight fair.  Jump the guy when he's not looking, and fight like there are no rules.  That'll teach him that you're nuts and not worth messing with.

He learned this lesson honestly.  When Lou was in the navy, he immediately got flak for being Jewish.  Someone tried to steal his bunk; Lou rammed the guy's head into the wall.  After that, whenever someone tried to take advantage of Lou, by cutting in the chow line, for instance, another sailor would restrain the miscreant.  "Don't do it!  That's Marcus.  He's crazy.  He'll kill you!"

The problem is that these days, there are just two kids on the block: The USA and the USSR.  Each one's the bully in the other's eyes.  If the Russians decide they can get in a sucker punch, they just might do it to get us out of the way, once and for all.

We have the same option, of course, but it is the avowed intention of our leaders that America will never start a nuclear war.  The Soviets have not made such a pledge.

That's why we have invested so much time and money in developing a strategic nuclear force.  We want the Russians to know that we can strike back if they launch an attack, so that any attempt at a preemptive blow would be an act of suicide.

But we can't retaliate if the first indication we have a Soviet attack is the sprouting of atomic mushrooms over our cities and missile fields.

To that end, we recently finished the construction of the Distant Early Warning (DEW) line, a string of radar installations along the northern coasts of Alaska and Canada.  These can detect a missile some ten minutes from target.  Still not a very good window of time in which to order a counter-strike.

Enter MIDAS.  The MIssile Defense Alarm System satellite has infrared sensors.  As it flies over the Soviet Union, it will be able to detect the heat off a rising ICBM (or space shot, presumably).  Operated in a constellation of low-orbiting craft, there will always be one or two whizzing over the vast expanse of our enemy superpower.  This will raise the window of decision to a more-comfortable 30 minutes.

That should give the Soviet Union pause.  If they can't wind up a punch without us seeing and countering, maybe they won't wind up at all.

I've written about MIDAS before.  The difference this time is that the launch of MIDAS 3 today was freely covered in the press, and it looks like this may have been the first operational vehicle in the series.  In any event, it's one more use of space that benefits all of humanity…hopefully.

In a similar, if more benign vein, today NASA got up the third in its TIROS weather satellite series.  It replaces TIROS 2, which went off the air in January.  TIROS 3 is an improvement on its predecessors, incorporating two wide-angle cameras (the narrow-angle cameras having been eliminated as not particularly useful) as well as five infrared sensors to measure the Earth's heat budget.  I cannot stress enough how revolutionary the TIROS series has been.  Not only has it provided the first full pictures of large-scale weather patterns, but we're getting global climatological data, too.  In concert with the super-powerful computers now at our disposal, meteorology has entered a new age.

For those who live in the Gulf area or Florida, TIROS 3 will be of particular interest: it will be spotting those pesky hurricanes long before they hit the shore.  Again, outer space provides a valuable window of decision for folks on the ground…in this case, the decision whether or not to evacuate!

See you in two with the rest of the latest Analog!

[June 30, 1961] Reaping the Harvest (June 1961 space science results)

June was a busy month for space travel buffs, especially those who live in the Free World.  Here's an omnibus edition covering all of the missions I caught wind of in the papers or the magazines:

Little lost probe

The Goddess of Love gets to keep her secrets…for now.  The first probe aimed at another planet, the Soviet "Venera," flew past Venus on May 19.  Unfortunately, the spacecraft developed laryngitis soon after launch and even the Big Ear at Jodrell Bank, England, was unable to clearly hear its signal.

The next favorable launch opportunity (which depends on the relative positions of Earth and Venus) will occur next summer.  Expect both American and Soviet probes to launch then.

X Marks the Spot

Just as planes use fixed radio beacons to determine their position, soon submarines (and people!) will be able to calculate where they are by listening to the doppler whines of whizzing satellites.  Transit 4A, launched by the Navy, joined the still-functioning Transit 2 on June 29 (#3 conked out March 30, and #1's been off the air since last July). 

This Transit has an all-new power source.  Instead of batteries or solar panels, it gets its juice from little nuclear reactors.  These aren't aren't like the big fission plants you see being established all over the country.  Rather, they are powered by the heat of radioactive decay.  These energy packs are small and much simpler than solar panels.  Expect to see them used quite a bit on military satellites.

