Category Archives: Science / Space Race

Space, Computers, and other technology

Interlude.. with picture (1-14-1959)

A timely message. Is Eisenhower taking the Space Race seriously?  Is anyone?


From the NEA Service, Inc., run in today's paper.



(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

My aching (egg)head (January 1959 F&SF, second half; 1-09-1959)

I tried.  I really tried.

When last we left off, I had saved Fritz Leiber's The Silver Eggheads for last.  It comprises a good third of the January F&SF, and I thought it would be worth an article all to itself.  I suppose it does, at that, but not the way I had thought.

For some reason, when I started this project, I'd had the impression that I liked Fritz Leiber.  I think it was from reading The Big Time, which was pretty good.  Thus my puzzlement when I reviewed "Number of the Beast", and again when I reviewed "Poor Little Miss MacBeth.".

I am now coming to realize that I don't like Fritz Leiber.  The Silver Eggheads was yet another of his over written yet frivolous stories.  I know Fritz has won the Hugo, and I haven't published any fiction since I was 14 (so what do I know?), but his latest novella was execrable.

Here's the plot.  I think.  In the future, fiction is turned out by sentient computers.  The fiction-bots are destroyed by disgruntled writers (in the future, human writers don't actually compose; they just tend the machines), but then are unable to come up with their own stories.  The glib explanation is that people are insufficiently educated in the future to write.  This makes no sense–if the primary form of entertainment in the future is reading, how can it be impossible to know how to write, even if in a mediocre fashion? 

And there are these silver eggs that are apparently the brains of dead writers.  And there is a whole species of robots with their own culture and even genders (but who act just like people–a typical sin of contemporary writers).  And the whole thing is written in this baroque mess that is as much fun to read as stabbing forks into my eyes, with that same casual Playboy Magazine glib disdain of women that I've come to expect from Mssrs. Anderson and Garrett.

So, I tried.  I really tried.  But I could not get past the 16th page without skimming.  I have failed you.  I present myself prostrate and ask forgiveness.  Or vindication, whichever may be appropriate.

The rest of the issue fares little better.  John Collier's Meeting of Relations is a slight, biblically-inspired piece.  It is also 16 years old; its reprinting suggests it was picked based on length rather than quality.

Invasion of the Planet of Love, by George P. Elliott, is another one of those strange pieces that leaves me wondering if it supposed to be satire or not.  I suspect it is, because the subject (rapacious Victorian-types looting and torturing Venus and its inhabitants only to be thwarted by the most peaceful of peoples) is implemented in so heavy-handed a fashion that it must have been meant as some kind of allegory.  It's certainly not science fiction, at least no more than Burroughs' work at the turn of the century. 


From Exploring the Planets Copyright 1958

Incidentally, it is looking as though the "hot but tolerable" Venus is about to go by the wayside (along with all the science fiction stories that take place on it).  A presentation at the Paris Symposium on Radio Astronomy last summer revealed that radar studies done a few years ago show that Venus may be extremely hot–well above the boiling point of water.  I have a suspicion that most of our treasured science-fiction themes may well be rendered obsolete in the next few years of space exploration.

Wrapping up the magazine is The R of A by Gordon Dickson.  It's another in a long line of wish-granting genie stories and an interesting commentary on predestination.  Not great, but not bad.

That leaves the score for this magazine at one third 4-star, one third 2-star, and one third 1-star.  This leads to an average of 2.33.  And things started out so well.  On the other hand, the nice thing about digests is you can pick and choose.

Next article: 43,000 Years Later by Horace Coon.  Stay tuned!

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

A near miss? (Dream in flight; 1-05-1959)

For those of you waiting on tenterhooks, here is the news:

Mechta, a.k.a. Dream a.k.a. Lunik has soared past the moon.  Skimming just 4,700 miles over the surface of the Earth's celestial neighbor, Mechta has become the first artificial object to escape Earth's gravity and enter solar orbit, where it will remain for the foreseeable future. 

