Tag Archives: science fact

[October 28, 1961] Heavy Lifting (Saturn C-1 SA-1)


by Rosemary Benton

It's a great leap forward for the United States.  This morning, October 28th 1961, one can open the newspaper and learn about yesterday's launch of the Saturn C-1.  Some of us even saw the live coverage of the launch on television, watching as the giant rocket blasted off from Cape Canaveral in Florida and flew 95 miles into the air before plunging into the Atlantic Ocean.  A rocket this powerful has never been launched before, and I can only imagine that the scientific community must be trembling like the ground beneath Saturn C-1's S-1 first-stage cluster of nine tanks and eight engines. 

It was, quite simply, the biggest rocket ever launched.  By far.

As the world reaches farther and farther past the stratosphere, I wanted to take a look into the recent past in order to better appreciate where we are today.  The development of this impressive rocket was a potent combination of money, ambition, and potential, beginning in December 1957 when renowned rocket scientist Dr.  Wernher von Braun and his team proposed the creation of a booster with one million five hundred thousand pounds of thrust – that's five times that of the Atlas (the rocket that will take an American astronaut into orbit).  The Department of Defense listened, and by August 15, 1958 the Advanced Research Projects Agency (ARPA) began work at the Redstone Arsenal to create the vehicle that would culminate in the tower of flame that lifted slowly, inexorably, from its Florida launchpad yesterday.

The initial design of the booster was something of a lash-up, fusing the liquid oxygen and fuel tanks from the Redstone and Jupiter missiles with the tried and true S-3D engine from the Thor and Jupiter missiles.  After significant retooling, the upgraded S-3D engine was clearly a new beast.  So it got a new name: H-1.  As the development of the H-1 continued through 1958, ARPA began to take a more ambitious approach to the aims of the project.  It would not be enough to develop a booster capable of propelling enormous payloads.  Instead they set their sights on creating a multistage carrier vehicle for a long term manned expedition to space.  The result was the October 1958 project tentatively called Juno V, the name indicating the booster's kinship with its predecessor Juno rockets) based on the Jupiter missile.  The project quickly outgrew any resemblance to the Jupiter family.  On February 3, 1959 that the ARPA renamed the project after the next planet out from the Sun: Saturn. 

Saturn's development has been nothing less than breakneck.  Dr.  Von Braun's group at the Army Ballistic Missile Agency (ABMA) delivered the first production H-1 engine on April 28, 1959 and successfully tested it on May 26.  The Department of Defense prioritized the civilian Saturn.  July of that year was a particularly productive month.  At Cape Canaveral there began construction on a blockhouse for the project's Launch Complex 34, and the Redstone Arsenal shops shifted their focus away from Jupiter rockets in favor of the Saturn project.  By the end of July, the Army Ordnance Missile Command (AOMC) was ordered to cease work on the Titan second stage boosters in favor of the Saturn project. 

NASA stepped in to assume direction of the Saturn Project from ARPA on March 16, 1960.  From the start NASA saw the three stage Saturn C-1 as a starting point in the creation of more powerful, larger vehicles.  Through April and March of 1960, success after success met the Saturn project.  As is tradition, private companies were brought on board to design and construct components of the vehicle.  Contracts between NASA, Douglas Aircraft Company, and Pratt & Whitney, were drawn up in July and August of 1960 respectively.  Douglas Aircraft Company would be responsible for the conceptualization and production of the four-engine S-IV stage of Saturn C-1.  Pratt and Whitney would produce the LR-119 engines to be used in the S-IV and S-V stages. 

As forward thinking as he is driven, Dr. von Braun had bigger plans for the Saturn C-1.  In January 1960, shortly after Convair Astronautics submitted a proposal for an S-V upper stage for the Saturn vehicle, Dr. von Braun floated the idea past NASA administration that the developing lunar project “Apollo” did not need a three-stage C-1; two would be sufficient for the early orbital missions planned for the spacecraft.  His proposal was approved, and NASA removed the S-V stage.  But the S-V stage was not completely scrapped.  In May 1961 the S-1 stage of the vehicle was modified to allow the Saturn C-1 to be a two or three-stage vehicle, increasing its versatility. 