The Navy gets extra points for making their rocket do triple-duty: Also boosted into orbit were Injun 1 and Solrad 3.  The first is another University of Iowa particle experiment from the folks who discovered the Van Allen Belt; the latter a solar x-ray observatory.

Along a dusty trail

Contrary to popular belief, outer space is not empty.  There are energetic particles, clouds of dust, and little chunks of high-speed matter called micrometeorites.  All of them pose hazards to orbital travel.  Moreover, they offer clues as to the make-up and workings of the solar system. 

Prior satellites have tried to measure just how much dirt swirls around in orbit, but the results have been vague.  For instance, Explorer 8 ran into high-speed clouds of micrometeorites zooming near the Earth late last year corresponding with the annual Leonids meteor shower.  Vanguard 3 encountered the same cloud in '59, around the same time.  But neither could tell you precisely how many rocks they ran into; nor could previous probes.

NASA's new "S(atellite)-55" is the first probe dedicated to the investigation of micrometeorites.  It carries five different experiments — a grid of wires to detect when rocks caused short circuits, a battery of gas cells that would depressurize when impacted, acoustic sounding boards…the whole megillah.  It is one of those missions whose purpose is completely clear, accessible to the layman, unarguably useful.

Sadly, the first S-55, launched today from Wallops island, failed to achieve orbit when the third stage of its Scout rocket failed to ignite. 

It's a shame, but not a particularly noteworthy one.  The Scout is a brand new rocket.  We can expect teething troubles.  Every failure is instructive, and I'll put good money on the next S-55, scheduled for launch in August.

Worth the Wait

Speaking of Explorer 8, Aviation Week and Space Technology just reported the latest findings from that satellite.  Now, you may be wondering how a probe that went off the air last December could still generate scientific results.  You have to understand that a satellite starts returning data almost immediately, but analysis can take years. 

I'd argue that the papers that get published after a mission are far more exciting than the fiery blast of a rocket.  Your mileage may vary.  In any event, here's what the eighth Explorer has taught us thus far (and NASA says it'll be another six months until we process all the information it's sent!):

1) The ionized clouds that surround a metal satellite as it zooms through orbit effectively double the electrical size of the vehicle.  This makes satellites bigger radar targets (and presumably increases drag).

2) We now know what causes radio blackouts: it is sunspot influence on the lower ionosphere. Solar storms create turbulence that can cut reception.

3) The most common charged element in the ionosphere is oxygen.

4) The temperature of the electrons Explorer ran into was about the same as uncharged ionospheric gas – a whopping 1800 degrees Kelvin.

This may all seem like pretty arcane information, but it tells us not just about conditions above the Earth, but the fundamental behavior of magnetic fields and charged particles on a large scale.  Orbiting a satellite is like renting the biggest laboratory in the universe, creating the opportunity to dramatically expand our knowledge of science.

Air Force discovers Pacific Ocean

The 25th Discoverer satellite, a two-part vehicle designed to return a 300 pound capsule from orbit, was successfully launched June 16.  Its payload was fished from the Pacific Ocean two days later, the recovery plane having failed to catch it in mid-descent.  I recently got to see one of those odd-tailed Fairchild C-119 aircraft that fly those recovery missions; they're bizarre little planes, for sure. 

As for the contents of the space capsules, it's generally assumed that they carry snapshots of the Soviet Union taken from orbit.  This time around, however, the flyboys included some interesting experiments: three geiger tubes, some micrometeroid detectors, and a myriad of rare and common metals (presumably to see the effects of radiation upon them). 

You may be wondering what happened to Discoverers 23 and 24 (the last Discoverer on which I've reported was numbered 22).  The former, launched on April 8, never dropped its capsule; the latter failed to reach orbit on June 8.  Unlike NASA, the Air Force gives numbers to its failed missions.

Next Mercury shots planned

Virgil I. "Gus" Grissom is set to be the next Mercury astronaut in late July.  His flight will be a duplicate of Alan Shepard's 15 minute jaunt last month.  If all goes well, astronaut John Glenn will fly a similar mission in September.

I don't think the Atlas is going to be ready in time this year for an orbital shot.  That means there will be several tense months during which the Soviets could upstage us with yet another spectacle. 

[June 6, 1961] America’s Answer to Lunik: Project Ranger


by Lawrence Klaes

[The Space Race continues to run at an ever-accelerating pace.  To keep up with all the new developments, I've tapped my friend and fellow professional space historian to tell us a very special program that just might score for the United States in the next inning…]

President Kennedy declared three weeks ago before Congress that America shall make the bold step of “sending a man to the Moon and returning him safely to the Earth” before the end of this decade.  This has given a much needed – and quite literal – boost to the American space program. 