Already, the signals from the spacecraft are getting hard to pick up.  Nevertheless, the instruments on the Soviet probe have already returned some fascinating preliminary results.  For instance, it is now clear that, unlike the Earth, the moon has no magnetic field.  This is not unexpected–the moon is a lot less dense than the Earth and thus is unlikely to have the iron core currently believed to be required to generate a magnetic field.  Moreover, the moon is small enough that any iron it does have in its center is likely frozen solid, and it is believed that a spinning liquid iron core is necessary to generate a planetary magnetic field. 

So any space travelers heading to the moon won't be able to use their compasses.  On the other hand, I imagine that the sun and the Earth, the former moving slowly across the lunar sky over the course of two weeks, the latter hanging fixed in the heavens (at least from half of the moon), will provide perfectly adequate navigational aids.

It is expected that Mechta will also return data on solar radiation in interplanetary space, but that will take a while to reach print.

Of course, the real mystery of Mechta still has not been solved.  Western newspapers are describing the mission as an "overshoot" and a "near miss," but was Mechta even aimed at the moon?  TASS (the Soviet government news agency) certainly has not confirmed this.  On the other hand, Moscow Radio stated last night that Mechta would be taking pictures of the moon's hitherto unseen far side; this report was later retracted as erroneous.

Curiouser and curiouser!  Was there a camera on board Lunik?  There certainly was enough space for one–at least, an American-built one.  Was the probe supposed to orbit the moon?  If not, what was all that extra payload for?  And is there any connection between this flight and the unorthodox visit to the United States by Anastas Mikoyan, the U.S.S.R's number 2 political honcho?

I've said before that reading the news these days is like reading a science fiction magazine.  It wouldn't take much for an enterprising author to take today's headlines and turn them into tomorrow's stories.

Hmmm……

Speaking of which, I promise to return to covering the world of science fiction in two days.  Stay tuned!

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

Red Moon? (The launch of Mechta; 1-03-59)

Bet on the Russians to throw us a curve.

Last month, I crowed that America had won the Space Race in 1958 with the launching of Score, the first communications satellite, and of the mildly successful Pioneer series.  Well, the Soviets apparently just wanted to give us a false feeling of security, because they have finally launched their own moon probe.  They call it "Mechta" or "Dream," while the press has affectionately (or derisively, as they drink their sour grape punch) dubbed it "Lunik."

It takes a day-and-a-half to get to the moon, so the Reds may yet suffer a Pioneer-style setback halfway there.  Nevertheless, the probe has already broken altitude records.  Moreover, the craft weighs almost 800 pounds, dwarfing anything we put up in 1958.  The U.S.S.R. clearly has a new rocket, and it's a doozy.

Interestingly, the Soviets have been rather cagy as to the exact purpose of this probe.  Is it supposed to impact the moon?  Is it supposed to enter lunar orbit, as was the intention of the American Pioneers?  Or will it just fly by?  All Moscow will say is, "The multi stage cosmic rocket has gone out according to its program on the trajectory of its movement in the direction of the moon."  The excerpt below doesn't clarify much either, though it does sound ambitious:

The Soviets have announced that Mechta is carrying a similar slew of experiments to that carried on the Air Force Pioneers.  These experiments are designed to investigate the intensity of magnetic fields around the Earth and moon, as well as the space in-between.  They include a magnetometer, a geiger counter, a scintillation counter.  There is also a micrometeorite detector on board.  One has to wonder if these instruments are any better than the ones lofted in Pioneers 0-2; while they weigh an order of magnitude more, this may well be because the Soviets are behind us in miniaturization technology.  On the other hand, it may be that the satellite is carrying a secret payload–perhaps there is another dog on board, or maybe a flea circus.

Lunik has made its mark on history already, however–literally.  I am told that the probe released a cloud of sodium gas late last night when it was about a quarter of the way to the moon.  I can think of two reasons for this.  Scientifically, it allows us to determine the effects of the space environment on clouds of sodium gas.  Politically, it proves that the Soviets actually did send a probe to the moon, their news outlets having skewed somewhat left of complete honesty in the past few decades.

So stay tuned.  By January 5th, I shall either report to you of the triumphant success of the first Soviet lunar shot or of its failure.  If the latter be the case, at least it will be in good company.

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

Dreaming of a White Christmas (12-24-1958)

Are you dreaming of a White Christmas?  I know I am.  San Diego has beige Christmases at best.  If we want snow, we have to head for the mountains or manufacture the stuff. 