Even before its launch on October 27th, the Saturn C-1 design was already being improved upon in the form of the bigger C-2 and C-3 plans.  In March 1961, considerations were well under way to make use of the Centaur's LR-115 engines in Saturn C-2 rather than the more expensive LR-119 engines developed for Saturn C-1.  Fins were added to the C-2 design in order to make it more structurally sound, and the thrust capacities of the S-1 stage were reviewed for improvement.  Work continued to accelerate on the Saturn C-2 design until recently on June 23, 1961, when Dr. von Braun announced that the C-3 would hold priority over the C-2 due to the preferable use of the C-3 for the later stages of the Apollo project.

Even as the first of its family, the Saturn C-1 launch is a milestone of astronautics.  First and foremost it represents a great leap into the future of propulsion.  Developed under the guiding hand of Dr. von Braun, the The Saturn C-1 rocket itself is one hundred sixty two feet tall, four hundred sixty tons in weight, and packs one point three million pounds of thrust.  The payload of this particular rocket is 10 tons — far outstripping that of any previously launched rocket. 

More than anything, however, is the fact that the Saturn C-1 was a success on its first flight (albeit with a dummy 2nd stage — that will get tested next year).  This bodes well for future Saturn projects.  In terms of the evolution of rocket science, the C-1 has broken new ground in all aspects of rocket design, execution and function. 

The Saturn project has brought us one step closer to manned expeditions beyond orbital space. 

[Oct. 1, 1961] Over and Above (America's surprising lead in the Space Race)


by Gideon Marcus

When the news is full of Soviet spacemen and bomb tests, it's easy to get the impression that America's losing the Space Race.  The Russians got the first Sputnik, the first Muttnik, the first Lunik.  They launched the first two men into orbit; America's two astronauts had shorter missions than most people's commutes.  Not a week goes by without some cartoon in the papers depicting a Sickle and Hammer festooning a space station or the Moon.

And yet, are we really behind?  Just last month, the Air Force had three Discoverer missions (29, 30, and 31).  Discoverer is a spy satellite.  It is launched into a polar orbit (i.e. one that goes North to South rather than East to West) that allows the craft to view the entire Earth every day.  It snaps pictures with an onboard camera and then, after a couple of days, jettisons the camera back to Earth in a reentry probe.  The Air Force catches these probes in mid-air!  This is to ensure that our nation's enemies don't recover them before we can. 

The Communists are up to Sputnik #10.  The Air Force, with just one series of satellites, has over thirty.  There is simply no comparison in the number of flights we are launching.  Moreover, we have more kinds of flights: the scientific Explorers and Pioneers, the Echo and Courier communications satellites, the missile-detecting MIDASes, the navigational TRANSITs

Now, you may be wondering if the Soviets have more satellites up, and they just aren't telling us.  It is true that the Communists seem loathe to announce any flights unless they are a) civilian in nature and b) successful.  However, since satellites necessarily travel across the entire globe, it is impossible to hide an orbital mission for very long.  Too many countries are scanning their skies with radar and telescopes.  Too many professionals and amateurs tune into the heavens, listening for a scrap of telemetry.  No, it's pretty clear that the West is beating the East, at least in the number of missions, by an overwhelming margin.

Moreover, we will very soon catch up to the Russians in terms of the size of payloads we can launch into orbit and beyond, the one arena in which they've enjoyed a consistent advantage.  Not only will the Atlas and Titan ICBMs soon be able to boost humans into orbit, but the new Saturn should dwarf anything the Soviets have to offer.  Unlike all of our (and their) previous rockets, the Saturn has been purpose-built as a civilian heavy-lift booster.  Its capacity is going to be tremendous – and it will only be increased as time goes on.

Next time someone tells you that the Reds are clobbering us in Space, just send them one of those commemorative postcards our flyboys issue for each Discoverer launch.  By the time the Russians get to 31 in any satellite series, I imagine we'll already be well past 100.

[September 13, 1961] Dry Run (Mercury-Atlas 4)


by Gideon Marcus

It's is a red-letter day for the National Aeronautics and Space Administration (NASA), and for America as a whole.  For today, we finally got a Mercury space capsule into orbit!  The flight, dubbed "Mercury-Atlas 4," began this morning in a blast of fire on a Florida launchpad and lasted one hour and fifty minutes.  At its conclusion, the Mercury capsule deorbited and parachuted safely into the Atlantic ocean.  By all standards, it was a picture-perfect mission.