It couldn’t have come at a better time.  Since that day in October of 1957 when our geopolitical and space rivals, the Union of Soviet Socialist Republics, or USSR for short, lofted that 184-pound silvery sphere they called Sputnik 1 into Earth orbit, the Communists have handily outpaced us on virtually all key fronts of the Space Race.  First animal in orbit.  First man in orbit.  First probe to Venus.  First victories in the race to that big golden prize in our night sky, the Moon.

In one year alone, 1959, the Soviets sent the first space probe flying past the Moon and on into solar orbit.  This was followed by the first manmade vehicle to impact another world, with their Luna 2 littering the lunar dust with pennants engraved with the Soviet Coat of Arms.  The USSR rounded out their lunar triumphs of 1959 with a circumlunar imaging mission that revealed the hitherto unseen lunar farside.

So which Superpower will be the first to orbit the Moon?  The first to land, with robots and then with manned spacecraft?  Experts in various fields might understandably side with the Soviet Union, including those in the West.  In a mission-by-mission comparison, America’s efforts at exploring and conquering the Moon pale.

All of the first three Air Force Pioneer lunar probes fell short of their celestial goal.  Of the next two, made to order by Jet Propulsion Laboratories in Pasadena, California (JPL), Pioneer 4 alone escaped the confines of Earth’s gravity and headed into interplanetary space in March 1959.  Unfortunately, the small conical craft was many thousands of miles too far away for its scientific instruments to examine the Moon and slipped on to join its Soviet counterpart, Luna 1, in solar orbit.

Then it was STL’s turn again with their advanced Atlas Able Pioneers.  All four of them failed.  Spectacularly.

And so, back to JPL.  They have a new robotic lunar exploration program that they are confident will return some of NASA’s prestige in space and ensure that one day soon the Stars and Stripes will be standing tall on the lunar surface — before the Hammer and Sickle.  Named Ranger, it is actually a three-step program of increasingly sophisticated species of spacecraft: what the space agency calls Blocks.

The two Block I machines will fly this year.  Looking like an oil rig with two long solar panel “wings” at its base and a large high-gain directional dish antenna beneath, the first two Rangers will initially enter an Earth parking orbit and gradually be moved farther out into space until well beyond the Moon.  There the controllers at JPL will put the probes through their paces to see how they handle the cislunar environment to improve upon the next blocks of Ranger missions.  These won’t just be engineering flights; each Block I Ranger it will also fly a suite of scientific instruments. 

Now, JPL thought these science Rangers were good enough to make good Venus probes, too.  Their intention was to launch these modified Rangers using the Atlas-Agena B combination of rockets. 

NASA rejected this plan, instead asking JPL to develop a more ambitious planetary probe labeled Mariner A, which would use an Atlas rocket with the powerful Liquid Oxygen Centaur second stage.  The Centaur booster has a more powerful payload lifting capability, which translates into sending their Mariner A concept with more scientific instruments to either Venus or Mars.

However, the Centaur has had a number of technical issues during its development.  There is genuine concern that the new booster will not be ready in time to send a probe to Venus during the 1962 launch window.  A delay would mean waiting for the next launch window over two years hence.  NASA officials and others are quite certain that the Soviets could have their own Venus probes on their way to the second world from the Sun by next year.  A successful exploration of that planet would bring yet another space victory and political glory to the communist nation.  Thus the Ranger bus option to flyby Venus and see what dwells under its mysterious bank of clouds remains a plausible alternative.

Back to the Moon: the first Block I Ranger is scheduled for launch from Cape Canaveral in Florida atop an Atlas-Agena B for late July, 1961.  Its sister probe, Ranger 2, will follow into space aboard a similar rocket sometime in October.

Ranger Block II will be the first Moon missions.  Scheduled for 1962, three probes will fly through the airless void to make a direct hit on the Moon.  The original proposal called simply for each Ranger to carry a TV camera to map potential landing sites.  But, just as nature abhors a vacuum, scientists abhor minimum missions.  Thus, some of the sky science experiments from Block I will make their way to Block II — over the protests of engineers, who abhor complication. 