That said, a growing consensus of scientists is concerned that White Christmases may become a rarity for everyone, not just the privileged few living in Southern California.

It's a big world we live in.  It's so big that we still don't have a picture of the whole thing.  At some point, someone will send up a satellite that will snap a family photo of our planet, but for now, we barely can resolve the curvature of the globe with high-flying sounding rockets.  It is difficult to imagine something as tiny as a single species having a profound effect upon an entire planet.

And yet, that is exactly what may be happening.  Every year, humanity puts out six billion tons of carbon dioxide.  It's a relatively harmless gas as industrial byproducts go.  It certainly isn't Strontium 90 or even coal dust.  But its effects are far-reaching. Carbon dioxide is transparent to light but opaque to heat, which means it lets in the suns rays, but doesn't let heat from the Earth escape.  This is called the "Greenhouse Effect."  To some extent, we rely on this effect; without it, the Earth would be much chillier. 

However, the amount of carbon dioxide we are putting into the atmosphere is enough to measurably increase the Greenhouse Effect, thereby raising the global temperature.  It has been predicted (and most-recently related in Asimov's science fact article in the January 1959 Fantasy & Science Fiction) that in 350 years, the average global temperature will rise some 3.8 degrees Celsius, or a little more than half a degree per semi-century.

That doesn't sound like a lot, does it?  But it would be enough to melt the polar ice caps, flood our coastal towns, generate more inclement weather, and change the inhabitability of the Earth dramatically.  Good-bye, glaciers.  Hello, new deserts.

There even appears to be corroborating data: though the measurements were not as comprehensive in 1900 as they are today, it does appear that the global temperature has risen half a degree since then.  I suppose the real test will be to see if the global temperature continues to rise.  We shall have to wait and see if it is half a degree hotter in, say, 2013. 

It is likely, however, that there is no cause for alarm.  After all, long before then, we should have nuclear fission and fusion reactors powering the world, and fossil fuels will be a thing of the past. 

One dares hope.

Merry Christmas Eve. 

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

America SCORES! (12-22-1958)

Unless the Soviets can pull a rabbit out of their hat, it looks like the United States will come out the winner in the Space Race for 1958.

It was only a matter of time before we finally used our Atlas rocket, the nation's first Intercontinental Ballistic Missile (ICBM), to launch a satellite.  With the Atlas, we can finally throw up payloads of similar weights to those launched by the Soviets with their ICBM.

The first Atlas mission, Project SCORE, was launched on December 18, 1958.  It is the heaviest payload ever to be launched by the United States into orbit—a whopping 8000 pounds' worth!  That compares favorably to the 9000 pound payload launched by the Soviet Union in May (Sputnik III).  Of course, those figures are a little less impressive when one realizes that the vast bulk of that weight actually comprises the last stage of the rocket.  Moreover, Sputnik III carried over a ton of instrumentation.  SCORE carries a bare 150 pounds of payload.

What SCORE does, however, is unprecedented.  Quite simply, it is the world's first communication's satellite.

Currently, if one wishes to send a message across the country or the world, one must either use archaic transoceanic cables or, more frequently, send the signal via some sort of radio.  The former method puts strong limits on destination (messages can only go where the cables are strung), and the latter is only as reliable as the atmosphere will allow.  Reception at remote locations is virtually impossible.  But with a satellite, one truly has the high ground.  Messages can be beamed anywhere along the satellite's line of sight, which is essentially limitless. 

Developed jointly by the Air Force and veteran communications company, RCA, SCORE has the ability both to broadcast messages as they are beamed to it from ground stations and to store received messages and transmit them later.  Seeing how it was an Air Force mission, there were probably plenty of classified messages sent and re-transmitted, but the one everybody got to know about was this one, recorded by President Eisenhower the day after launch:

"This is the President of the United States speaking.  Through the marvels of scientific advance, my voice is coming to you from a satellite circling in outer space.  My message is a simple one: Through this unique means I convey to you and to all mankind, America's wish for peace on Earth and goodwill toward men everywhere."