Except that there wasn't anyone in the capsule…

All flippancy aside, it really is a big deal.  The reason the Soviets are ahead of us, such that they've gotten two fellows into orbit while our two astronauts have been limited to 15-minute suborbital jaunts, is because they started out with the better rocket.

In 1957, the Russians announced that their first ICBM, a missile that can cross the world, was ready for business.  It is no coincidence that their first space probe, Sputnik, was launched soon after.  That's because an ICBM can be used to carry payloads into orbit about as easily as they can carry atomic weapons to farflung countries. 

The United States had no ICBM in 1957.  We were later to that party.  Instead, we had a stable of shorter-ranged IRBMs, sufficient only to launch small payloads into space.  Our first ICBM, the Atlas, wasn't operational until 1960.

It takes an ICBM to launch something as heavy as a manned spaceship, and it's not enough that the missile be able to deliver a nuclear payload.  Since the stakes are higher with a human passenger, it is important to qualify an ICBM as a space booster very carefully, something the Soviets have had more time to do.  The Russian qualification flights, Sputniks 4, 6, and 9, all took place before last March.  Our balky Atlas has now been tested with the Mercury capsule four times.  Only two of those flights were successful – the second, a suborbital jaunt, and this latest, orbital, flight

I imagine NASA is still not out of the woods.  They'll want to see the Mercury Atlas combination work together at least once more before trusting a man to it.  (I use the word "man" in its specific sense.  The team of 13 woman astronaut candidates was disbanded this week, more's the pity)

Based on the results of this flight, it is just possible there might be a manned orbital Mercury flight before the year is out.  Or at least before the next few Soviet men (and women?) fly overhead…

[August 31, 1961] Look on the bright side (August space round-up)


by Gideon Marcus

Did you ever eagerly wait for Christmas only to be disappointed by what you found under the tree (or, for my fellow Jews, under the menorah)?  That's what this month must feel like for fans of the American space program.  While the Soviets achieved a huge success in August with the multiple orbiting of Gherman Titov, the National Aeronautics and Space Administration had a lousy 31 days.

For one thing, our lunar efforts seem to be cursed.  Ranger 1, launched on August 22, was the first of the third generation of Moon probes.  The flight was a test mission, designed to range high above the Earth but not reach the Moon.  Like the earlier Pioneer missions, Ranger 1 was far from a success.  The second stage of its rocket, the much ballyhooed Agena, hiccoughed.  Instead of going into a high orbit where it could do all sorts of interesting sky science, the satellite ended up in a low orbit that grazed the top of the Earth's atmosphere.

Not only was the poor probe doomed to a short life as the relatively thick air dragged Ranger 1 down with each circling of the Earth, it couldn't get enough power, either.  Ranger was designed to bask for hours at a time in the Sun in the slow, high part of its planned orbit.  Instead, the hapless vehicle plunged into shadow every 45 minutes causing it to vent great gouts of nitrogen gas to orient itself toward the sunrise which came three quarters of an hour later.  Ranger quickly ran out of gas, its panels fell out of alignment to receive energy, and soon after, the ship's batteries gave up the ghost.  When Ranger reentered yesterday, it had been silent for three days.

No science was gathered from the probe.  About the only thing that can be said for Ranger 1 is that its systems worked properly despite the extremely adverse conditions.  Let's hope Ranger 2, scheduled for October, breaks the bad luck streak.

Meanwhile, Explorer 13, a craft of the S-55 class designed to measure all the dust and rocks whizzing about in orbit, went up on August 24.  Like Ranger, its orbit was lower than planned, and it fell blazing to Earth just four days later.  Not that the lifespan of the "beer can" satellite meant much – not a single impact was recorded on any of the probe's wide array of sensors.  Again, the NASA boys found a silver lining: now they know to equip the next S-55 with more sensitive detectors!

Even the Air Force has been having a rough time of it.  Their 28th Discoverer spy satellite failed to orbit on August 4.  Discoverer 29 went up yesterday; we'll see if the flyboys are able to recover their film capsule or not in a few days.

So, was there any good news this month?  Actually, yes!  Remember Explorer 12, which launched two weeks ago?  It has already returned so much data that scientists are overwhelmed.  Explorer will keep broadcasting, but ground stations are only going to listen periodically.  The data already suggests that there is a sharp decline in Earth's magnetic field 50,000 miles up in the direction of the Sun, as if the two celestial bodies are fighting each other to a standstill out in space.  Explorer 12 will stay up for a year, and the scientific harvest is bound to be a bumper crop. 

