Tag Archives: space

[Apr. 30, 1962] Common Practice Period (April Spaceflight Round-up)


by Gideon Marcus

The radio plays Classical music on the FM band now. 

The difference is palpable.  Bach and Mozart on the AM band were tinny and remote.  It was almost as though the centuries separating me and the composers had been attenuating the signal.  This new radio band (well, not so new, but newly utilized) allows transmissions as clear as any Hi-Fi record set could deliver. 

Don't get me wrong; I still listen to the latest pop hits by The Shirelles and The Ventures, but I find myself increasingly tuned into the local classics station.  The sound, and the selections, are just too good to ignore.  The last movement of Robert Schumann's Symphony #1, with its stirring accelerando is playing right now, and it is a fitting accompaniment for the article I am currently composing.

Time was I would write an article on a space mission about once a month.  This wouldn't be a wrap-up, but an article devoted to a single satellite.  But the pace of space launches has increased – there were two successful orbital flights in 1957, nine in 1958, 13 in 1959, 20 in 1960, 38 in 1961.  There were six flights just last week.  Either I'm going to have to start abbreviating my coverage, or I'll need to start a satellite (no pun intended) column. 

But that's a decision for next year.  Right now, with a bit of musical texturing, let me tell you all about the exciting things that happened in spaceflight, April 1962:

Quartet in USAF Minor

Late last year, President Kennedy put a lid on all military space programs, classifying their details.  This was a break from Ike's policy, which was to publicize them (more or less accurately).  I think Eisenhower's idea was that any space shot was good for prestige.  Also, if we were upfront about military flights, maybe the Soviets would follow suit.

The current President has decided that discretion is the better path.  So even though I have it on good authority that four boosters took off from Vandenberg Air Force Base in California (it being rather hard to hide a blast of that magnitude, and the papers are still reporting on them as best they can), I couldn't tell you exactly what was at the tips of those rockets.  It's a fair bet, however, that three of them were reconnaissance satellites, snapping photos of the USSR from orbit.  The last was probably a nuclear missile launch detector called MIDAS.  That's make it the 5th in the series. 

Quartet in USSR Minor

Meanwhile, the Russians, who had not reported any spaceflights since Comrade Titov's flight last summer, suddenly threw up four probes in about as many weeks.  The missions of "Kosmos" 1-4 were "to study weather, communications, and radiation effects during long space flights in preparation for an eventual manned landing."

That sounds good, but while the first three satellites are still up in orbit returning scientific data, the fourth, launched four days ago, landed three days later – after passing over the United States several times.  All we know about it was it was launched from "a secret base" and "valuable data [was] obtained."  Given that Kosmos 4's mission plan bore a striking resemblance to that of our Discoverer capsule-return spy sats, I suspect the first three Kosmos shots were a flimsy camouflage.  What's interesting here is that the Communists feel it necessary to construct a cover-up.  But the fact is, they just can't hide when they launch things into space, any more than we can. 

Solo for English Horn

The first UK satellite, Ariel 1, was successfully launched on April 26, 1962 atop an American Thor Delta booster.  The little probe will investigate the Earth's ionosphere.  You can read all about this mission in Ashley Pollard's recent article.

Mooncrash Sonata

It's two steps forward, one step back for NASA's ill-starred ("mooned?") Ranger program.  Thrice, the lunar probe failed to fly due to a balky Atlas Agena booster.  This time, Ranger 4, launched April 24, 1962, was hurled on a perfect course for the Earth's celestial companion.  The trajectory was so perfect that the craft didn't even require a mid-course correction.

Of course, it wouldn't have mattered if it had.  Upon leaving the Earth, it quickly became apparent that Ranger 4 was brain-dead.  It issued no telemetry, nor did it respond to commands.  NASA dispiritedly tracked the probe's 64-hour trip to the moon, which ended in its impact on the far side. 

Heart-breaking, but it is a sort of semi-victory: At least the rocket works now, and the United States as finally caught up with the Soviets in another aspect of the Space Race (just two-and-a-half years late…)

Saturn (fortissimo)

Speaking of successful rockets, the tremendous Saturn I had another successful test on April 25, 1962.  Like the first, the upper two stages were inert, filled with water for ballast.  This flight has a twist, however.  After the first stage had exhausted its fuel, the dummy stages were detonated and the ensuing watery explosion observed.  This "Operation Highwater" was designed to demonstrate how far the debris of a booster blast would travel.  I imagine it was also a lot of fun.

I have to wonder about the future of the Saturn I.  It has already been determined that the Apollo moon craft will be launched by the much more powerful and generally unrelated Saturn C-5 and Nova boosters.  It seems that the Saturn I is something of a technological dead end, though I'm sure they are at least perfecting their heavy booster launch techniques.

Prelude, Symphony #2

The National Aeronautics and Space Administration is planning another Mercury one-person shot for next month.  It will be an exact duplicate of John Glenn's February flight, down to the three-orbit duration.  To be piloted by Navy aviator Scott Carpenter (the hunkiest of the Mercury 7), the main purpose of the mission is to make sure that the errors that plagued Glenn during his flight are fixed before the little spacecraft takes on longer journeys.  And, of course, then we will have caught up with the Russians in another way – we'll have had two men orbit the planet.