The neatest bit is the MoonQuake detector.  It is hoped that the Rangers will not be completely destroyed at the end of their missions: Each probe carries atop its main bus a thick sphere of balsa wood.  At the very center of each ball is a seismometer which will determine if the Moon produces quakes just as they occur on Earth.  The balsa sphere will protect the sensitive geological instrument upon impact with the lunar surface.  Six silver cadmium batteries will power the seismometer for up to one month after the rough landing. 

Just as with earthquake science here on Earth, the Ranger 3 through 5 science packages should teach us much about the composition of the lunar interior and if the Moon is still geologically active or not.  Although most scientists now accept that the vast majority of lunar craters were caused by ancient meteor and comet impacts, it may be that some of them are actually the calderas of volcanoes.  Scientists want to know if any of them may still be active. 

Finally, we have Ranger Block III.  As with their predecessors, the robot probes of Block III will also be sent plunging into the Moon.  While these mechanical explorers will not survive their high-speed impacts with the lunar crust, they will nevertheless return thousands of increasingly detailed images of particular regions of the Moon in real time using a bank of onboard television cameras.  These images will help scientists understand the finer details of the lunar surface both for geology as well as assisting NASA with future locations for soft landing missions, including manned vessels.

The manned program that will benefit from the findings of the Ranger program is Project Apollo.  The space agency had already planned Apollo as a follow-up spacecraft to Mercury with goals including a circumlunar flight or even a lunar orbital mission.  With President Kennedy’s new mandate to place a man on the Moon by the end of this decade, NASA has already begun to expand Apollo to include the ability to land astronauts on the lunar surface.  Whether this will involve using the entire Apollo craft and the powerful Nova rocket currently on the drawing board or perhaps an alternate concept of a separate Apollo craft and lander will be decided after much study and debate.

One thing from all this is certain, though: The Soviet Union has clear ambitions for the ultimate high ground of space.  Should the Soviets come to dominate Earth orbit and our neighboring worlds, especially if they include nuclear arms in this mix, the American way of life will be under a greater threat than ever before since the end of the last World War and the start of the Cold War. 

[May 6, 1961] Dreams into Reality (First American in Space)

I've been asked why it is that, as a reviewer of science fiction, I devote so much ink to the Space Race and other scientific non-fiction.  I find it interesting that fans of the first would not necessarily be interested in the second, and vice versa. 

There are three reasons non-fiction figures so prominently in this column:

1) I like non-fiction;
2) All the science fiction mags have a non-fiction column;
3) Science fiction without science fact is without context.

Let me expand on Point 3.  Science is different from all other philosophies because of its underpinning of reality.  My wife and I had this debate in graduate school many years ago with our fellow students.  They felt that, so long as their systems were logical, their views on how the universe worked were just as valid as any others – certainly more valid that lousy ol' science, with its dirty experiments and boring empiricism.

They're wrong, of course.  Religion and philosophy have discerned little about the natural universe except by accident or where the practitioners have utilized some version of the scientific method.  The fact is, there is a real universe out there, and it pushes back at our inquiries.  That "friction" is what allows us to experiment as to its nature.  It's why we have wonders like airplanes, nuclear power, the polio vaccine, the contraceptive pill. 

Similarly, science fiction is nowheresville without an underpinning of science.  Science fiction is not make believe – it is extrapolation of scientific trends.  Even fantasy makes use of science; ask Tolkien about his rigorous application of linguistics in his construction of Elvish.  It is important that my readers keep abreast of the latest science fact so they can better understand and appreciate the latest science fiction. 

And it goes both ways – the science of today is directly influenced and inspired by the dreams of yesterday.  Without science fiction, science is a passionless endeavor.  Jules Verne showed us space travel long before Nikita Khruschev. 

Thus ends the awfully long preface to today's article, which as anyone might guess, covers America's first manned space mission.  Yesterday morning, May 5, 1961, Commander Alan B. Shepard rocketed to a height of nearly 190 kilometers in the Mercury spacecraft he christened "Freedom 7."  His flight duplicated that of chimpanzee Ham's February trip: a sub-orbital jaunt that plopped him in the middle of the Atlantic Ocean.  He flew for just 15 minutes.

The flight was so short because Shepard's rocket, the same Redstone that launched the first American satellite into orbit, was simply too weak to push the two-ton Mercury fast enough to circle the Earth.  The Redstone is an old missile, made by the Army in the early '50s.  It is significantly weaker than the Soviet ICBM that hurled the first cosmonaut into space.  It looked embarrassingly undersized compared to the Mercury it carried – like a toy rocket.