In fact, it's important to remember that there are still a bevy of probes still beep-beeping away, carrying out scientific missions: Tiros 3, Explorer 9, Explorer 11, Echo 1, even the venerable Vanguard 1.  We did lose one of the family recently, however.  Explorer 7 went off the air on August 24 after nearly two years in space. 

But that's nearly 100 in satellite years, right?

Next up…  the Galaxy!

[August 17, 1961] Voyages of Discovery (Explorer 12)

Every so often, a discovery comes along that shatters our conception of the universe.  Galileo turned his telescope to the heavens and discovered moons around Jupiter – suddenly, it was clear that Earth was not the center of everything.  Roentgen and Curie showed that matter was not entirely stable, leading to our modern understanding of physics (and the challenges that come with the harnessing of atomic energy).  Columbus sailed to find Asia; instead, he was the first to put the Americas on European maps.

Until 1958, space was believed to be a sterile place, a black void in which the planets and stars whirled.  Maybe there was an odd meteoroid or two, and far away, one might find a big cloud of gas, but otherwise space was synonymous with vacuum. 

Then Explorer 1, America's first space mission, went into orbit around the Earth.  Its particle detectors, designed to measure the free-floating electrons and cosmic rays whizzing around up there, quickly became saturated.  Girdling the planet were hellish streams of energy, particles ionized by the sun and trapped by the Earth's magnetic field. 

Overnight, our idea of space was revolutionized; a few scientists had speculated as to the existence of the "Van Allen Belts," but the idea was hardly mainstream.  More probes were sent up to determine the nature of these belts.  Pioneer 5 went beyond far into interplanetary space and sent back news of a solar atmosphere that extended far beyond the shiny yellow bits – a field of particles and rays that went beyond even Earth's orbit.  Other probes returned maps of the turbulent region where the sun's field met Earth's. 

Space was hardly empty – it was a new ocean filled with waves, eddies, and unknowns to be explored.

Yesterday, Explorer 12 zoomed into orbit, NASA's latest voyager to ply the charged sea of space.  While it practically grazes the Earth at its closest point in its orbit, at its furthest, Explorer 12 zooms out a full 50,000 miles – a fifth of the way to the Moon.  Twice every 31 hours, the satellite studies the Van Allen Belts as well as the region of cislunar space, that variable region in which the Earth and the Sun fight for magnetic dominance. 

Armed with a battery of instruments like that carried by its spiritual predecessor, Explorer 6, the new probe also has several strips of solar cells covered with varying levels of shielding.  These will help determine the extent to which the Van Allen Belts will affect ship's equipment as they travel through the deadly particles.  The data will be of particular use to Apollo astronauts on their way to the Moon.

If Explorer 1 was the satellite Columbus of the Van Allen Belts, and Explorer 6 was John Cabot, then Explorer 12 will be Amerigo Vespucci, fully determining the contours of a new ocean whose depths had been but briefly surveyed before. 

Shiver me timbers, laddie.  It's an exciting time to be a sailor!

[August 15, 1961] SEVEN DAYS OF CHANGE (August's UK report)


by Ashley Pollard

The month of August started with cool weather after a warm spring, which is disappointing for those of us who love to get out in the summer sun and lie on the beach. It is the time when the British newspapers are full of light-weight, fun stories in what is known over here as the 'silly season.'

Such fripperies were ended quite suddenly with an array of news from behind the iron curtain, starting with the announcement of Russia’s second manned spaceflight on Monday the 7th of August.

While America has launched two sub-orbital flights in response to Yuri Gagarin’s conquest of space, they have yet to orbit the Earth. Now the Russians surge ahead, upping the excitement in the race to the moon by launching their second cosmonaut Gherman Stepanovich Titov. His call sign was Eagle, I imagine to emphasize his soaring over the world. But perhaps it’s also a poke at the Americans, who have failed to orbit the world with their Mercury capsule.

So, after staying in space for a just over a day, Pilot Cosmonaut Titov is now a Hero of the Soviet Union. During his flight he orbited the world seventeen times, during which time he slept, shot ten minutes of film, and completed various other tasks he had been assigned — proving that men can work in space. Not only that, but at age twenty-six he’s the youngest man in space, too.