No doubt, Carpenter's flight will be the spaceflight highlight of next month; I have not seen any other missions announced.  Then again, the Reds might have a surprise that'll have us singing a different tune…

[Mar. 17, 1962]  Our Knights in Shining Armor (Have Space Suit, Will Travel)

[The Journey's "Fashion Columnist" returns with a timely piece on the latest advancement in sartorial science…]


by Gwyn Conaway

Last month, on February 20th, 1962, John Glenn became the second American to leave behind our earthly constraints for the majesty of space.

Less than one year after Alan Shepard’s historic suborbital flight on a Redstone rocket, John Glenn ascended to low Earth orbit in his spacecraft, Friendship 7. He circled the Earth three times at speeds upwards of 17,000 miles per hour, and persevered through the crushing force of nearly eight times the force of Earth's gravity Gs at reentry into our atmosphere.

What a time to be alive! We are witness to human history! This is a milestone in a long journey toward chasing the unknown. Never have I been more certain that we are explorers, creatures of adventure. And what better bedfellow to our curiosity than innovation?  For to accomplish his mission, Colonel Glenn required two spacecraft: the bell-shaped Mercury, as well as his formfitting personal capsule – the Mark IV spacesuit.

Our newly beloved Space Age is thanks, in no small part, to a little-known mechanical engineer and designer named Russell Colley at B. F. Goodrich Company. Owing to his career-long devotion to high-altitude pressure suits, Colley has been deemed the Father of the Spacesuit, the First Tailor of the Space Age. Mark my words, his Mark IV spacesuits, with their sleek and futuristic design, will inspire generations of fashion to come.

The Mark IV rides on the coattails of many pressure suits designed by Colley and others over the years. Its evolution is a testament to American doggedness and bears the fruits of the unbridled technological advancements in textiles and garment manufacturing we’ve seen through the past decade.


The Post pressure suit, first flown in 1934. This suit had a skewed visor to favor Wiley Post’s one good eye.

Colley first began his groundbreaking work in 1934 when Wiley Post, the aviator who achieved fame through making the first solo flight around the globe, commissioned him to design the world’s first pressurized suit for high-altitude flight. Later the same year, after two failed designs, Colley built a rubber bladder suit with long underwear and a diver’s helmet on his wife’s sewing machine. This suit launched Wiley Post 50,000 ft into the air and jump-started an evolution over the next thirty years that leads us to our current moment of triumph – the Mark IV spacesuits.


John Glenn being fit for his Mark IV, destined to carry him into orbit last month. What once looked like a diver’s suit has now been transformed into a feat of futuristic design and engineering.

From 1941 to 1954, the David Clark Company designed and built twenty pressure suit models for the U.S. Military.  When David Clark’s funding dried up, B.F. Goodrich, where Colley worked, was offered the contract. Colley himself built seven suits at B.F. Goodrich. They started this contract with the Model H (the 8th letter of the alphabet and their 8th suit design, in case you were wondering). Models H through R were built and tested before the company began the Mark series that would take Alan Shepard, Gus Grissom, and now John Glenn into space.

By the time B.F. Goodrich won the bid to build their Mark IV spacesuits in 1961, the U.S. Military and NASA had collectively funded more than forty pressure suit designs across three major engineering companies.


The Mercury 7 in a fitting for their Mark IV space suits. Note the sage green option for the suit in the back right.

The Mark IV, in addition to its sleek name, is a marvel to behold, unlike any other piece of flight equipment I’ve ever seen. Each suit is fitted by Colley in Akron, OH, where he attended to each of the Mercury 7 pilots. The gloves alone come in fifteen sizes: five palm sizes, each with short, regular, or long digits. John Glenn had a new feature added to his gloves specifically for his February flight: tiny lights affixed to the tops of each finger so he could read the instrument panels.


John Glenn shows off his finger flashlights. Also visible in this photo are the only two instances of metal bearings in the entire suit: the neck ring and glove attachments.

Space suits have made incredible strides since his Colley's collaboration with Wiley Post more than thirty years ago. When pressurized, these high altitude suits inflate the interior, pushing in on the human body and out on the suit. This provides the pilot with enough atmospheric pressure to stabilize blood flow to the brain and keeping them conscious during difficult maneuvers. However, once these suits are pressurized, mobility becomes extremely limited, and even bending one’s fingers becomes a task of titanic strength.


Astronauts ‘test’ the Mark IV in a light-hearted ball game. Clearly visible along the outer seams of the arms and legs are Colley’s revolutionary elastic pleating to enhance mobility.

The earliest suits were outfitted with heavy metal hinges at the joints for mobility. In a stroke of genius, Colley departed from metal bearings and joints in the Mark series. Rather, he used adjustable cords and pleats to fold the inflated suit at important junctions. While the cords had originally concerned NASA, they proved invaluable in fittings, where Colley was able to replace the lengths of many of these cords with highly-tailored zippers, elastic seams, and pressure pockets for each pilot.


John Glenn’s waffle-weave long underwear can be seen here as he suits up. The waffling occurs across the back, buttocks, thighs, and biceps in reinforced panels.