We have a booster comparable to that which launched Vostok, the ICBM called Atlas, but it's not ready yet.  In fact, a test shot of the Atlas-Mercury combination (MA-3) failed miserably just last week on April 25, and before that, the Atlas failed in four out of four unmanned Moon missions.  It is likely that we won't see an American in orbit until 1962.

The flight of "Freedom 7" might have impressed more had it before occurred the Soviet orbital shot that made the headlines on April 12.  In fact, a Mercury-Redstone did go up on March 24, a full three weeks earlier.  It carried an unmanned boiler-plate Mercury capsule; the main purpose of the mission to make sure the Redstone was truly ready for a human passenger since it had been a little balky during Ham's flight.

The flight of "MR-BD" went perfectly.  Had MR-BD been a manned mission, Shepard would have been the first human in space. 

And so the Soviets scored yet another first in the Space Race.  But does it matter?  NASA is already soliciting designs for its "Apollo" series of Moon ships, scheduled to launch at the end of the decade.  The Russians announced a similar program on May Day.  If this is going to go on for the long haul, I prefer a measured, safety-conscious space program over a reckless one.  The tortoise beat the hare, and I predict Shepard's flight is just the first tentative step toward a permanent American presence in space.

The Mercury capsules are proven.  Our astronauts are proven.  All that's left is the Atlas.  Let's do things right the first time rather than repeat the failures of the Air Force's Discoverer program and the Soviet Vostok program.  I want all my astronauts back safe and sound; this is a marathon, not a sprint.

And at the end of it, all those space travel stories we've enjoyed for decades will at last become reality.  A triumph for science fiction and science.

[April 28, 1961] Newies but goodies (April space round-up!)

They say "You're only as old as you feel," which explains why Asimov pinches co-eds at conventions.

I've been asked why someone of my advanced age is into the bop and rock and billy that the kids are into these days, when I should be preferring the likes of Glenn Miller or Caruso.  Truth be told, I do like the music of my youth, the swing of the 30s and the war years (no, I didn't serve.  I was 4F.  My brother, Lou, was in five Pacific invasions, though.) But there's something to today's music, something new.  Lou's kid, David, really turned me onto this stuff – the Cubano and the Rock n' Roll.  Music beyond whitebread and Lawrence Welk. 

It makes me feel…young.

I've got a full month of space news to catch up, in large part because I was remiss around the end of last month thanks to Wondercon.  And then Gagarin's flight eclipsed all else in significance for a while, but there is more to off-planet exploration than men in capsules.

Like dogs in capsules.  Gagarin's flight was preceded by Sputnik 10, launched March 25.  In retrospect, it is clear that it was a test flight of the Vostok spacecraft, and it carried a mannequin cosmonaut and a dog, Zvezdocha ("Little star" – a charming name).  Both passengers returned safely to Earth. 

The fact that Sputnik 9, Sputnik 10, and Vostok 1 all launched in such close succession is a testament to the robustness of the Soviet space program.  It is clear that they have plenty of boosters and capsules to fling into space.  One has to wonder if their second manned space shot will precede our first (currently scheduled for May 4.)

Also launched March 25 was the diminutive and short-lived Explorer 10.  Its brief lifespan was intentional.  The little probe was sent on a eccentric orbit that took it nearly half-way to the Moon.  For just 52 hours, the craft returned data on the magnetic fields in cislunar space, well above the energetic Van Allen Belts.  It may seem a waste to send a satellite up for such a short time, but solar panels are heavy, and the Thor Delta that boosted it can only throw so much into space. 

Some of the results are straightforward — it confirmed the speed and density of solar flare protons.  As for the magnetospheric results, well, their interpretation depends on the answer to one question: did Explorer 10 probe into a realm beyond Earth's magnetic field (thus measuring the sun's field) or just its outer reaches? 

Columbus' first trip returned inconclusive results about the New World; so it will take several more satellites to properly map the high electromagnetic frontier.

Speaking of seeing the unknown, many humans (yours truly included) have some degree of color-blindness.  That is, there are wavelengths of the visual electromagnetic spectrum that we cannot distinguish from others.  For all intents and purposes, those colors don't exist to us. 