For me, Titov’s mission was not just a success for the Russians but the furthering of the dream of travel in space for all mankind. But, I have to ask, how long will it be until the Russians send a woman into space? Perhaps this is a chance for the Americans to get one step ahead of their rivals.

Sadly, Titov's flight was the only good piece of news inspired by the Communists this month. Seven days after Titov’s flight, the Russians upped the ante in the Cold War when Premier Nikita Khrushchev announced the Russians were going to build a wall around Berlin. This rather puts a dampener on things, taking us back to the unpleasantness that started in 1948 when they cut-off access to Berlin by land.

The first signs of action after the announcement was the erection of a barbed wire fence. But this is now being followed by workers building a wall, which seems to me to be a physical manifestation of the cultural divide between free-market capitalism and Russian state controlled centralized planned economy.

Beyond the very real fear I share with everyone regarding the threat of atomic destruction, I must also say that I find Premier Khrushchev’s escalation of tensions between East and West a tantrum tedious beyond belief. I truly doubt that human nature allows for nation states to function as communes that share resources for the good of all. If this act shows us anything it serves only to illuminate the cracks in the Russian Cold War polemic against the West. It's not as if the new Wall has been erected to keep West Germans from fleeing into East Germany.

More to the point, doesn't Khrushchev know this is the silly season? There is only so much heaviness we can stand during the summer!  As for now, despite the disappointingly cool weather, at least we still have a beach to look-visit, ice-cream to eat (we British eat ice-cream even during our cold summers), and once Khruschev has had his fun, hopefully we can return to reading stories of cats stuck up trees being rescued by the nice men from the fire brigade.

And accounts of space shots: as a science fiction fan, I find those an acceptable break from the fluff of the silly season…

[August 7, 1961] Day-O!  (Vostok 2 spends day in orbit)


by Gideon Marcus

For a few bright weeks, it looked as if the United States might be gaining in the Space Race.  Now, the Reds have pulled forward again with a most astonishing announcement: their second cosmonaut, a Major Gherman Titov, orbited the Earth in his "Vostok 2" for an entire day before coming safely back to Earth this morning.

As usual, details of the launch were not divulged until Comrade Titov was already in space.  He circled the globe a record 17 times (compare to his predecessor, Gagarin's, single orbit).  The flight lasted long enough that Americans had the unique, if not entirely pleasant, opportunity to both go to bed and awaken with the knowledge that a Russian was whizzing just a matter of miles over their house.

This flight comes almost on the heels of that of our second spaceman, Captain Gus Grissom, who flew into space for a comparatively puny 15 minutes on July 21.  For a few short weeks, the free world held the lead, if not in time in space, then at least number of astronauts.  The Soviets have now made that success look feeble.  In fact, I am now hearing rumors that astronaut John Glenn's suborbital Mercury flight, scheduled for next month, will likely be canceled.  There is no propaganda value left in half-measures, and besides, Shepard's and Grissom's flights taught us all there was to be learned from the Redstone launched missions.

Now, there is a whole lot of worry being dispensed by the newspapers over Titov's flight.  Many speculate that there is no way we can catch up to the Communists in our race for the Moon.  After all, our first orbital flight is still untold months away; before an American ever orbits the Earth, the Russians may have a space station or even a foothold on our nearest celestial neighbor.

I think these fears are unfounded.  Vostok 2 was almost assuredly the same type of ship as Gagarin's Vostok 1.  It was designed, like our Mercury, to endure several days in orbit.  The increase in orbits from 1 to 17 does not reflect a seventeen-fold increase in Soviet space capability – merely greater use of Vostok's full potential.

Similarly, the 15 minute flights of Freedom 7 and Liberty Bell 7 reflect but a tiny proportion of the Mercury spacecraft's endurance.  When the Atlas booster is on-line in a few months, you will see the American program accomplishing the same feats as that of the Soviets.  I'm willing to bet our lunar ship, which the National Aeronautics and Space Administration began work on earlier this year, will be done before its Russian counterpart, too.