It’s a daring, romantic choice. I’m sure I’m not the only one who saw John Glenn walk to his shuttle last month and sigh, “Ah, now there is a knight in shining armor!” I wonder how far into the future Russell Colley’s Mark IV will inspire children, artists, and science fiction? How long will the stamp of America’s Mercury 7 linger on the face of space exploration? Decades? Centuries?

Yuri Gagarin may have beat us to space in April of last year, but the cosmonaut’s orange utility suit will not leave such a glimmer in the eyes of our children. The Russians touched the stars first, but Russell Colley has won the hearts of the people of Earth.

[March 7, 1962] Sunny side up!  (Orbiting Solar Observatory (OSO) #1)


by Gideon Marcus

Look up at the night sky, and what do you see?  Darkness and countless points of light.  Maybe a planet or two, brightly untwinkling in the black.  It is interesting that the sky should be black – after all, there are lots of photons (light particles) buzzing around the sky even after the sun has gone down.  You've got radio waves and x-rays.  Gamma rays, microwaves, and the shimmering veil of infrared – heat.  And yet, we can't see any of it.  Just the pinpricks of stars on the night's sheet.

Part of that is a biological limitation.  Our eyes only see a tiny window of the electromagnetic spectrum: from purple to red, the colors of the rainbow.  Some species of life see a bit further, into the ultraviolet or the infrared.  Only one species has crafted the ability to see beyond this range: humanity.  With our scintillators and geiger tubes and giant dishes, we can see waves of all kinds. 

Well, not quite.  You see, even with these detectors, we are still half blind.  The blanket of air covering the Earth blocks many wavelengths of photons from outer space: X Rays, Cosmic Rays, many wavelengths of Ultraviolet.  To see the truly unseeable, you have to go into orbit.

That's when we really can look at those points of light.  These are the stars, those busy factories of nuclear fusion, busily turning hydrogen into helium.  There are 100 billion in our galaxy, alone!  And we happen to have a lovely example just 93 million miles away, orders of magnitude closer than Alpha Centauri, the second nearest system.  While we have been observing the sun with our eyes for thousands of years, and with instruments for several hundred, these observations have always been hampered by the screening interference of the atmosphere.

Enter OSO – the Orbital Solar Observatory.  This 200kg spacecraft is the heaviest American science satellite to date, dwarfing all of the Explorer series of probes.  It is the first satellite launched devoted to the long-term study of the sun, in wavelengths you can't see from the Earth's surface.

There are 13 experiments on board the (appropriately) solar-powered craft including three X-Ray detectors, four Gamma Ray monitors, an ultraviolet sensor, several particle counters, and a dust sampler.  Not only will OSO be up in orbit for months, but it will be joined by successors in the series such that, for the next 11 years (a complete solar cycle of sunspot maximums and minimums), we will have continuous measurements of our star.  It is an unprecedented experiment, one which will tell us much about the nearest star and, by extension, the rest of the Galaxy's stars.

Not only that, but we will learn a great deal about solar storms and the hazards of radiation to human spaceflight.  This will give us a better idea of when and for how long it is safe for astronauts to travel in space, on the way to the Moon, for instance (NASA Director, James Webb, says he expects a landing by 1968!)

When will this ambitious project start?  Why…today, March 7, 1962, in fact!  It was launched from Cape Canaveral this morning, and to all indications, it is working flawlessly.  It is the kind of mission that won't get a lot of press, particularly when compared to the glory that cloaked Glenn's manned Mercury mission last month.  Nevertheless, I think OSO deserves attention and praise.  It constitutes a genuine leap in technology and it extends the eye of our race far above the clouds in a way no previous satellite has done. 

If they gave out Hugos for unmanned probes, this one would get my vote!

On the other hand, OSO-1 has plenty of competition for that award, and it's sure to get much more.  Tiros 4, the fourth weather satellite, joined its still-functioning older brother (#3) last month on the 8th, and there have been a few mystery military launches since then.  The President has clamped down on Air Force flights as of the beginning of the year, so I don't know much about them save that two were Discoverer film-based spy sats and one was a Samos live-TV spysat.  Another launch happened just today, but it was classified, and I know nothing else about it.  (It's ironic that the reason for the information clamp-down is that the Soviets accused us of employing surveillance satellites, and we're trying to hide it; I'm afraid the cat's already out of that bag!)

So stay tuned…there's more yet to come!

[February 20, 1962] American Made (John Glenn and the flight of Friendship 7)


by Gideon Marcus

And the Free World exhales.  At long last, an American has orbited the Earth.  This morning, Astronaut John Glenn ascended to the heavens on the back of an Atlas nuclear missile.  He circled the globe three times before splashing down in the Atlantic Ocean.

It is impossible to understate what this means for us.  The Soviets have been ahead of us in the Space Race since it started in 1957: First satellite, first lunar probe, first space traveler.  Last year, the best we could muster was a pair of 15 minute cannonball shots into the edges of space.  For two months, Glenn has gone again and again into his little capsule and lain on his back only to emerge some time later, disappointed by technical failure or bad weather.  Each time, the clock ticked; would the Soviets trump us with yet another spectacular display of technological prowess?