Once again, science fiction has become fact.  Arthur C. Clarke predicted communications satellites in the '40s, and here we are at the dawn of a new era. 

If that era comes.  It must be cynically pointed out that this launch had a second purpose—to show the Soviets that we, too, have the ability to send a nuclear bomb 6,000 miles across the globe.  While this represents a technological achievement and another example of science fiction become fact, I somehow can't be as excited about this development.  It is yet another reminder that, thus far, the exploration of space has been primarily a military endeavor, and our plowshares are barely modified swords.

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

Brrrr!  IGY wrap-up (12-18-1958)

Last time, I talked about some of the wonders of the International Geophysical Year.  The term is a bit of a misnomer–it has actually lasted some 18 months, and the dividends from its successes will be paid out for many years to come.  For those who don't know, the "IGY" is actually the third event of its kind, a twice-a-century international effort to learn about Earth's more exotic mysteries.  Originally, the event was known as the International Polar Year; the first started in 1882, and the second in 1932.  Due to the growing science of aeronautics and the newfound ability to directly measure the astronomical medium, the scope of the IPY was expanded to include outer space, and the IGY was scheduled to occur just 25 years after the last IPY.  In this period, America has launched seven successful (or semi-successful) space missions, and the Soviets have launched three.  As discussed last time, American submarines have stayed underwater for months on end and have cruised underneath the North Pole.

In keeping with the original intention of the international year-and-a-half of science, the poles have been subject to the most massive investigation in history, particularly the forbiddingly cold continent of Antarctica.  The United States, the United Kingdom, France, Japan, and the Soviet Union all have sent large teams into the frozen wastes of the world's southernmost continent, and more than 50 other countries have contributed scientists and resources. 

As the punctuation mark to cap off an unprecedented 18 months, an expedition has finally arrived at one of Earth's most exotic locales–the Southern Pole of Inaccessibility.  You are likely familiar with Earth's South Pole, the southernmost point of Earth's axis of rotation, and also with the Earth's South Magnetic Pole.  The Southern Pole of Inaccessibility was a headscratcher even for me when I first heard it.  It is the point in Antarctica equidistant from any ocean shore.  It is probably the hardest place to get to in the world (hence the name).  Of course, calling anything inaccessible is just begging to be challenged.  It is appropriate that the team that made it there, just in the nick of time, was from a country quite used to freezing climes: the Soviet Union.

On December 14, a team of the Third Soviet Antarctic Expedition reached the Southern Pole of Inaccessibility and established a small research facility.  Yes, you can now get weather reports even from the bottom of the world (or the top, if you're from Australia).  This team will brave the -72°F temperature for two weeks.

So let us all give a payechele toast to our brave Soviet comrades.  One can only imagine where we'll be for the next IGY in 2007.  Colonies on the moon, under the deep sea, and at the Southern Pole of Inaccessibility, I'll wager!

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

Fact and Fiction (February 1959 Galaxy, Part 2; 12-14-1958)

For your reading pleasure today, a piece in two parts.  First a bit on fiction, and then a bit on the other stuff.

Plowing on through the new maxi-sized Galaxy, the first story after Installment Plan is a slight bit of atmospheric by Charles A. Stearns called Pastoral Affair.  If you've read the Wells classic, The Island of Dr. Moreau, then you've essentially read this story.  Stearns, I understand, largely wrote for the pulps and less prestigious magazines, and his work reads like something from the 30s.  Not bad, just not much.

But the succeeding Fred Pohl piece, I Plingot, Who you?, is quite good.  My father was a science fiction fan of “Golden Age” vintage before his untimely passing some twenty years ago.  He once said, rather presciently, that the only way one could ever really unite the world would be the invention of an external threat, perhaps a world-destroying asteroid or (even better) an extraterrestrial invasion. 

Pohl takes this concept and turns it on its head: What if someone convinced all of the world leaders separately that an alien race was approaching, and the first to encounter it would get an exclusive and most rewarding deal?  And what if the race landed their spacecraft not in America or the U.S.S.R., but in the neutral powder-keg of French Algeria.  Why, it might kick off a bloody competition resulting in an all-out atomic war!  Now, what if that instigating someone were actually a representative of an alien species whose job was to fabricate the alien arrival to cause the destruction of Earth and ensure that interstellar competition was kept to a minimum?  You'd get Plingot.