We have to remember that the timing of the Soviet missions is designed for maximum psychological effect.  Without taking anything away from the 26-year old Titov's noteworthy trip, I note that it occurred just as tensions over Berlin reached their highest since the Commnunist blockade of 1948.  Khruschev is flexing his muscles, both on the land and in space, hoping that Kennedy will blink if the Soviets carry out their threat to wall off their side of Berlin from ours. 

Now is not the time to get discouraged.  Not in the Space Race, not in the Cold War.  As I've said before, the Race to the Moon is not a sprint; it's a marathon.

[July 22, 1961] Into Space – and the Deep Blue (The Flight of Liberty Bell 7)


by Lawrence Klaes

After three failed attempts just this week, yesterday (July 21, 1961), astronaut Virgil I. “Gus” Grissom finally became this nation’s second (and the world's third) man to reach outer space.  Grissom achieved another sort of milestone when his spacecraft unexpectedly sank after splashdown – and almost took the astronaut with it to the bottom of the Atlantic Ocean!

Following a very similar mission profile to that of his predecessor, Alan Shepard, back on May 5, Grissom rode his Mercury vessel, which he christened Liberty Bell 7 (complete with a painted white crack on the hull) in an arcing flight across the Atlantic Ocean from Cape Canaveral’s Launch Complex 5 (LC-5) in Florida.

The reliable Redstone booster hurled the ton-and-a-half craft, some 262.50 nautical miles downrange and 102.76 nautical miles above the Earth’s surface Grissom’s 15-minute suborbital flight lasted just nine seconds longer than Shepard’s.  Of course, both flights were far shorter than Cosmonaut Gagarin's 90-minute flight in April.  That's because the Redstone simply isn't powerful enough to send a Mercury into orbit, unlike the unnamed ICBM the Soviets are using. 

Grissom’s flight was relatively short in both duration and distance, but our second American astronaut did get to experience a few moments of weightlessness, move his ship around, and view our home planet and the blackness of space as few have yet to do.  His view was better than Shepard's: The two portholes on Freedom 7 were replaced with a larger single window. 

The other improvement on Liberty Bell 7 was an explosive side hatch, to be activated in the event of emergency after landing.  It was a wise precaution, but it almost caused the Mercury program's first fatality.

After Grissom's splashdown in the Atlantic, while he waited inside his space vessel to be rescued by four Sikovsky UH-34D helicopters dispatched from the aircraft carrier USS Randolph, the explosive release on the Liberty Bell 7 side hatch suddenly activated, blowing the heavy metal door across the water like a skipping stone.  The Atlantic Ocean rushed into the now open spacecraft.

The Mercury astronaut prudently abandoned his vessel and waved frantically at the hovering helicopters to hoist him out of the drink: Grissom’s spacesuit was filling with sea water due to an open oxygen inlet connection and it began weighing him down.  The rolls of Mercury dimes Gus had taken along in his suit to later hand out as souvenirs were also contributing to his inexorable dip beneath the ocean surface.

Unfortunately, the lead helicopter pilot interpreted Grissom’s reaction as an indication that he was okay, so they focused on trying to rescue the sinking Liberty Bell 7 by attaching a cable to it>.

The flooding Mercury spacecraft soon became too heavy for the helicopter to lift from the water, and it threatened to bring down the chopper and its crew as well.  With no other choice, the rescue team detached Liberty Bell 7, which quickly sank to the bottom of the ocean over seventeen thousand feet below. 

Attention finally returned to the desperate astronaut.  Grissom grasped for the lowered harness.  Exhausted, he slumped in the harness as he was retrieved for his trip back to the rescue ship. 

It remains to be determined whether the premature explosion of the side hatch was caused by a mechanical defect or by manual release by Grissom, perhaps in a momentary panic.  Gus himself swears he was lying calmly inside the spacecraft when the incident occurred.  Whatever the real story, engineers will need to check the hatch escape system thoroughly to make sure it does not happen again – especially in space!  Perhaps this system will be more fully tested during the next Mercury mission, another suborbital flight scheduled for September, with John Glenn the anticipated pilot.

Intriguingly, in his post-flight briefing this morning, attended by his family and fellow astronauts, Grissom admitted to feeling “scared” when his vessel lifted off towards space.  The Mercury spacemen were chosen for their exceptional bravery and flying skills.  Yet, in the end, they are human.  Did Gus, who flew 100 combat missions during the Korean War and has had a long reputation as a top-notch pilot, have a moment of weakness when confronting the unknowns of outer space?  Is this what contributed to the release of the spacecraft hatch that caused the loss of the Liberty Bell 7 and nearly the astronaut as well?  Are there aspects about the vast realm beyond Earth that may make it impossible for a man to extensively explore and colonize space?