But this morning, everything was fine – the weather, the booster, the spacecraft, and the astronaut.  As I went to sleep last night, Glenn woke up.  He had the traditional low residue breakfast of orange juice, toast, eggs over-easy, fillet mignon, and Postum, before suiting up and entering the capsule.  That was at 5 AM his time (2 AM mine).  For five hours, the patient Colonel waited as his Atlas rocket, only recently tamed sufficiently for human use, was prepared and tested for flight.

At 9:47 AM his time, at last we saw the fire shoot out from beneath the missile, saw the Atlas and its black-painted cargo lift off, leaving its support gantry shrouded in white smoke.  For several minutes, the flight of mission Mercury-Atlas #6 was a strictly aural affair, the TV cameras' only subject being the now-empty launchpad.  But we heard the confident communication between Alan Shepard on the ground and Glenn hurtling skyward, America's first and American's latest spacemen, and we knew everything was still going well.

The sky went quickly from blue to black as Glenn struggled against six times his normal weight.  First, the Atlas' two side engines exhausted their fuel and detached.  A few minutes later, the central sustainer engine's job was complete, and the Mercury capsule, dubbed Friendship 7 by Glenn, flung itself from its empty booster.  Glenn was now in orbit, weightless, and cleared for his full three-orbit, five-hour mission.

For the first time, an American flight was long enough for the public to contemplate, to be worthy of news flashes.  And even though the last Soviet flight had spanned a full day, it was shrouded in secrecy until after its completion.  Glenn's mission was, on the other hand, entirely open.  Cockpit chatter was broadcast in the clear; each success and potential failure was presented for the world to hear.  Space travel had become a spectator sport.

The world participated.  Indeed, it had to.  An orbital mission requires global tracking.  Glenn's flight was monitored as he passed over exotic locales like Zanzibar, Woomera, Hawaii.  The citizens of the west Australian city of Perth turned their lights on for the astronaut's passage, providing a virtual streetlamp as he whizzed overhead at 18,000 miles per hour. 

Three sunsets and three sunrises greeted Colonel Glenn, though he was given precious little time to appreciate them, so crowded was his schedule with experiments and ship operations.  As the Mercury spacecraft's functions began to degrade in its third orbit, the value of an experienced human pilot became evident.  Glenn manually configured and trimmed the vessel to make the most of the journey and ensure the mission could be completed. 

Glenn's biggest challenge came at the end of the mission.  Sailing backwards over the Earth, the astronaut prepared to fire the ship's retrorockets, a blast of fire that would slow the craft such that it could break out of orbit and back toward ground.  But an indicator suggested that the Mercury's heat shield was loose.  If that were true, then there could be no returning for the astronaut – he would burn up on reentry. 

Was there anything the astronaut could do about the situation?  Well, the retrorocket package was held tight against the bottom of the bell-shaped craft (and thus, its heat shield) by a series of straps.  Normally, the retrorockets would be discarded before reentry.  This time, on the advisement of ground control, Glenn left the retrorockets strapped in.  The hope was that the straps would keep the shield attached, if it was indeed loose.

What a terrifying display that must have been for the pilot, watching flaming chunks of the retrorockets fly past his window as he tore through the white-hot outer layers of the atmosphere.  Glenn had plenty of other things to worry about.  The "G" forces spiked as the craft decelerated, and the ionization of the air cut off radio contact.  We all waited, white-knuckled, for some sign that the astronaut had survived the journey…or had been vaporized.

Then his voice crackled over the air again, the Mercury's striped parachutes were deployed, and we began breathing again.  A ship of the recovery fleet, the little destroyer called the U.S.S. Noa, was already close at hand when Friendship 7 touched down in the waves.  Once the capsule was hoisted aboard, the astronaut popped the side hatch, the one that had exploded prematurely for second astronaut Grissom.  An overheated but grinning Glenn stepped out of the Mercury, and into history.

Mercury's primary mission, to orbit and safely return a human, has been completed.  Nevertheless, there is obviously much life left in the bird.  Three more three-orbit flights are planned to shake out the bugs that plagued the latter portion of Glenn's flight.  Then 12, 24 hour, and perhaps multi-day flights are slated. 

Of course, the Soviets may soon respond with a flight that trumps ours, perhaps even a two-person mission.  But for now, the hour rightfully belongs to the West.  The democracies of the world at last have their emissary to the stars. 

Godspeed, John Glenn!

[February 1, 1962] Silver Lining (January Space Race round-up!)


by Gideon Marcus

January has been a frustrating month in the Space Race.  We are no closer to matching the Soviets in the manned competition, much less beating them, and our unmanned shots have been a disappointment, too.  That said, it's not all bad news in January's round-up: stick to it through the end, and you'll see cause for cheer!

Quintuplets fail to deliver

The Air Force has been playing around with combined launches for a while now.  After all, if you're going to spend millions of dollars to throw a booster away, you might as well get multiple bangs for your buck.  Sadly, the latest attempt, a Thor Ablestar launch on January 24 dubbed "Composite 1," failed when the top stage tumbled in orbit and failed to separate from its payloads.

What we lost: SolRad 4, for measuring solar X-rays (only visible above the curtain of the atmosphere); Lofti 2, which would have examined the effects of Earth's ionosphere on Very Low Frequency radio transmissions; Surcal, a strictly military probe designed to calibrate the navy's communications net in orbit; the wholly civilian Injun 2, which would help map the Van Allen belts (see below); and Secor, a big balloon that would have helped the Army with their ranging equipment.