The pacing and the writing really make this story, as well as the unexpected ending (which is very Heinlein-esque).  The story is from the eponymous Plingot's point of view, and his wording and mood are subtly and suitably alien.  Interestingly enough, it is decidedly fixed in a very specific period of time—perhaps the next few months.  For the flag of the United States has 49 stars, and it is pretty clear by now that Hawaii will be a state very soon, to balance Republican and Democratic votes in the Senate, if nothing else.  Moreover, given the recent turmoil in France that brought DeGaulle back to the fore and created yet another French Republic (Number 5!), I can't imagine that France's hold on Algeria is anything but tenuous.  This all works, however, since the story is not a prediction of the future but rather a prediction of how the present might deal with a futuristic threat.

Now the non-fiction.  Willy Ley's article this bi-month wraps up his article on “The World Next Door:” the alien realm of the deep sea, and ties in nicely with the unusually large number of undersea accomplishments achieved by the United States this year.  Did you know that the nuclear-powered submarine, the U.S.S. Seawolf stayed underwater for 60 consecutive days?  The air its crew left port with was the air the crew breathed for two straight months.  That kind of self-contained endurance is relevant to travel in Outer Space, where fresh air is even less accessible.

The Seawolf is the younger sister of the U.S.S. Nautilus, which made history in August by being the first ship to travel to the North Pole under water.  I saw/heard in a recent newsreel that there is talk of opening up underwater polar trade routes between East and West.  I don't know how feasible that would be, but it is exciting nonetheless. 

So stay tuned!  I predict that the undersea science fiction genre (heretofore severely underrepresented—Fred Pohl's Slave Ship serialized two years ago in Galaxy, is one of the few examples) will become a big component of published sci-fi in the near future.

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

Oops, Part 4 (12-08-1958)

Well, at least we're consistent.

The past few months, the newspapers have run headline after headline describing America's failures in trying to shoot the Moon.  The Air Force had the first at-bat with its three Pioneers.  #0 blew up so early that it wasn't even dignified with a name.  #1 limped about halfway to the Moon before falling back down.  #2's performance was somewhere in the middle.

If you believe the papers (and/or the Vice President), all of these flights were successes.  After all, any launch, even one that doesn't meet its goals, is a learning experience.  Sarcasm aside, Pioneers I and II were not total washes–they sent back a lot of good data on the Earth's magnetic field and the radiation trapped therein.  Moreover, they went a lot higher than any of our previous probes, certainly higher than anything the Russians have sent up.

The day before yesterday (Dec. 6, 1958) was the Army's chance to step up to the plate.  If hitting the Moon is a Home Run, I'd say they hit a double.  Pioneer III, a teeny 13-pounder launched on a Juno II made it out about 67,000 miles before falling back to Earth.

As always, I collected as many papers as I could and kept my ears glued to the radio.  Early editions simply announced the launch, but it was clear pretty quickly that something had gone wrong.  Apparently, Pioneer's rocket ran out of fuel about four seconds early, which sent the probe off at too low an angle.  Even though Pioneer III left Earth with more speed than Pioneer I, its journey was only half as high.  38 hours after launch, the poor little probe was ashes in the ionosphere. 

Silver lining: A good 22 hours of data was collected from the probe, and it is already adding to our knowledge regarding the two (count them: two!) radiation belts girdling the Earth.  As a matter of fact, those belts are the only phenomenon Pioneer III could report on.  Unlike Pioneers 0-II, which had a whole suite of experiments including even a TV camera, Pioneer III had just one experiment: a pair of Geiger-Muller tubes for counting the cosmic radiation particles hitting the spacecraft.  I am not sure why Pioneer III was such a simple probe.  It may be that the Army got the assignment in a hurry and had to rush things.  It might also be that the Army's Juno II doesn't have the enough strength to lift anything heavier.

In any event, this isn't the last we'll be hearing from the Army.  Pioneer IV will be up sometime soon, though Major General John Medaris, head of the Army's rocket development center in Alabama, had no firm dates for the press.