At the moment only three human beings have actually ventured into the alien void.  All have returned alive and unharmed; however, in all of these cases they made only the briefest of ventures into space.  Can someone survive the longer durations entailed in extended orbital missions?  What about manned expeditions to the Moon and other worlds in our Solar System?  Can man make it to those places in person and live to tell the tale?

In the end, there can be only one way to find out: by sending qualified men and eventually even women into the Final Frontier to confront what may be there and conquer it for the good of humanity. 

[July 20, 1961] A CULTURAL DIVIDE (A UK fandom report)


By Ashley R. Pollard

This month, our London correspondent looks upon the rifts in the British science fiction community and despairs for the world as a whole…

Fans gathered at The White Horse in the 1950s—before we moved to The Globe

I have previously mentioned that London science fiction fandom is engaged in a feud that started three years ago, but which hasn’t stopped us from all meeting up at the pub once or twice a month for a drink and a chat. The feud is rather boring and has become increasingly tedious with disputes and tempers flaring over trivial things like membership cards — who needs membership cards anyway?

I mention this again apropos of this month’s title: A Cultural Divide.

For those who don’t know me, I’m a psychologist, and therefore people interest me, and understanding their behaviours is all part and parcel of my job.  Still, I’m amazed at what I see happening within fandom when quarrels break out.  Given science fiction fans have a lot in common with each other you might think that a sense of community would lessen divisions rather than stir them up.

Still, there’s always a Gin & Tonic with ice and a slice for when things get too hot and bothered in the pub.  Besides, as a woman, my opinions are rarely sought by the men who are arguing away over the various trivialities that consume them.

Our perennial fannish storm in a teapot proved a fine backdrop for the larger one described in C. P. Snow’s famous 1959 Rede Lecture The Two Cultures, which transcript I was able to recently secure, and which I read with great interest in a quieter corner of the pub.

In Cultures, Snow discusses at great length the divide he sees between the scientific and the arts and literary communities.  In particular, the way each perceives the world and the growing divide where one side is unable to comprehend what the other side says. 

The primary example Snow uses is the inability of the arts and literary culture to grasp things like the importance of the second law of thermodynamics: the idea of entropy increasing over time.  His argument being that the political and social elites are no longer taught science and technology, which effectively makes them modern day Luddites opposed to industrialisation, at a loss to cope with the changes technology is bringing.

Because of this, Snow argues there has grown a divide between arts and literary intellectuals and scientists/engineers.  Neither side being able to comprehend the other or finding the points of view expressed nonsensical to their ears.  Each side seeing the other as deluded.

Snow goes on to argue that social changes have been driven by the industrial revolution, which has changed society in ways the political leaders of the country fail to appreciate, because they come from the arts and literary side of the intellectual spectrum.  As such, they’re unable to see beyond the change in their lives, and don’t understand the best hope for the poor is industrialization despite the problems that occur as a result of people leaving the countryside and living in the cities.

After all, would one really want to go back to working the land as an agricultural labourer?

Now, Snow argues, we are standing at the beginning of a new revolution, a scientific revolution, heralded by the harnessing of the atom.  Yet our leaders, both political and social, are brought up in the domain of arts and literature not science and engineering.  Rich and poor, however, while divided by wealth, share a cultural assumptions from the historical narrative, but this, while good in one way, is also problematical because of the assumptions from the historical narrative affect how one sees the world.

So, the rich fail to comprehend science and technology, while the poor treat science and technology as things equivalent to magic: beyond their comprehension and understanding.

However, the poor experience the benefits that science and technology bring and are affected by the social changes arising in a visceral way that the rich are insulated from by their wealth.  In short, the rich live their lives with values derived from an arts and literary education where social change is slow, whereas the poor have to contend with both the benefits and costs from a rapidly changing cultural milieu.