Copies of these probes will end up at some point, either launched together on a big rocket or separately on little ones.

Moon Miss-ion

It's been a bad run of luck for NASA's latest moon program, Project Ranger.  After the failure of the first two Ranger missions, designed to test the probe's engineering and return sky science, there were high hopes for the lunar flight, launched January 26. 

Things went badly from the beginning.  Ranger 3 was pushed into a bad trajectory by a faulty guidance system.  Not only did it rush past the moon, failing both to hit the target or end up in orbit, but it was pointed the wrong way the entire length of the journey.  No useful data or pictures were obtained.  That nifty seismometer that makes up Ranger's Rudolph nose went completely unused. 

Ranger 4, a carbon copy of #3, should launch in the next few months.  Hopefully, they'll have the kinks worked out by then.  This is one of those clear places where the Communists are ahead in the space race, having pioneered both lunar orbit and the moon's surface several years ago.

A rain check for Mercury

The third time turned out also not to be the charm for Major John Glenn.  His orbital Mercury mission has now been postponed three times.  It's a good thing the Marine is so good-natured; I know I'd be frustrated.

The first delay happened on January 22 when there was a failure in the spacecraft's oxygen system.  Definitely something I'd like working on a five hour flight!  On the 27th, cloud cover prevented the launch, and just today, there was a problem with the temperamental Atlas booster.  The next opportunity to launch won't come until February 13.

So much is riding on this flight.  The Soviets have already launched two of theirs into orbit while we flutter futilely on the ground.  Newspapers and talking heads are already opining that we'll have a Red-staffed space station and a Red-dominated moon before long if we don't hurry to catch up. 

Explorer 12: Reaping the harvest

Here's the good news: I've said before that the most exciting thing about a satellite is not its fiery launch but the heap of data it returns.  That's where the taxpayer gets one's money's worth and where the scientist sees the payoff.  Explorer 12 was the latest in the series of probes (starting with America's first, Explorer 1) sent into orbit to probe the hellish fields of charged particles that circle the Earth.  The spacecraft is still up there, though it went silent in December.  However, in its four months of life, it learned a great deal about the furthest reaches of our planet's influence.

For one, Explorer 12 found that the outer of the two "Van Allen" belts around our planet is made mostly of protons rather than electrons (though there are still plenty of the latter — enough to make hanging around a dangerous proposition for astronauts).  Those protons, particularly the less energetic ones, have been linked to solar magnetic storms, which result in spectacular auroras on Earth.

Perhaps even more interesting is that the probe found the edge of the Earth's magnetosphere.  "What's that?" you ask.  Well, our planet is a giant magnet, probably the result of a dense iron core that spins deep inside the Earth.  These magnetic lines of force extend far beyond the Earth's crust and 70,000 kilometers into space where they trap the wind of high energy particles from our sun.  This keeps them from scouring away our atmosphere. 

Where our magnetic field meets the field carried on the solar wind, called the magnetopause, there is an area of turbulence and disorganized magnetism. It is now believed that the sun's wind smashes against the Earth's field, creating a bow shock – the kind you'd see when a blunt body is smacked by a supersonic gas.  Moreover, the Outer Van Belt "breathes" inward and outward, responding to waves in the solar wind.

And speaking of magnetic fields, NASA scientists just released findings from the intentionally short-lived Explorer 10 found a magnetic "shadow" behind the Earth.  Specifically, the solar wind seems to hit our planet's magnetosphere and deflect around the Earth, but the magnetic field acts as kind of an umbrella, shielding a large portion of near-Earth space. 

The general contours of Earth's magnetic environment have thus been mapped.  Neat stuff, eh?

[November 30, 1961] Man vs. Machine (November 1961 Space Round-up)


by Gideon Marcus

November 1961 been an exciting month for space buffs with several sequels to exciting missions as well as one brand new satellite. 

For instance, the fourth Transit navigational satellite went up on November 15.  Not only did it carry a little nuclear reactor for power, but it also had a piggyback pal.  Called Transit Research and Attitude Control (TRAAC), it's a little research probe designed to try a new method of stabilization.  You see, an object launched into orbit will have a tendency to tumble.  There are active methods to right a satellite, like engines or gyroscopes.  TRAAC uses a passive method, employing just its shape and the tidal force of the Earth.  It's an exciting experiment.

The Air Force was two for three this month with their reconnaissance programs.  Discoverer 34, on November 5, and Discoverer 35, on November 15, were sent into space to spy on the Soviet Union.  Each had a little camera on board and a capsule for sending film back to Earth.  Both craft made it into orbit, and at least the latter mission's payload was recovered in a daring (but now routine) mid-air catch by a plane.  Only the boys in blue know whether the targets were a Soviet base or skinny dippers on the Black Sea.  Samos 4, launched November 22, failed to orbit.

By the way, it's going to get harder for me to give you the skinny on military missions.  While Eisenhower was rather cavalier about letting the Soviets know what we're up to, probably to show off, President Kennedy has put a lid on spy flights.  Newspapers aren't covering them much anymore, and the details we do get are sketchy.  Just be aware that, at any given time, there are robot shutterbugs in orbit, taking snapshots of Nikita.  And maybe of you.