All humans are subject to another kind of color-blindness, one caused by the atmosphere.  You see, while the sky seems perfectly clear to us, at least at night, in fact the air blocks a good many wavelengths of light that we'd be able to detect if it weren't there.  Not with our eyes, to be sure, but with equipment. 

X-Rays, for instance.  High-flying sounding rockets have found tantalizing evidence that the Sun emits those high energy waves.  Explorer 7's and Vanguard 3's X-Ray detectors were swamped by the radiation of the Van Allen Belts.  Solrad, equipped with a magnetic sweeper, was humanity's first eye in the sky that could see light in that spectrum, though only in a crude fashion, counting the photons as they struck its photocell.  Perhaps the upcoming Orbital Solar Observatory will see more.

Even more elusive are the extremely energetic gamma rays, normally only detected as radiation from natural and artificial nuclear reactions.  Logic would suggest that these rays are emitted by stars, but there is no way to be sure from the ground.

Enter Explorer 11, launched on one of the last Juno II rockets (thankfully, it worked; these neglected boosters have a mere 50/50 chance of success.) It looks to my eye like the early Explorers, which makes sense: the body of the probe is the little Sergeant rocket that makes up the fourth stage of both the Juno I and II.  This little guy is the first satellite that can detect light in the gamma ray end of the spectrum.  Again, it isn't a camera, but it will detect the number and direction of the rays that hit its sensors.  Who knows just what it will find!

[April 12, 1961] Stargrazing (the flight of Vostok)

The jangling of the telephone broke my slumber far too early.  Groggily, I paced to the handset, half concerned, half furious.  I picked it up, but before I could say a word, I heard a frantic voice.

"Turn on your radio right now!"

I blinked.  "Wha.." I managed. 

"Really!" the voice urged.  I still didn't even know who was calling. 

Nevertheless, I went to the little maroon Zenith on my dresser and turned the knob.  The 'phone was forgotten in my grip as I waited for the tubes to warm up.  10 seconds later, I heard the news.

It had happened.  A man had been shot into orbit.  And it wasn't one of ours.

Last night, Major Yuri Alekseyivich Gagarin blasted off from the Soviet Union in his Vostok spacecraft (Vostok means "East" in Russian, and it is in that direction that the rocket flew).  He circled the Earth once before landing with his vehicle.  Protected only by steel walls and a space suit, he made it to orbit and back.  I had to sit down, so dizzying was the news.

I've now had a few hours to think about this event and determine just what it means for all of us.

For ages, humanity has dreamed about journeying to outer space.  We have now finally taken our first shuffling steps off of our world. 

Half a century ago, a Russian named Tsiolkovsky determined the first practical way to get there — at the tips of rockets.  So it is appropriate that the first human to traverse the regions beyond our atmosphere was a Russian. 

For the Communists, it is yet another victory in a race that as yet has no finish line.  A demonstration of their superior rocketry, or perhaps a greater willingness to gamble with a person's life. 

For the Americans, it is a challenge to meet, not a discouragement.  "It doesn't change our program one bit," said Marine Colonel John Glenn, who may well be the first American in space.

For science fiction fans, the impact is tremendous.  We have been writing about space travel for decades like a virgin writes about intercourse: avidly, but without experience.  Just the other month, there were published stories involving the predicted psychic and physical dangers of space, too horrible to be surmounted.

And yet, Gagarin did it.  If he can, others will.  Space may not be safe, but it is survivable.

Soon, we will have a flood of new data, and our s-f stories will change accordingly to accommodate.  I expect we'll have fewer tales of astronauts who jaunt out in their rocket as if they're out on a Sunday drive, more stories of space programs and the thousands of engineers who make up the bulk of the logistical iceberg. 

Some have opined that the more we explore the frontiers that were once solely the province of fiction, the less magical we make our world.  I must disagree.  This new frontier has hardly been touched, and even when we have thoroughly mapped the regions of low orbit, there is then high orbit, the Moon, the planets, the stars.  Each frontier is a gateway to the next.

Today, science fiction is fact, and the domain of science fiction has broadened.  I've never been more excited.