And now we face the possibility of another change, with Great Britain, Denmark and Ireland applying to join the European Economic Community.  While Britain and the countries of EEC share a cultural heritage the leaders of all the countries have failed to recognize the implications of the socio-economic changes that will occur from a union which will accelerate technological change across Europe.  A change that will be magnified if the cultural elites fail to pay attention to the scientific revolution.  Snow argues these social changes will divide populations and the only thing that can address the problem is better education with a greater emphasis on science. 

The narrative of science is based in evidence, whereas the arts and literary narrative is based on mythology.  If were are to develop, not just new machines, but to to gain insight into the most valuable of resources, ourselves and what makes us tick, then we have to embrace the scientific method, put facts before feelings and develop theories that account for our natures, rather than mythologizing the human condition based on beliefs held onto through faith. 

Perhaps science fiction is the answer.  I like to think that our genre serves as a bridge between the abstruse texts of science and the spiritual fantasies of the uninitiated.  Science fiction, as educating entertainment, is the "spoonful of sugar that makes the medicine go down." 

On the other hand, looking at fandom, which I would argue is society writ small, we can't seem to agree on anything.  And if we can't agree on our own narrow issues, how can we expect a more fundamental divide, such as the one described by Snow, ever to be healed?

I can only conclude human nature drives peoples reaction to change and differences of opinion, which education alone may not be able to address.  No matter where you go in this world, ultimately people are just people.

[July 12, 1961] Reaction time (The launches of MIDAS 3 and TIROS 3)

My brother, Lou, used to tell me that the only way to beat a bully is to not fight fair.  Jump the guy when he's not looking, and fight like there are no rules.  That'll teach him that you're nuts and not worth messing with.

He learned this lesson honestly.  When Lou was in the navy, he immediately got flak for being Jewish.  Someone tried to steal his bunk; Lou rammed the guy's head into the wall.  After that, whenever someone tried to take advantage of Lou, by cutting in the chow line, for instance, another sailor would restrain the miscreant.  "Don't do it!  That's Marcus.  He's crazy.  He'll kill you!"

The problem is that these days, there are just two kids on the block: The USA and the USSR.  Each one's the bully in the other's eyes.  If the Russians decide they can get in a sucker punch, they just might do it to get us out of the way, once and for all.

We have the same option, of course, but it is the avowed intention of our leaders that America will never start a nuclear war.  The Soviets have not made such a pledge.

That's why we have invested so much time and money in developing a strategic nuclear force.  We want the Russians to know that we can strike back if they launch an attack, so that any attempt at a preemptive blow would be an act of suicide.

But we can't retaliate if the first indication we have a Soviet attack is the sprouting of atomic mushrooms over our cities and missile fields.

To that end, we recently finished the construction of the Distant Early Warning (DEW) line, a string of radar installations along the northern coasts of Alaska and Canada.  These can detect a missile some ten minutes from target.  Still not a very good window of time in which to order a counter-strike.

Enter MIDAS.  The MIssile Defense Alarm System satellite has infrared sensors.  As it flies over the Soviet Union, it will be able to detect the heat off a rising ICBM (or space shot, presumably).  Operated in a constellation of low-orbiting craft, there will always be one or two whizzing over the vast expanse of our enemy superpower.  This will raise the window of decision to a more-comfortable 30 minutes.

That should give the Soviet Union pause.  If they can't wind up a punch without us seeing and countering, maybe they won't wind up at all.

I've written about MIDAS before.  The difference this time is that the launch of MIDAS 3 today was freely covered in the press, and it looks like this may have been the first operational vehicle in the series.  In any event, it's one more use of space that benefits all of humanity…hopefully.

In a similar, if more benign vein, today NASA got up the third in its TIROS weather satellite series.  It replaces TIROS 2, which went off the air in January.  TIROS 3 is an improvement on its predecessors, incorporating two wide-angle cameras (the narrow-angle cameras having been eliminated as not particularly useful) as well as five infrared sensors to measure the Earth's heat budget.  I cannot stress enough how revolutionary the TIROS series has been.  Not only has it provided the first full pictures of large-scale weather patterns, but we're getting global climatological data, too.  In concert with the super-powerful computers now at our disposal, meteorology has entered a new age.

For those who live in the Gulf area or Florida, TIROS 3 will be of particular interest: it will be spotting those pesky hurricanes long before they hit the shore.  Again, outer space provides a valuable window of decision for folks on the ground…in this case, the decision whether or not to evacuate!

See you in two with the rest of the latest Analog!