On to the civilian world: the second Moon probe Ranger probe was a bust, just like the first.  It's a shame because these two missions, comprising the first iteration of the probe known as "Block 1," were designed to do some excellent sky science.  They weren't aimed at our celestial neighbor.  Rather, they were to be flung into high orbits for engineering tests and cosmic investigation.  The next mission, a Block 2 lunar impactor, is planned for January 1962.

But the real NASA news this month involves a little primate named Enos.  Yesterday, for the second time, an Atlas booster roared into the orbit from Cape Canaveral with a Mercury capsule at its tip.  Unlike the last one, however, Mercury-Atlas #5 (the first three had been suborbital missions) carried a passenger.  The 37.5 pound chimpanzee circled the Earth twice before safely splashing down some 255 miles southeast of Bermuda.

Just as the launch of a chimp presaged Alan Shepard's suborbital flight in May, so Enos' jaunt paves the way for astronaut John Glenn to be the first American in orbit in just a few weeks (weather permitting).  Now, the flight was not entirely flawless.  A roll reaction jet failed, and one of the components of the electrical system overheated.  As a result, Enos' capsule returned to Earth after just two of the planned three orbits.  But, had a human been on board, he could have compensated for these issues, easily. 

That's the bigger story, to me.  I know some people wonder why we bother to send people up into space when electric implements have proven capable enough, and cheaper.  And there is certainly a segment of the flyboy population that snickers at the thought of test pilots relegated to following in the furry shoes of ape predecessors. 

Yet, in MA-5, we have the reason.  No monkey and, as yet, no machine can react with the speed and intellect of a human.  Moreover, no machine can think creatively, adapting to an evolving situation beyond a few set scenarios programmed into its core.  Imagine if an astronaut were flying the Discoverer missions.  He'd have the discretion of choosing the targets to photograph.  He'd be able to bring a film capsule home with him rather than relying on complicated automatic systems and aerial recovery planes. 

When John Glenn flies, he will return far more information about the universe than any experiment or animal could, not just scientific, but about the human condition.  For 270 minutes, he will be an outpost of the Free World in space.  What will it mean to him, to all of us, his three circuits of the globe? 

We can't know until he gets there, but I'm betting it will be profound.

[October 28, 1961] Heavy Lifting (Saturn C-1 SA-1)


by Rosemary Benton

It's a great leap forward for the United States.  This morning, October 28th 1961, one can open the newspaper and learn about yesterday's launch of the Saturn C-1.  Some of us even saw the live coverage of the launch on television, watching as the giant rocket blasted off from Cape Canaveral in Florida and flew 95 miles into the air before plunging into the Atlantic Ocean.  A rocket this powerful has never been launched before, and I can only imagine that the scientific community must be trembling like the ground beneath Saturn C-1's S-1 first-stage cluster of nine tanks and eight engines. 

It was, quite simply, the biggest rocket ever launched.  By far.

As the world reaches farther and farther past the stratosphere, I wanted to take a look into the recent past in order to better appreciate where we are today.  The development of this impressive rocket was a potent combination of money, ambition, and potential, beginning in December 1957 when renowned rocket scientist Dr.  Wernher von Braun and his team proposed the creation of a booster with one million five hundred thousand pounds of thrust – that's five times that of the Atlas (the rocket that will take an American astronaut into orbit).  The Department of Defense listened, and by August 15, 1958 the Advanced Research Projects Agency (ARPA) began work at the Redstone Arsenal to create the vehicle that would culminate in the tower of flame that lifted slowly, inexorably, from its Florida launchpad yesterday.

The initial design of the booster was something of a lash-up, fusing the liquid oxygen and fuel tanks from the Redstone and Jupiter missiles with the tried and true S-3D engine from the Thor and Jupiter missiles.  After significant retooling, the upgraded S-3D engine was clearly a new beast.  So it got a new name: H-1.  As the development of the H-1 continued through 1958, ARPA began to take a more ambitious approach to the aims of the project.  It would not be enough to develop a booster capable of propelling enormous payloads.  Instead they set their sights on creating a multistage carrier vehicle for a long term manned expedition to space.  The result was the October 1958 project tentatively called Juno V, the name indicating the booster's kinship with its predecessor Juno rockets) based on the Jupiter missile.  The project quickly outgrew any resemblance to the Jupiter family.  On February 3, 1959 that the ARPA renamed the project after the next planet out from the Sun: Saturn. 

Saturn's development has been nothing less than breakneck.  Dr.  Von Braun's group at the Army Ballistic Missile Agency (ABMA) delivered the first production H-1 engine on April 28, 1959 and successfully tested it on May 26.  The Department of Defense prioritized the civilian Saturn.  July of that year was a particularly productive month.  At Cape Canaveral there began construction on a blockhouse for the project's Launch Complex 34, and the Redstone Arsenal shops shifted their focus away from Jupiter rockets in favor of the Saturn project.  By the end of July, the Army Ordnance Missile Command (AOMC) was ordered to cease work on the Titan second stage boosters in favor of the Saturn project. 