"See me after Christmas," he told the television people.

Get a load of that puss.  That looks more like a toothache than a booster failure. 

Here's an interesting question: The Space Race has been marked by more failures than successes.  Did anyone ever write a science fiction story that predicted this level of teething pain in a space program?  It seems to me that space vehicles in fiction simply work.  If they don't work perfectly, they have maintenance issues like those that afflict an automobile or perhaps a naval vessel.  This goes back to my previous comments regarding the focus of science fiction on the pilot rather than the large and necessary logistical tail. 

It's a pity we don't see more stories incorporating launch failures.  They could be an exciting dramatic device.

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.

What's in a name? (12-4-1958)

I'm still waiting for my January F&SF to show up, so here's another topical scientific post.  Just call me Willy Ley's poor cousin.

The space stories in today's newspapers are filled with a mixture of alphabet soup and Roman mythology.  Keeping track of what's what can be a headache.  For instance, there has been a lot of confusion regarding the naming of the rocket that launched Explorer I (and III and IV, and tried to launch II and V).  Some accounts called it a Jupiter-C.  Others have since called it a Juno I.  Which is correct?  Is there a Jupiter missile somewhere in there?  Does it even matter? 

Let me clear things up.  The answer shines an interesting spotlight into the politics of naming and the jockeying for position being done by this country's armed services.

Back in 1953, Von Braun and his Alabama team of German expatriates finished the first significant rocketry development since the V2 (which they had also built).  It was the Redstone Medium Range Ballistic Missile (MRBM) with a range of more than a hundred miles.  Von Braun knew he had a vehicle that was powerful enough to send something into orbit, and he lobbied heavily for his "Project Orbiter" so that he, and the Army, could launch the first artificial satellite.  He lost that fight to the Navy, who started work on the Vanguard, based in turn on the Viking sounding rockets, which were based on the V2.

Nevertheless, Von Braun did win the contract to build the longer-ranged successor to the Redstone, the Jupiter Intermediate Ranged Ballistic Missile (IRBM).  This let Von Braun keep Project Orbiter alive, at least under wraps.  The first step toward turning the Redstone into a satellite booster was a series of test launches with Jupiter IRBM components on board.  He called the resulting machine "Jupiter-A," even though at its heart, it was really a Redstone.  This helped ensure launch pad availability, since the Jupiter was a higher-priority program.

Then he added 11 miniaturized solid-rocket boosters called Sergeants (descendants of the WAC Corporal rocket, of course) as a second stage and one more as a third stage.  This new booster was used as a sounding rocket, probing the outer reaches of the atmosphere in short suborbital flights, and was called the "Jupiter-C."  I don't know if there were ever plans for a "Jupiter-B."

Once Sputnik was launched, America was hard-pressed to make a quick response.  Von Braun trotted out the Jupiter-C, all ready to launch a payload.  It wasn't quite enough to get Explorer I into orbit, however, so another mini-Sergeant was attached to the satellite and placed on top of the Jupiter-C third stage.  This technically made the Jupiter-C a four-stage rocket, even though one could argue that the fourth stage was really part of the payload. 

It was important that there be little connection between the military space programs and the civilian space programs, at least in the press.  That's why Vanguard was given the nod for the first satellite launch.  While it was developed by the Navy, it was run under the auspices of the civilian National Research Laboratory.  Jupiter-C was renamed "Juno I" to distance the rocket from its military origins.

It was not a very successful move.  Contemporary newspapers universally referred to the rocket as the Jupiter-C (which, of course, it was).  The name "Juno I" is only now common in retrospective use, as its last flight was on October 23.  It is a useful distinction, however, as Von Braun has taken the 2nd, 3rd and "4th" stages from the Juno I and affixed them to a true Jupiter IRBM, thus creating the "Juno II."  This new vehicle should have about the same lifting capacity as the Air Force's Thor-Able, maybe a little less.  It will launch Pioneer III next week.  Note: Pioneer III has nothing to do with Pioneers 0-II save that they have the same destination, the moon.

All clear?

(Confused?  Click here for an explanation as to what's really going on)

This entry was originally posted at Dreamwidth, where it has comment count unavailable comments. Please comment here or there.