[March 31, 1961] Real-world round-up for March

Here's an end of March, real-world round-up for you before we plunge into the science fiction of April:


http://www.jfklibrary.org/Asset-Viewer/Archives/JFKWHP-AR6454-B.aspx

President Kennedy devoted a good deal of time to the civil war in Laos at his fifth press conference, March 23.  This three-cornered fight between the nationalists (propped up by the United States), the Communist Pathet Lao (backed by the Soviets and the North Vietnamese), and the neutralists has been going on since the end of last year.  The US Navy Seventh Fleet was recently dispatched to the region along with a contingent of troops.  For a while, it looked as if we were looking at another Korea.

I'm happy to report that both Kennedy and Premier Khruschev have now proposed plans for peaceful solutions to the crisis that involve the invading North Vietnamese disarming and going home.  I fervently hope that this means Southeast Asia won't be the site of war in the 1960s.

Speaking of Kennedy and war, the President recently asked Congress for a significantly bigger defense package.  This would see the United States armed with 1200 nuclear-tipped missiles by 1965!

On the dove-ish side of the coin, Kennedy also asked for an increase in the NASA budget for development of the mighty "Saturn C-2", which would facilitate manned flights around the Moon by 1966.

On the subject of space, NASA pilot Joe Walker took the X-15 spaceplane to a record height of 31 miles above the Earth yesterday, more than five miles higher than anyone has flown the craft before.  During a good portion of his 10-minute flight, the plane's stubby wings and control surfaces had nothing to "bite" into, the atmosphere being so rarefied at that altitude.  For all intents and purposes, it was a flight in space, down to the unwinking white stars that filled the daylight sky. 

And he only got halfway to the rocketship's expected maximum altitude!

Meanwhile, the Air Force failed to get into orbit the 22nd in their Discoverer series.  These probes are ostensibly for orbiting and returning biological samples, but they really test components for their Samos spy satellites.  There was supposed to be a monkey on this one, but I haven't read any reports about it.  Perhaps the fly-boys were merciful and just stuffed the spaceship with non-perishable hardware.


http://photos.clevescene.com/28-vintage-photos-karamu-house/?slide=9&children-look-through-a-telescope-at-karamu-house-1961

Now let's look ahead at April.  There will, of course, be the three magazines, IF, Analog, and Fantasy and Science Fiction, the monthly The Twilight Zone round-up, and perhaps a trip to the movies.  I have Marion Zimmer Bradley's The Door Through Space on my bedside table, but it hasn't gripped me yet.  We'll see.

We'll also see more of our new regular columnist, Rosemary Benton, and along those lines, I've got another surprise for you 'round mid-month!

S'okay?  S'alright.

[Mar. 10, 1961] Dog and Puppy Show (Sputnik 9)

We are definitely not far away from a person in space.  The Soviets launched another of their five-ton spaceships into orbit.  We're calling it Sputnik 9; who knows what they call it?  On board was just one dog this time, name of Chernushka, who was recovered successfully after an unknown number of orbits.  It is pretty clear that the vessel that carried Chernushka is the equivalent of our Mercury capsule, and once the Russians have gotten the bugs out of the ship, you can bet there will be a human at the controls.

This is not to say that the American program is standing still—one of our astronauts may go up on a suborbital jaunt as early as next month.  But the Atlas booster, the big one that can put a man in orbit, won't be ready until the end of the year, at the earliest. 

By the way, if you're wondering how the two dogs who went up in Sputnik 5, Strelka and Belka, are doing, you'll be happy to know that they are alive and well.  Strelka's given birth to a litter of six!  Anyone want to adopt a space puppy?

Meanwhile, closer to home (but not that much closer), NASA sent its X-15 spaceplane on its fastest flight yet.  I explained not too long ago that the X-15 has got a new engine, one designed to propel it to unprecedented heights and speeds. 

Sure enough, the powerful XLR99 engine pushed the spaceplane and pilot Major Bob White to a height of 77,000 feet and a record speed of 2,650 mph (Mach 4.43).  That was nearly 400 mph faster than White had managed using the weaker XLR11 engines—and he didn't even open the throttle wide open!

"I felt no sensation of speed except for the explosive thrust when I first lighted the engine.  That was about double the acceleration of the smaller engine used in earlier flights," White said after the flight had made the Major the fastest man alive. 

While the X-15 will never propel itself to orbit (at least, not without some kind of booster-assisted help, plans for which have been drafted), it will fly as fast as Mach 6 and up to 300,000 feet.  At that height, the sky is black and the limb of the Earth is round; one could argue that it's close enough to Space to count as Space by any measure that matters.

Stay tuned for the rest of this month's Galaxy!