NASA stepped in to assume direction of the Saturn Project from ARPA on March 16, 1960.  From the start NASA saw the three stage Saturn C-1 as a starting point in the creation of more powerful, larger vehicles.  Through April and March of 1960, success after success met the Saturn project.  As is tradition, private companies were brought on board to design and construct components of the vehicle.  Contracts between NASA, Douglas Aircraft Company, and Pratt & Whitney, were drawn up in July and August of 1960 respectively.  Douglas Aircraft Company would be responsible for the conceptualization and production of the four-engine S-IV stage of Saturn C-1.  Pratt and Whitney would produce the LR-119 engines to be used in the S-IV and S-V stages. 

As forward thinking as he is driven, Dr. von Braun had bigger plans for the Saturn C-1.  In January 1960, shortly after Convair Astronautics submitted a proposal for an S-V upper stage for the Saturn vehicle, Dr. von Braun floated the idea past NASA administration that the developing lunar project “Apollo” did not need a three-stage C-1; two would be sufficient for the early orbital missions planned for the spacecraft.  His proposal was approved, and NASA removed the S-V stage.  But the S-V stage was not completely scrapped.  In May 1961 the S-1 stage of the vehicle was modified to allow the Saturn C-1 to be a two or three-stage vehicle, increasing its versatility. 

Even before its launch on October 27th, the Saturn C-1 design was already being improved upon in the form of the bigger C-2 and C-3 plans.  In March 1961, considerations were well under way to make use of the Centaur's LR-115 engines in Saturn C-2 rather than the more expensive LR-119 engines developed for Saturn C-1.  Fins were added to the C-2 design in order to make it more structurally sound, and the thrust capacities of the S-1 stage were reviewed for improvement.  Work continued to accelerate on the Saturn C-2 design until recently on June 23, 1961, when Dr. von Braun announced that the C-3 would hold priority over the C-2 due to the preferable use of the C-3 for the later stages of the Apollo project.

Even as the first of its family, the Saturn C-1 launch is a milestone of astronautics.  First and foremost it represents a great leap into the future of propulsion.  Developed under the guiding hand of Dr. von Braun, the The Saturn C-1 rocket itself is one hundred sixty two feet tall, four hundred sixty tons in weight, and packs one point three million pounds of thrust.  The payload of this particular rocket is 10 tons — far outstripping that of any previously launched rocket. 

More than anything, however, is the fact that the Saturn C-1 was a success on its first flight (albeit with a dummy 2nd stage — that will get tested next year).  This bodes well for future Saturn projects.  In terms of the evolution of rocket science, the C-1 has broken new ground in all aspects of rocket design, execution and function. 

The Saturn project has brought us one step closer to manned expeditions beyond orbital space. 

[Oct. 1, 1961] Over and Above (America's surprising lead in the Space Race)


by Gideon Marcus

When the news is full of Soviet spacemen and bomb tests, it's easy to get the impression that America's losing the Space Race.  The Russians got the first Sputnik, the first Muttnik, the first Lunik.  They launched the first two men into orbit; America's two astronauts had shorter missions than most people's commutes.  Not a week goes by without some cartoon in the papers depicting a Sickle and Hammer festooning a space station or the Moon.

And yet, are we really behind?  Just last month, the Air Force had three Discoverer missions (29, 30, and 31).  Discoverer is a spy satellite.  It is launched into a polar orbit (i.e. one that goes North to South rather than East to West) that allows the craft to view the entire Earth every day.  It snaps pictures with an onboard camera and then, after a couple of days, jettisons the camera back to Earth in a reentry probe.  The Air Force catches these probes in mid-air!  This is to ensure that our nation's enemies don't recover them before we can. 

The Communists are up to Sputnik #10.  The Air Force, with just one series of satellites, has over thirty.  There is simply no comparison in the number of flights we are launching.  Moreover, we have more kinds of flights: the scientific Explorers and Pioneers, the Echo and Courier communications satellites, the missile-detecting MIDASes, the navigational TRANSITs

Now, you may be wondering if the Soviets have more satellites up, and they just aren't telling us.  It is true that the Communists seem loathe to announce any flights unless they are a) civilian in nature and b) successful.  However, since satellites necessarily travel across the entire globe, it is impossible to hide an orbital mission for very long.  Too many countries are scanning their skies with radar and telescopes.  Too many professionals and amateurs tune into the heavens, listening for a scrap of telemetry.  No, it's pretty clear that the West is beating the East, at least in the number of missions, by an overwhelming margin.

Moreover, we will very soon catch up to the Russians in terms of the size of payloads we can launch into orbit and beyond, the one arena in which they've enjoyed a consistent advantage.  Not only will the Atlas and Titan ICBMs soon be able to boost humans into orbit, but the new Saturn should dwarf anything the Soviets have to offer.  Unlike all of our (and their) previous rockets, the Saturn has been purpose-built as a civilian heavy-lift booster.  Its capacity is going to be tremendous – and it will only be increased as time goes on.

Next time someone tells you that the Reds are clobbering us in Space, just send them one of those commemorative postcards our flyboys issue for each Discoverer launch.  By the time the Russians get to 31 in any satellite series, I imagine we'll already be well past 100.

[September 13, 1961] Dry Run (Mercury-Atlas 4)


by Gideon Marcus

It's is a red-letter day for the National Aeronautics and Space Administration (NASA), and for America as a whole.  For today, we finally got a Mercury space capsule into orbit!  The flight, dubbed "Mercury-Atlas 4," began this morning in a blast of fire on a Florida launchpad and lasted one hour and fifty minutes.  At its conclusion, the Mercury capsule deorbited and parachuted safely into the Atlantic ocean.  By all standards, it was a picture-perfect mission.

Except that there wasn't anyone in the capsule…

All flippancy aside, it really is a big deal.  The reason the Soviets are ahead of us, such that they've gotten two fellows into orbit while our two astronauts have been limited to 15-minute suborbital jaunts, is because they started out with the better rocket.

In 1957, the Russians announced that their first ICBM, a missile that can cross the world, was ready for business.  It is no coincidence that their first space probe, Sputnik, was launched soon after.  That's because an ICBM can be used to carry payloads into orbit about as easily as they can carry atomic weapons to farflung countries. 

The United States had no ICBM in 1957.  We were later to that party.  Instead, we had a stable of shorter-ranged IRBMs, sufficient only to launch small payloads into space.  Our first ICBM, the Atlas, wasn't operational until 1960.

It takes an ICBM to launch something as heavy as a manned spaceship, and it's not enough that the missile be able to deliver a nuclear payload.  Since the stakes are higher with a human passenger, it is important to qualify an ICBM as a space booster very carefully, something the Soviets have had more time to do.  The Russian qualification flights, Sputniks 4, 6, and 9, all took place before last March.  Our balky Atlas has now been tested with the Mercury capsule four times.  Only two of those flights were successful – the second, a suborbital jaunt, and this latest, orbital, flight

I imagine NASA is still not out of the woods.  They'll want to see the Mercury Atlas combination work together at least once more before trusting a man to it.  (I use the word "man" in its specific sense.  The team of 13 woman astronaut candidates was disbanded this week, more's the pity)

Based on the results of this flight, it is just possible there might be a manned orbital Mercury flight before the year is out.  Or at least before the next few Soviet men (and women?) fly overhead…

[August 31, 1961] Look on the bright side (August space round-up)


by Gideon Marcus

Did you ever eagerly wait for Christmas only to be disappointed by what you found under the tree (or, for my fellow Jews, under the menorah)?  That's what this month must feel like for fans of the American space program.  While the Soviets achieved a huge success in August with the multiple orbiting of Gherman Titov, the National Aeronautics and Space Administration had a lousy 31 days.

For one thing, our lunar efforts seem to be cursed.  Ranger 1, launched on August 22, was the first of the third generation of Moon probes.  The flight was a test mission, designed to range high above the Earth but not reach the Moon.  Like the earlier Pioneer missions, Ranger 1 was far from a success.  The second stage of its rocket, the much ballyhooed Agena, hiccoughed.  Instead of going into a high orbit where it could do all sorts of interesting sky science, the satellite ended up in a low orbit that grazed the top of the Earth's atmosphere.

Not only was the poor probe doomed to a short life as the relatively thick air dragged Ranger 1 down with each circling of the Earth, it couldn't get enough power, either.  Ranger was designed to bask for hours at a time in the Sun in the slow, high part of its planned orbit.  Instead, the hapless vehicle plunged into shadow every 45 minutes causing it to vent great gouts of nitrogen gas to orient itself toward the sunrise which came three quarters of an hour later.  Ranger quickly ran out of gas, its panels fell out of alignment to receive energy, and soon after, the ship's batteries gave up the ghost.  When Ranger reentered yesterday, it had been silent for three days.

No science was gathered from the probe.  About the only thing that can be said for Ranger 1 is that its systems worked properly despite the extremely adverse conditions.  Let's hope Ranger 2, scheduled for October, breaks the bad luck streak.

Meanwhile, Explorer 13, a craft of the S-55 class designed to measure all the dust and rocks whizzing about in orbit, went up on August 24.  Like Ranger, its orbit was lower than planned, and it fell blazing to Earth just four days later.  Not that the lifespan of the "beer can" satellite meant much – not a single impact was recorded on any of the probe's wide array of sensors.  Again, the NASA boys found a silver lining: now they know to equip the next S-55 with more sensitive detectors!

Even the Air Force has been having a rough time of it.  Their 28th Discoverer spy satellite failed to orbit on August 4.  Discoverer 29 went up yesterday; we'll see if the flyboys are able to recover their film capsule or not in a few days.

So, was there any good news this month?  Actually, yes!  Remember Explorer 12, which launched two weeks ago?  It has already returned so much data that scientists are overwhelmed.  Explorer will keep broadcasting, but ground stations are only going to listen periodically.  The data already suggests that there is a sharp decline in Earth's magnetic field 50,000 miles up in the direction of the Sun, as if the two celestial bodies are fighting each other to a standstill out in space.  Explorer 12 will stay up for a year, and the scientific harvest is bound to be a bumper crop. 

In fact, it's important to remember that there are still a bevy of probes still beep-beeping away, carrying out scientific missions: Tiros 3, Explorer 9, Explorer 11, Echo 1, even the venerable Vanguard 1.  We did lose one of the family recently, however.  Explorer 7 went off the air on August 24 after nearly two years in space. 

But that's nearly 100 in satellite years, right?

Next up…  the Galaxy!